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Abstract 

 
This particular study is part of a larger research performed by VOLTiFiC which evaluated all available battery 

published data in the secondary battery segment (5-3220AH).  The scope of data covers top 10 largest 

manufacturers of industrial batteries in North America and spans over 1,400 battery models. Nicad, VLA, and 

VRLA batteries with life designs of 2 - 20 years are evaluated. The majority of batteries are designed for 

stationary and standby applications with more than 75% advertised as 20 years life. 

  

The findings paint a picture of potential overlooked problems that lie in published battery performance data. 

While only less than 1% of the data has errors, nearly 10% of the battery models are affected. The distribution of 

errors in different battery series, types, and across various manufacturers indicates a common theme of 

inadequate or lack of quality control of battery performance data. 

  

How much data interpolation is considered excessive? Should battery manufacturers be required to disclose 

when they perform interpolation vs. actual test? What level of measurement accuracy is acceptable for 

published and battery sizing data? Should 3rd party verification be required for published data? This paper 

cannot answer all these questions, but first step in answering them is through increased industry knowledge and 

understanding of confidence levels placed on battery tables and charts. After all, a problem is not really a 

problem until it’s understood. 

  

This paper and subsequent presentation is aimed at laying the groundwork for this much needed discussion to 

take place. Observations, obstacles, and solutions are being shared with the purpose of improving compliance 

and application design of batteries.  

  

Detailed comparison of major types of issues, such as incorrect data measurement, data entry, interpolation and 

publication are examined. A major stumbling block for battery manufacturers is the sheer amount of data that 

can be produced for each battery model. Some data issues are easily identified with graphical visualization and 

performing manual quality control. However, in most cases data verification requires computer algorithms and 

specialized data modeling skills. Once ‘bad data’ is identified, the solution is trivial. Some require small 

corrections to sizing applications and published material; some require re-calculating data interpolation and in 

the extreme cases a repeat of the discharge test. 

  

The extent of issues is sometimes limited to what is published only, while other times the error is consistent 

with the data in battery manufacturer’s sizing application. The occurrence and margin of error is also dependent 

on data availability, quality and marketing of each battery. 

  

The implications can be significant depending on the application, criticality, design margins and coincidental 

overlap of errors with actual operating load profiles. Whether you use battery performance data for battery 

testing or just sizing batteries, it will have different cascading and compounding effects. Examples will be 

presented in an attempt to empower readers with basic tools to understand what issues exist, and to what 

extent their systems can be affected. 
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Introduction 

The need to perform battery sizing generally depends on criticalness of the application, size of the load, and 

reliability requirements of the end user. Mission critical systems such as emergency power back up, protection 

controls, and safety systems demand battery sizing calculations as a minimum requirement for 

evaluating/purchasing batteries.  

  

IEEE 485
TM

 and IEEE 1115
TM

 are the most prominent standards in the world for sizing lead acid and Nicad 

batteries in stationary applications. The calculations in these standards rely on battery performance data 

provided by battery manufacturers. This means that if one wishes to size (calculate) a battery capacity in terms 

of percentage or time, data for that battery in the desired time period has to be first made available. In pursuit 

of developing a universal battery sizing application, we set up a team to collect and analyze all available battery 

data. 

  

There is currently no specific standard for publishing battery performance data, and data availability is related to 

application and quality (design life) of the battery among other things. 

  

Before diving deeper, let’s make sure we are on the same page on these two important topics: 

  

 

Design Life 

While design life is used in this paper to 

categorize battery quality, a proper way of 

classifying batteries is actually via warranty 

period. Design life is often used for marketing 

purposes with broad understanding of how it can 

be achieved, whereas warranty period is specific 

to an application, operating voltage and 

temperature, charging, and maintenance 

practices. Warranty period is often proportional 

to design life but, it can vary depending on the 

commercial or financial requirements.  

 

Therefore, to make analysis easier, data will be 

summarized as follows: 

 
 

Design Life (years)  α  Warranty (years)
1
 

15 - 20 5 - 7 

10 - 12 2 - 3 

2 - 6 1 - 1.5 
 

Battery Data 

Throughout this paper, the term battery data will 

be used in replace of battery performance data or 

cell discharge characteristics for ease of reading. 

This is a reminder for readers not to confuse this 

with other types of data that is generated and 

measured with battery monitoring and testing 

equipment after installation of batteries.  

 

Battery performance data is produced by a 

controlled capacity discharge test, simulation, or a 

mixture of both. It is common practice to test one 

battery model in a series and interpolate 

(approximate) data for rest of the models in the 

same series. This is due to the fact that 

performance data is directly linked to total number 

of plates per cell in a battery. Number of plates is 

often the only differentiator in various size models 

within a single battery series. 

 

 

 

 

  

1 
Typical full replacement warranty period (excludes any optional or prorated warranty offerings) 
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Dataset Scope 
 

Now that we have an understanding of why this dataset was collected, let's look at what it includes and what it 

does not. As mentioned earlier, there is currently no standard for battery data so format and availability of data 

varies greatly. 

 

Battery cell discharge characteristics data may be presented in tabular or chart format (commonly known as S-

curves or Fan curves). Commercial and consumer type batteries generally do not have tabular data readily 

available, and graphs that are published on product brochures often bear low importance. Due to low accuracy 

in extracting data from published graphs, any battery model that does not have available tabular data is 

excluded from this dataset.  

 

Data is gathered from manufacturers with manufacturing and/or distribution plants in North America or battery 

models that are primarily advertised for use and sale in North America. There are battery models that are no 

longer available for sale, but are still included since their published date is within advertised design life. The 

dataset does not include any data pertaining to sales activities therefore, quantity of battery models sold and 

their current operational state is unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

 
While there are some models that are used in nonstationary applications, the majority are designed and 

advertised for stationary applications. They are all part of the secondary battery segment with range of design 

life and capacities shown in Figure 2. 

 

Sizing standards allow for a factor to be applied in calculations to adjust for variation of expected temperatures 

as a function of time (known as Temperature Correction Factor). This allows manufacturers to publish data at a 

specific temperature and designers to apply correction factor during sizing at minimum operating temperature 

(most conservative). The temperature specified for most of the data is based on 25℃ or 77℉. There are few 

models (~ 1%) however, that are advertised at 20℃ (European based). 

 

The standards do not provide a similar factor to adjust for variations in end of discharge voltage or different 

discharge rates. Manufacturers choose what end of voltage and what time periods to make the data available 

for. Often, this is derived from target market, application of use, and previous history of sale. There are currently 

no standards or enforcements of such practices. Subsequently the minimum amount of data that is required for 

sales in a specific application is tested and published.  

Secondary
Primary

Included

Figure 1: Scope of data showing battery market segment, chemistry and type 

Industrial 

Commercial 

Consumer 

Excluded 
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87%

11% 2%

15 - 20 Yrs 10 - 12 Yrs 2 - 6 Yrs

Figure 2: Distribution of data vs. capacity & design life 

 

Industrial type batteries designed for critical 

applications are most likely to have available data. 

These higher quality batteries also come in larger 

capacity packages, so it’s no surprise that batteries 

with larger capacities and longer design life 

dominate the dataset. 

  

 

 

Data Extraction 

 
The dataset collected for this study is from tabular data formats only. These tables are either from published 

literature on battery manufacturer’s websites or via spreadsheets received directly from battery manufacturers 

engineering department. Data extraction was performed by a combination of automatic computer algorithms 

(similar to ones used in web search indexing) and manual verification. For quality control, published data was 

cross referenced with data used in the battery manufacture’s sizing application. This verification was performed 

in batches and based on the existence and accessibility of the sizing application. 

 
The most basic form of battery discharge characteristics is presented by constant discharge current (Amps) or 

power (watts) per cell (or unit) of battery. This data is specified at a standard temperature (i.e., 25℃), end of 

discharge voltage, and time. A typical table for a battery model may look as follows:  
 

End of 

Discharge 

Voltage  

Time 

1 min 15 min 30 min 1 Hr 2 Hr 3 Hr 4 Hr 5 Hr 6 Hr 7 Hr 8 Hr 10 Hr 12 Hr 24 Hr 

1.81 VPC 244 177 129 82 53 40 32 27 23 21 19 15 13 7.6 

1.80 VPC 253 181 132 83 54 40 32 27 24 21 19 16 14 7.7 

1.78 VPC 267 189 136 85 55 41 33 27 24 21 19 16 14 7.7 

1.75 VPC 283 199 142 87 56 41 33 28 24 22 19 16 14 7.7 

Table 1: Constant discharge current (Amps) for an example battery model at 25℃ 

 

A typical lead acid battery model may have 2-12 voltage data sets listed, ranging from 1 min to 24 hours. These 

data points are not provided in a similar manner. Some are scattered, some are concentrated in batches and 

some are evenly distributed.  Out of 1440 minutes in 24 hours, a battery model may only have 12-20 data points 

per each end of discharge voltage. 

 

Challenges that arise from extracting this data are due to inconsistencies across battery models. These include 

varying end of discharge voltages, time periods and number of data points. Data is often prioritized to showcase 

the full range of capacities that the battery that has to offer. Subsequently, regions of available data do not 

often overlap with the most rapidly changing part of the battery discharge characteristics.  Any data point that is 

missing can be obtained through approximation or interpolation, but for this particular study this was omitted. 

This allows us to examine only the data that is produced and published by manufacturers and not introduce any 

errors due to approximation. In a way, the more data that is available, the more it will be extracted and 

scrutinized. 

 

              829AH            127AH           40AH 

Design Life:  

Average Capacity: 
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Error Identification 
 

It is difficult to fully validate any data without first understanding the process that battery manufacturers use to 

obtain them in the first place. The process typically begins with performing capacity discharge tests in a 

controlled environment with carefully selected constant loads. This produces a baseline for battery 

manufacturer to use in order to interpolate and approximate data for a whole range of end voltages. It is 

common practice to perform this type of vigorous testing on one model with a predefined number of plates and 

use the results to produce data for remaining models in the series. This is due to high costs associated with 

testing and subsequent analysis. It should be noted that data is never advertised in raw format. It goes through 

several rounds of conversions and data cleansing, which all produce their own margin of errors. Battery 

manufacturers may also add a statistical factor on top of the actual test results to allow for process variations 

during production.  

 

There are no standards or regulations for these procedures, so it’s costly to create a standardized test and 

repeat the measurements. Even if we could finance the expenditure, the likelihood of repeating the exact same 

test configuration is next to impossible.  

 

So, we will take a different approach. Rather than validating the dataset against what the manufacturer has 

tested or even what the battery can output, we test the data against itself. We will validate the dataset relative 

to itself based on underlying physics and chemistry fundamentals: 

 

I. A battery discharged to a higher end of discharge voltage (EOD) should not produce more current in the 

same time period than one discharged to a lower EOD. 

 

II. A battery with a lower number of identical plates should not produce more current in the same time 

period and EOD.  

 

III. The discharge characteristics of any battery should always have a negative slope. In other words, the 

ampacity of the battery while discharging should always decrease as time increases. 

 

These simple rules apply to all battery types and chemistries and will enable us to create some basic error 

checking algorithms discussed below. This allows us to look at the dataset in one snapshot and assess its health 

in a very general and aggregated fashion.  
 

         End of Discharge Voltage Check 

 

One easy method to check the 

first rule is to compare data 

from different end of 

discharge voltages and repeat 

for each battery. This is 

illustrated in Figure 3.  This 

type of error could occur at 

any time period listed. 

 

The battery will fail this test 

for any one or more data 

points that this error occurs at.  

 

Figure 3: Error Check Algorithm based on EOD 
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Plate Consistency Check 

In order to validate 

rule II, we compare 

data for batteries 

with different 

numbers of identical 

plates.   

 

The battery fails this 

test if any data point 

has this error occur at 

the same EOD and 

time.  

 

 

 

 

 

 

 

 

 

Discharge Characteristics Check  

A quick way of 

checking the last rule 

is to sequentially 

compare data points 

as time increases. 

If any data point is 

higher than the 

previous, then it is 

identified as an error. 

This is a very basic 

function as shown in 

Figure 5, and it will 

only partially check 

the last rule.   

 

 

Figure 4: Error Check Algorithm based on # of identical plates 

Figure 5: Error Check Algorithm based on discharge characteristics (BASIC) 
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An ideal algorithm would first apply regression models to approximate where each point should appear and 

then perform comparison. This more advanced method is illustrated in Figure 6 with an orange dashed line 

shown as regressed data. 

 

This method does 

produce inaccuracies 

due to approximation. 

Therefore, we will 

only include results 

from the basic version 

of this algorithm and 

exclude any results 

from the more 

advanced one. 

 

 

Results 

Before we look at the results of performing the preceding error checks on the dataset, it is important to note 

that error identification cannot always point to a single cause or source of error. For example in our first 

algorithm, while 1.80VPC is marked as the one with errors, there is no evidence that the 1.75VDC is not the one 

with incorrect data. In a way, the moment we observe a single error in a battery model, we lose confidence in all 

of the entire data from that battery model. Similarly, whenever a battery model fails the second test, we lose 

confidence in the entire dataset from that battery series. 

This type of brief error checking does provide some basic level of quality assurance however, and can be used as 

a guide in order to narrow down the list of potential causes. For example, when there is a single error in battery 

data, it is usually a typo that persisted through publication. When there is a repeating pattern of errors in 

battery models within a single series, it usually points to human errors in later stages of publication such as 

manipulating data for brochures (ie. sorting, filtering, and extraction). When there are errors identified in 

discharge characteristics of the battery, it usually points to bad interpolation algorithms or faulty data 

acquisition from discharge tests. As such, any direct conclusion drawn from these results without further 

investigation should be avoided.  Also note that these results are being shared for the purpose of increasing 

awareness around battery data issues with focus on existence and type of errors rather than cause or margin of 

the error. If a battery passes these error checks, its data accuracy still remains uncertain and would require 

further validation.  

Figure 7 shows the distribution of errors based on chemistry and type. Each box represents a battery model that 

failed the error checks. The smallest box (bottom right corner) is equivalent to 1 error, the largest box (top left 

corner) has 1,089 errors. 

Figure 6: Error Check Algorithm based on discharge characteristics (ADVANCED) not included in results 
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Figure 8: Distribution of errors based on EOD and type 

 

 

 

 

 

 

 

 

 

 

 

 

VLA batteries typically have twice the amount of data compared to VRLA. That correlates with the fact that most 

VLA batteries have minute by minute data whereas the majority of 10 year design VRLA batteries have data in 

batches. To get a better understanding of which EOD data has errors, look at Figure 8. Here, each colored box 

represents a battery model that has errors.  

 

 

 

 

 

 

Figure 7: Number of errors based on chemistry 
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While there are more battery models that have errors at 1.75VDC and 1.80VDC, these numbers simply correlate 

with the amount of data that is available in each category. Similarly, the number of Nicad battery models with 

errors may appear less than lead acid, but that is simply because there are less data available.  

There are small areas where errors are more concentrated, but in general they are representing a more random 

pattern. To better picture this reality, take a look at Figure 9. Here, each box represents a battery model that is 

included in the dataset. The size of each box represents the AH capacity rating of that respective battery at the 5 

hour discharge rate. The largest battery is 3,229 AH and the smallest battery is 5AH. Boxes that are colored red 

are battery models that have data errors (~ 9.7% of batteries in dataset) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magnitude of errors and its effects on individual battery systems is outside of the scope of this paper, but 

we will look at one example as a way of understanding the nature of the ramifications.  A typical switchgear 

power back up system requires an 8 hour discharge profile. If the load profile has 3 load steps (ie. 50A for 5 

minutes, 10A for 470 minutes, followed by 50A for 5 minutes), then it can be assumed that 5 data points are 

required as a minimum to calculate sizing. The number of batteries in existence that can satisfy such a load 

profile is limited. The list gets even smaller as technical aspects and economics of customer specification often 

reduces the number of battery solutions, types and sizes. In one extreme but obvious case, we observed a 7% 

difference between incorrect data and an approximated data calculated based on correct data. As a standard, 

these systems are oversized with much higher design, aging, and future growth margins. Even if no margin was 

applied for sizing, the odds of that incorrect data matching the load profile are extremely rare. While that is 

good news, it should be noted that odds of any battery discharge cycle matching the original designed load 

profile is also extremely rare.  

Figure 9: Distribution of errors based on capacity (5 hour rate) 
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“Rated capacity which is 

assigned to represent the 

quantity of electrical 

energy in a battery is just a 

single point in the full 

spectrum of data that can 

be produced and measured 

from that battery.” 

To ensure compliance, it is best engineering practice to measure final installed load and recalculate battery 

sizing based on that instead. In most cases this yields to a smaller than expected load profile which provides 

additional margin for any data errors. In cases where this yields to a higher than expected load profile, further 

investigation is necessary as it may lead to shorter back up run time, longer recharge time, and unexpected or 

unintended drop outs.  

 

Conclusion 

The dataset that was examined can be identified as the 

best of the best in the battery market. These are large 

batteries in various capacities that are sold and 

installed in utilities, datacenters and plants all over 

North America. They are used in some of the most 

critical applications and have influence in some 

operation’s bottom line. With all the scrutiny that 

these batteries go through, we can still detect issues 

with data from all battery manufacturers that are part 

of the dataset. The exclusion of other battery types 

such as lithium-ion or flow batteries was not done 

deliberately; rather it is the outcome of current reality. 

There are no or very low amounts of information 

provided by newer types of batteries.  What does this 

mean for other batteries in non-critical applications 

where they do not necessarily perform battery sizing?  

There is no standard that covers the amount of data required for a battery to be sold, so the minimum bar in 

terms of data accuracy, detail, and range is non-existent. Manufacturers are also not required to disclose how 

they obtain their data. This resonates with batteries that are sold in commercial and consumer markets where 

end users demand even less data from manufacturers.  It is ironic to think that large amounts of resources are 

spent on capturing, monitoring and trending data produced once a battery is installed, but very little attention is 

given to original data produced and published by manufacturers. It may be a surprise to some, but the rated 

capacity which is assigned to represent the quantity of electrical energy in a battery is just a single point in the 

full spectrum of data that can be produced and measured from that battery. 

While battery performance data is important, other attributes such as short circuit capacity, evolution rate, and 

others are also equally important and should go through a similar form of data quality assurance. Whether this 

translates to specific standards, regulation, or 3
rd

 party verification of battery data, it depends on how this 

conversation continues into the future. Will manufacturers who currently dominate the market share in battery 

data take the lead and develop a path for future battery data requirements or will it be left to consumers and 

other markets to advance this dialogue?  
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