

Liebert® iCOM™

Installer/User Guide

Intelligent Communication and Monitoring for Liebert® CRV

The information contained in this document is subject to change without notice and may not be suitable for all applications. While every precaution has been taken to ensure the accuracy and completeness of this document, Vertiv assumes no responsibility and disclaims all liability for damages result from use of this information or for any errors or omissions.

Refer to local regulations and building codes relating to the application, installation, and operation of this product. The consulting engineer, installer, and/or end user is responsible for compliance with all applicable laws and regulations relation to the application, installation, and operation of this product.

The products covered by this instruction manual are manufactured and/or sold by Vertiv. This document is the property of Vertiv and contains confidential and proprietary information owned by Vertiv. Any copying, use, or disclosure of it without the written permission of Vertiv is strictly prohibited.

Names of companies and products are trademarks or registered trademarks of the respective companies. Any questions regarding usage of trademark names should be directed to the original manufacturer.

Technical Support Site

If you encounter any installation or operational issues with your product, check the pertinent section of this manual to see if the issue can be resolved by following outlined procedures.

Visit https://www.vertiv.com/en-us/support/ for additional assistance.

TABLE OF CONTENTS

1 Getting Started with Vertiv™ Liebert® iCOM™	1
1.1 Touchscreen Display and User Interface	1
1.2 Touchscreen Status Dial	3
1.2.1 Dial Background Color Status Indication	5
1.3 Control Header	6
1.3.1 Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls	6
1.3.2 Powering On the Thermal Management Unit	7
1.3.3 Powering Off the Thermal Management Unit	8
1.3.4 Logging Out	8
1.3.5 Calibrating the Touchscreen	8
1.3.6 Setting the Date and Time	9
1.3.7 Searching	9
1.4 Using Context Sensitive Help	9
1.5 About Vertiv™ Liebert® iCOM™ Version	10
1.6 Accessing the User, Service, and Advanced Menus	10
1.7 User Menu	10
1.8 Service Menu	11
1.8.1 Service Menu Options	11
2 User Operation	13
2.1 Viewing and Editing Setpoints for the Cooling Unit	13
2.1.1 Editing Humidity Setpoints	13
2.1.2 Editing Temperature Setpoints	14
2.2 Viewing Unit Alarms	15
2.2.1 To View Alarms	15
2.2.2 Alarm Detail Fields	16
2.2.3 Silencing an Audible Alarm	16
2.2.4 Acknowledging Alarms	16
2.3 Viewing the Event Log	17
2.4 Viewing Sensor Data	18
2.5 Managing Run Hours for a Component	18
2.5.1 Setting Run Hours to Zero	18
2.6 Viewing Teamwork, Standby, and Cascade Status	19
2.6.1 To View the Teamwork Details	19
2.6.1 To View the Teamwork Details	
	21
3 Service Operation	
3 Service Operation 3.1 Editing Setpoints for the Cooling Unit	21

	3.1.4 Compressor Control by Cooling Requirement	26
	3.1.5 Configuring High/Low Limit Setpoints	31
	3.1.6 Configuring Humidity Setpoints	32
	3.1.7 Humidity Control	33
	3.1.8 Reduction of Fan Speed Due to High Latent Content	35
	3.1.9 Configuring Fan Setpoints	36
	3.1.10 Manual Fan Speed Control	36
	3.1.11 Automatic Fan Speed Control	37
3.2	Scheduling Condenser and Cooling Unit Tasks	38
	3.2.1 Scheduling Condenser Low Noise Operation	38
	3.2.2 Scheduling Condenser Fan Reversal	39
	3.2.3 Scheduling Sleep Times for Thermal Management Units	40
3.3	Setting General Thermal Management Unit Options	40
	3.3.1 Setting Miscellaneous Options	41
	3.3.2 Automatic Restart after Power Failure	42
	3.3.3 Setting Fan Options	42
	3.3.4 Setting Compressor Options	44
	3.3.5 Setting Reheat Options	46
	3.3.6 Reheat Control	46
	3.3.7 Setting Humidifier Options	48
	3.3.8 Setting Dehumidification Options	49
	3.3.9 Setting Water Leak Detector Options	50
4 N	Managing Events: Alarms, Warnings, and Messages	51
4.1	Event Properties	51
	4.1.1 To Open the Panel	51
4.2	Enabling Events and Editing Event Settings	52
4.3	Selecting Event Type and Setting Alarm/Warning Notification	53
	4.3.1 Notification Properties	53
4.4	Enabling the Audible Alarm Notification	56
4.5	Remote Alarm Device and Customer Input Events	56
	4.5.1 Setting Up Customer Input Events	57
5 U	Jnit to Unit (U2U) Networking	59
5.1	Preparing for U2U Group Set Up	59
5.2	Configuring U2U Network Settings	60
	5.2.1 To Configure U2U Networking	60
	5.2.2 Troubleshooting Network Settings Issues	62
	5.2.3 Modifying U2U Network Settings	63
6 T	Feamwork, Standby, and Rotation for Cooling Units	65
6.1	Teamwork Modes	65
	6.1.1 To Set Up Team Work	65

	6.1.2 No Teamwork—Multiple Zones in One Room	67
	6.1.3 Teamwork Mode 1—Parallel Operation	67
	6.1.4 Teamwork Mode 2—Independent Operation	67
	6.1.5 Teamwork Mode 3—Optimized Aisle Operation	68
6.2	2 Assigning Cooling Units to Standby (Lead/Lag)	68
	6.2.1 To Set Up Lead/Lag Operation	68
6.3	3 Setting a Rotation Schedule	69
	6.3.1 Unit Rotation Options	69
	6.3.2 Manually Rotating the Operating and Standby Units	70
7 E	External Monitoring and Building Management Systems	71
7.1	1 BMS and Vertiv™ Liebert® IntelliSlot Settings	71
	7.1.1 Configuring BMS Communication with Vertiv™ Liebert® IntelliSlot Card	72
	7.1.2 Setup Communication with a Card	72
	7.1.3 Setting BMS Control Settings	72
8 (Configuring Auxiliary Devices	75
8.1	1 Fluid Temperature Monitoring	75
	8.1.1 Fluid Sensor Options	75
8.2	2 Wired Remote Sensors	75
	8.2.1 Wired Remote Sensor Set Up Options	76
	8.2.2 Wired Remote Sensor—Sensor Property Options	77
8.3	3 Supply Sensors	78
9 /	Administering Firmware, Settings, and Security	79
9.1	1 Vertiv™ Liebert® iCOM™ Firmware Upgrades	79
	9.1.1 Compatibility with Earlier Versions of Vertiv™ Liebert® iCOM™	79
	9.1.2 Updating Vertiv™ Liebert® iCOM™ Control Board Firmware	79
	9.1.3 Control Board Firmware Upgrade Options	80
	9.1.4 Reverting to Firmware in Dormant Partition	81
9.2	2 Backing Up, Importing/Exporting and Restoring Display Settings	82
	9.2.1 To Back Up or Restore Display Settings	82
	9.2.2 Resetting Display Settings to Defaults	82
9.3	3 Backing Up and Restoring Control Board Settings	83
	9.3.1 Control Board Back Up and Restore Options	83
9.4	4 Managing Access Permission and Passwords	84
9.5	5 Configuring with the Start Up Wizard	85
	9.5.1 To Update System Information Using the Wizard	85
	9.5.2 Start Up Wizard Options	85
10	Performing Diagnostics	87
10.	0.1 Cooling Unit Status LED	87
10.	0.2 Enabling Manual Mode for Diagnostics	87
	10.21 Disabling Diagnostics Manual Mode	88

10.3	3 Diagnosing Evaporator Fan Issues	88
	10.3.1 Diagnostics—Evaporator Fan Options	88
10.4	4 Diagnosing Compressor Circuit Issues	89
	10.4.1 Diagnostics—Compressor Circuit Options	89
	10.4.2 Resetting High Pressure Alarm Code	91
	10.4.3 Resetting Low Pressure Alarm Code	91
	10.4.4 Resetting High Temperature Alarm Counter	91
10.5	5 Diagnosing Humidifier Issues	91
	10.5.1 Diagnostics—Humidifier Options	91
10.6	6 Diagnosing Digital Output Issues	92
	10.6.1 Diagnostics—Digital Output Options	92
10.7	7 Diagnosing Analog Output Issues	93
	10.7.1 Diagnostics—Analog Output Options	93
10.8	B Diagnosing Customer Input Issues	93
	10.8.1 Diagnostics—Customer Input Options	93
10.9	9 Diagnosing Dehumidifier Issues	94
	10.9.1 Diagnostics—Dehumidifier Options	94
10.10	10 Managing Brown Out Protection	94
	10.10.1 Diagnostics—Brown Out Protection Options	94
11 C	Customizing the Vertiv™ Liebert® iCOM™ Display	95
11.1	Setting General Display Properties	95
	11.1.1 Unit Display Options	95
11.2	Customizing Main Display Views	96
	11.2.1 Moving Content	96
	11.2.2 Resizing Content	96
	11.2.3 Adding and Adjusting Content	97
	11.2.4 Removing Content	98
11.3	Customizing Parameter and Field Labels	98
	11.3.1 Exporting, Importing and Customizing Labels Using a Text Editor	100
12 V	Vertiv™ Liebert® iCOM™ Hardware Installation	103
12.1	Return Air Temperature/Humidity Sensor	103
	12.1.1 P67: Return Air Temperature—Humidity Board	103
	12.1.2 Jumper P3 CANbus Termination	106
12.2	2 Installing Wired Remote Sensors	106
	12.2.1 Setting DIP Switches and Labeling 2T Sensors	106
	12.2.2 Terminating the Last Sensor on the CANbus Link	109
	12.2.3 Routing CANbus Cable and Preparing for Sensor Installation	111
	12.2.4 Installing 2T Sensors in the Racks to Monitor	116
	12.25 Connect the CANbus Cable and Ground	119
12.3	R Installing the U2U Network	121

12.3.1 Required Network Equipment	121
12.3.2 Planning Wiring Runs	121
12.3.3 U2U Wiring Connections	121
12.3.4 Wiring Cooling Units without Wall Mount Displays	122
12.3.5 Wiring Cooling Units with Wall Mount Displays	127
Appendices	129
Appendix A: Technical Support and Contacts	129
Appendix B: Setpoints and Alarm Settings by Line ID	131

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

1 Getting Started with Vertiv™ Liebert® iCOM™

The Liebert® iCOM™ offers the highest capability for unit control, communication, and monitoring of Liebert® thermal management units. It is available factory installed on new units and assemblies or may be retrofitted in existing units.

1.1 Touchscreen Display and User Interface

The Vertiv™ Liebert® iCOM touchscreen and user interface speeds set up and installation and simplifies control of Vertiv™ Liebert® thermal management units, literally putting cooling system monitoring and management at your fingertips.

- The 9-inch, resistive, color-touchscreen display is used with a firm touch, or consider using a stylus when interacting with the touchscreen.
- User and service menus are password protected to prevent unauthorized changes to cooling unit operation.
- The touchscreen is back lit and auto-dims after a period on non-use, then turns off. Touch the screen to illuminate the main screen.
- Liebert® iCOM™ ships with default settings for efficient and effective operation of most cooling units and is easily configured to meet any need.
- Liebert® iCOM™ menus and displays are based on the options installed on the cooling units that it monitors and manages.

Figure 1.1 Vertiv™ Liebert® iCOM™ Main Display

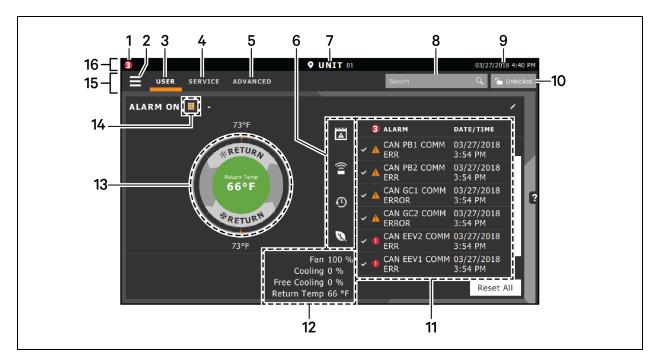


Table 1.1 Main Display Controls and Options

Item	Description	
1	Alarms Present - Displays the number of active alarms.	
2	Menu Icon - When unlocked, displays a menu for user or service options depending on which icon is selected.	
	User Icon - When selected, the user options are available on the main display and menu.	
3	NOTE: You must unlock the display with the User PIN to access the menu and options. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.	
	Service Icon - When selected, the service options are available on the main display and menu.	
4	NOTE: You must unlock the display with the Service PIN to access the menu and options. See Powering On the Vertiv™ Liebert* iCOM™ and Logging In/Unlocking Controls on page 6.	
	Advanced Icon - When selected, the advanced options are available on the main display and menu.	
5	NOTE: You must unlock the display with the Service PIN to access the menu and read-only options. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.	
6	Cooling Unit Parameters - Status display of selected system parameter settings. See Adding and Adjusting Content on page 97	
7	Unit Identification - You may customize the unit name up to 6 characters/numbers.	
8	Search Icon - Open the keyboard to search for controls and setting locations. See Searching on page 9.	
9	Date/Time	
	Lock/Unlock Icon - Indicates whether or not the user and service options are accessible.	
10	Locked icon: display is read-only	
	Unlocked icon: user or service is logged-in and options are accessible.	
	See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.	

Table 1.1 Main Display Controls and Options (continued)

Item	Description	
11	Secondary Content Panel - When accessing settings/configuration via the menus, the settings display in the right, secondary panel.	
Summary of Current Unit Function - You can customize to show fan speed, cooling, percentages from any installed device, (sensor) values.		
13	Status Dial - Circular display of setpoints and environmental conditions of the unit. See Touchscreen Status Dial below.	
Teamwork Mode Icon - In a panel with "Status" content, the Teamwork Mode icon indicates the mode selected. For details and design of the teamwork controls, see Teamwork Modes on page 65.		
15	Control header. Controls to access the user and service menus. See Control Header on page 6.	
16	Status Header - Displays the alarm status, unit identification, and the current date and time.	

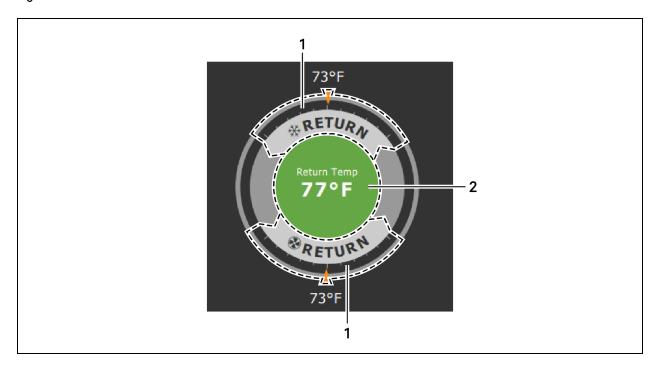
1.2 Touchscreen Status Dial

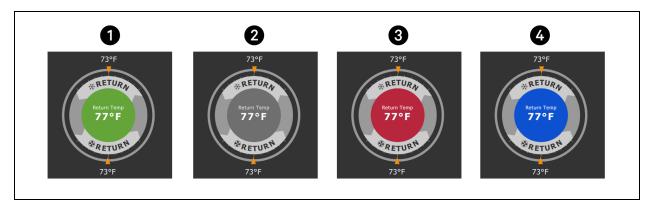
The dial in the primary control panel displays read-only control sensors, setpoints, and environmental conditions for unit status at a glance. See **Figure 1.2** on the next page .

The center of the dial displays sensor readings and changes color according to alarm thresholds as the readings rise and fall, see Dial Background Color Status Indication on page 5.

Touching the center of the dial cycles through a set of sensor settings, and you can select the readings displayed, see Adding and Adjusting Content on page 97.

Figure 1.2 Dial Sections




Table 1.2 Dial Sections

Item	Description	
	Control sensor and its setpoint. The sensors and setpoints displayed depend on the configuration of your unit.	
1	You may see only temperature control, or if the unit includes humidity control, that displays on the dial as well.	
	If the sensor selected for fan control is the same as that selected for temperature control, the dial displays the fan-control sensor and setpoint, as shown in Figure 1.2 above .	
2 Single or multiple sensor readings. Cycle through readings by touching the displayed reading.		

1.2.1 Dial Background Color Status Indication

The background color of the dial indicates whether or not the unit is powered on, and it also responds to threshold settings of the control sensor reading. See **Figure 1.3** below . **Table 1.3** below describes the background color displayed if the selected sensor reading has threshold limits set.

Figure 1.3 Dial Background Colors

Item	Description	
1	Sensor reading is within threshold limits.	
2	Unit is powered off.	
3	Sensor reading is above threshold limit or the unit is in an alarm condition.	
4	Sensor reading is below threshold limit.	

Table 1.3 Background Color Displayed by Selected Value and Threshold Limit

Sensor/Value Selected	Threshold Limit	Background Color
Return Temp	None	Green
	High return temperature	Red
Return Humidity	Low return humidity	Blue
Recuiring	High return humidity	Red
Dew Point	Low dew point	Blue
DOW FOILE	High dew point	Red
Supply Temp	Low supply temperature	Blue
	High supply temperature	Red
Average Rack Temp	Low remote temperature	Blue
, wordgo radik remp	High remote temperature	Red
Max Rack Temp	Low remote temperature	Blue
Max Nack Tellip	High remote temperature	Red

Table 1.3 Background Color Displayed by Selected Value and Threshold Limit (continued)

Sensor/Value Selected	Threshold Limit	Background Color
Min Rack Temp	Low remote temperature	Blue
······································	High remote temperature	Red
Static Pressure	Low static pressure	Blue
	High static pressure	Red
Outdoor Temp	None	Green
Outdoor Humidity	None	Green

1.3 Control Header

The control header contains the controls to access the user and service settings. The display is locked when started initially and when restarted after a period of inactivity.

1.3.1 Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls

Liebert® iCOM™ is powered on when power is switched on at the cooling unit's disconnect switch and you activate the display by touching it.

Liebert® iCOM™ is locked when started and also locks after a period of inactivity to prevent unauthorized changes. A four digit password is required to access the user and service menus and options, and the advance menu displays as read-only when logged in at the service level.

NOTE: The factory default inactivity period is one minute. To change the inactivity period, see Setting General Display Properties on page 95.

NOTE: The factory default password for user and service log in are provided. We recommend you change passwords as necessary to prevent unauthorized changes. See Managing Access Permission and Passwords on page 84.

- Default user password: 1490
- Default service password: 5010

To unlock the controls:

- 1. On the header, touch .The keypad opens.
- 2. Touch the numbers/characters for your password, then touch your level of access, the User and/or Service options, and view-only access to the Advanced menu are accessible. See Accessing the User, Service, and Advanced Menus on page 10.

1.3.2 Powering On the Thermal Management Unit

NOTE: Depending on the operating state, there are start and stop priority switches that may prevent the cooling unit from operating even though power to the unit is switched on and you have turned it on via Vertiv™ Liebert® iCOM™.

The cooling unit operates only when all switches are closed. For example, even though you have turned on the unit through Liebert® iCOM™, if the BMS remote monitoring system is sending a command to turn off the unit, the cooling unit remains off.

NOTE: You must be logged in to access the menu options. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on the previous page.

To power-on the unit:

- 1. Touch then >Turn Unit On. The TURN UNIT ON dialog opens.
- 2. Touch Turn Unit On. The cooling unit starts and the operating status is displayed as shown in Figure 1.4 below.

Figure 1.4 Unit Status on Liebert® iCOM™ Display

Item	Description	
1	Current status of the unit. See Table 1.4 below.	
2	Teamwork icon. See Viewing Teamwork, Standby, and Cascade Status on page	

Table 1.4 Cooling Unit Statuses Displayed

Unit Status Text	Description
ALARM OFF	An alarm forced the unit to turn off. See Viewing Unit Alarms on page 15.
MANUAL	Controlled by a service technician. See Enabling Manual Mode for Diagnostics on page 87.
DISPLAY OFF	Unit is turned off at the Liebert® iCOM™ display. See Powering On the Thermal Management Unit above .
ALARM STANDBY	In standby because of an active alarm on the unit. See Viewing Unit Alarms on page 15 .

Table 1.4 Cooling Unit Statuses Displayed (continued)

Unit Status Text	Description
STANDBY	In standby because of service-menu setting. See Assigning Cooling Units to Standby (Lead/Lag) on page 68.
UNIT ON	Operating normally without alarms or warnings.
WARNING ON	Active warning, but still operating. See Viewing Unit Alarms on page 15 .
ALARM ON	Active alarm, but still operating. See Viewing Unit Alarms on page 15 .
REMOTE OFF	Turned off by remote shutdown terminal. Occurs when a normally-closed set of 24 V contacts opens. The Remote On/Off and Display On/Off switches are in series, and the cooling unit will only turn-on if both switches are on/closed,. If one is off/open the unit turns off.
MONITORING OFF	Turned off by remote monitoring system. Check the remote monitoring device or call Vertiv technical support for assistance.
RESTART DELAY	Not yet operational after a power cycle because the restart delay timer is active.

1.3.3 Powering Off the Thermal Management Unit

NOTE: You must be logged in to access the menu options. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

- 1. Touch then >Turn Unit Off. The TURN UNIT OFF panel opens.
- 2. Touch Turn Unit Off. The unit begins a power off countdown then powers off.

1.3.4 Logging Out

Log out occurs automatically when the display back light turns off for inactivity.

NOTE: The factory default inactivity period is one minute. To change the inactivity period, see Setting General Display Properties on page 95.

• To log out manually, touch the lock icon. The icon indicates LOCKED.

1.3.5 Calibrating the Touchscreen

Use a firm touch or a stylus for the best response. To improve interaction with quicker and more-accurate touch response, calibrate the touchscreen.

- 1. On the User menu, touch Display Options > Display Properties.
- 2. On the UNIT DISPLAY panel, touch Calibrate Screen and follow the prompts to calibrate.
 - If you cannot access the calibration because of screen response, continue with step 3.
- 3. At the cooling unit disconnect switch, power off the unit and then power back on.
- 4. Touch your finger to the screen and hold it there while the display boots.

- 5. When the LED begins flashing, remove your finger.

 Cross hairs appear in each corner and in the center of the display.
- 6. Touch the center of each cross hair ONCE ONLY. (Touching more than once interrupts the calibration and you must start over at step 3.)
 - Cross hairs disappear and the display reboots when calibration is complete.

1.3.6 Setting the Date and Time

The correct date and time is critical for warnings, alarms, and scheduling.

- 2. Touch the date field, use the arrows to select the date, and touch OK.
 - or -

Touch the time field, use the arrows to set the time, and touch OK.

- 3. Select the date and time format if necessary.
- 4. Touch Save.

1.3.7 Searching

When logged in, you can use the display search to find the location of settings options based on a term, service code, or parameter. You can also search by the line ID used in the Vertiv™ Liebert® iCOM™ before the touchscreen model. For a listing of the line IDs, see Setpoints and Alarm Settings by Line ID on page 131.

NOTE: You must be logged in to access the display search. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

- 1. In the control header, touch the search field. The keyboard opens.
- 3. To go to a listed location, touch an item, then touch Go. The panel for the selected location opens.
 - or –

To view the service codes and parameter entries related to the searched term, touch View Parameter Directory Entries (the number of related entries is included in the option).

The Parameter Directory opens. You may further refine the search in the directory.

1.4 Using Context Sensitive Help

Touching the Help icon, on the right-hand side of the display opens the Help drawer with information about the panel or dialog currently on the display.

You can use search and the topic index to find further information.

To close the Help drawer, touch the close arrow,

1.5 About Vertiv™ Liebert® iCOM™ Version

The version, build, and other firmware information for the Liebert® iCOM™ display board may be helpful when servicing or troubleshooting. To locate the firmware version of the Liebert® iCOM™ control board, see Updating Vertiv™ Liebert® iCOM™ Control Board Firmware on page 79.

• Touch , then > About. The ABOUT panel opens.

1.6 Accessing the User, Service, and Advanced Menus

Vertiv™ Liebert® iCOM™ operating functions that monitor and control a cooling unit are accessed via the User and Service menus.

NOTE: You must be logged in to access the menu options. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

- 2. Touch the menu icon, The menu opens

1.7 User Menu

The user menu lets you view system and unit statuses and edit some setpoints.

User Menu Options

Setpoints

Opens the SETPOINTS panel. See Viewing and Editing Setpoints for the Cooling Unit on page 13.

Active Alarms

Opens the ALARMS panel. See Viewing Unit Alarms on page 15.

Event Log

Opens the EVENT LOG panel. See Viewing the Event Log on page 17.

Sensor Data

Opens the SENSOR DATA panel. See Viewing Sensor Data on page 18.

Display Options

Opens the Display Options menu:

- Customize Layout—see Customizing Main Display Views on page 96.
- Custom Labels—see Customizing Parameter and Field Labels on page 98.
- Date & Time—see Setting the Date and Time on page 9.

Total Run Hours

Opens the RUN HOURS panel. See Managing Run Hours for a Component on page 18.

About

Opens the ABOUT panel. See About Vertiv™ Liebert® iCOM™ Version on the previous page .

Turn Unit On/Off

Depending on unit's status, open the TURN UNIT ON or TURN UNIT OFF dialog. See Powering On the Thermal Management Unit on page 7, or Powering Off the Thermal Management Unit on page 8.

1.8 Service Menu

The service menu lets you view and edit setpoints and perform many other functions.

1.8.1 Service Menu Options

Setpoints

Opens the SETPOINTS panel. See Editing Setpoints for the Cooling Unit on page 21.

Diagnostic/Service

Opens the Diagnostic/Service menu:

- Diagnostics: See Performing Diagnostics on page 87.
- Technical Support: Contact information for the cooling unit and Vertiv™ Liebert® iCOM™ display.

Alarm/Event Setup

Opens the ALARMS & EVENTS panel. See Managing Events: Alarms, Warnings, and Messages on page 51, .

BMS & Teamwork

Opens the BMS & Teamwork menu:

- U2U Setup: See Configuring U2U Network Settings on page 60.
- Teamwork/Standby: See Teamwork, Standby, and Rotation for Cooling Units on page 65
- BMS Setup: See BMS and Vertiv™ Liebert® IntelliSlot Settings on page 71.

Scheduler

Opens the SCHEDULER panel. See Scheduling Condenser and Cooling Unit Tasks on page 38.

Options Setup

Opens the OPTIONS SETUP panel. See Setting General Thermal Management Unit Options on page 40.

Auxiliary Device Setup

Opens the Auxiliary Device Setup menu:

• Sensors: See Wired Remote Sensors on page 75.

Backup & Security

Opens the Backup & Security menu:

- Display Backup and Restore: See Backing Up, Importing/Exporting and Restoring Display Settings on page 82.
- Control Backup and Restore: See Backing Up and Restoring Control Board Settings on page 83.
- Display Upgrade: See Updating iCOM Display Firmware.
- Control Upgrade: See Updating Vertiv™ Liebert® iCOM™ Control Board Firmware on page 79.
- Manage Permissions: See Managing Access Permission and Passwords on page 84.

Turn Unit On/Off

Depending on unit's status, open the TURN UNIT ON or TURN UNIT OFF dialog. See Powering On the Thermal Management Unit on page 7, or Powering Off the Thermal Management Unit on page 8.

2 User Operation

2.1 Viewing and Editing Setpoints for the Cooling Unit

NOTE: User level access allows viewing and editing only a limited number of setpoints. To view or adjust all setpoints, you must have service level access. See Editing Setpoints for the Cooling Unit on page 21.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

2.1.1 Editing Humidity Setpoints

- 1. Touch , then >Setpoints. > Humidity Control. The HUMIDITY CONTROL secondary panel opens.
- 2. Refer to the User Humidity Setpoint Options below and Humidity Control on page 33 to adjust the setpoint options, then touch Save. The setpoint is updated.
 - Touch Cancel to discard the changes.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

User Humidity Setpoint Options

Dew Point Setpoint

Desired dew point, based on actual return air temperature and humidity, by adding moisture to or removing moisture from the air.

Humidity Control Sensor

Selects sensor used when calculating relative humidity.

Humidity Control Type

Control when staging humidification operations. Valid values are:

- Relative: Percent of humidification/dehumidification is determined by the difference between the humidity sensor reading and the humidity setpoint.
- Compensated: Percent of humidification/dehumidification is determined by considering the actual deviation
 from the temperature setpoint and adjusts the humidity setpoint accordingly. The recalculated humidity setpoint
 displays on the screen.
- Predictive: Percent of humidification/dehumidification is determined by considering the actual deviation from the temperature setpoint and adjusts the humidity sensor reading accordingly. The adjusted humidity sensor reading displays on the screen.
- Dew Point: Percent of humidification/dehumidification is determined by the difference between the dew point calculated from the humidity sensor reading and the dew point setpoint.

Humidity Setpoint

Desired humidity level by adding moisture to or removing moisture from the air.

Humidity Setpoint 2

Alternate setpoint activated by customer input (remote alarm device). When customer input connection is 2nd Setpoint, this value becomes the active humidity setpoint.

2.1.2 Editing Temperature Setpoints

- 2. Refer to User Temperature Setpoint Options below, Temperature Control—Temperature Setpoints and Cooling Operation on page 23, and Compressor Control by Cooling Requirement on page 26 to adjust the setpoint options, then touch Save. The setpoint is updated.
 - Touch Cancel to discard the changes.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

User Temperature Setpoint Options

2nd Temperature Setpoint

Alternate setpoint activated by customer input (remote alarm device). When customer input connection is 2nd Setpoint, this value becomes the active temperature setpoint.

Optimized Aisle Enabled

Read-only. Indicates that $Vertiv^{TM}$ Liebert® iCOM TM is configured for optimized aisle operation. See Teamwork Mode 3—Optimized Aisle Operation on page 68.

Temperature Control Sensor

Selects sensor that controls cooling. Values are:

- Supply Sensor: Temperature control is based on maintaining the temperature of the discharge air from the cooling unit. See Supply Sensors on page 78.
- Remote Sensor: Temperature control is based on the temperature reading(s) from wired remote sensor(s). See
 Wired Remote Sensors on page 75.
- Return Sensor: Temperature control is based on maintaining the temperature of the air returning to the cooling unit.

Temperature Setpoint Act

Read-only display of adjusted temperature setpoint when the following is active:

• Customer input setpoint (remote alarm device).

Temperature Setpoint

Temperature that the unit maintains via cooling.

Temperature Setpoint 2

Alternate setpoint activated by customer input (remote alarm device). When customer input connection is 2nd Setpoint, this value becomes the active temperature setpoint.

2.2 Viewing Unit Alarms

The ALARMS panel lists active alarm and warning events. **Table 2.1** below describes the type and state of the alarm shown by indicator dots.

Table 2.1 Alarm Status and Type Indicators

Indicator	Description
Yellow dot	Warning event
Red dot	Alarm event
Circle	Event condition has cleared, but still must be acknowledged. See Acknowledging Alarms on the next page .

2.2.1 To View Alarms

2. Touch an alarm to display the ALARM DETAILS panel.

Alarm Fields

Alarm

Name of the event.

Date

Date event was logged.

Time

Time event was logged

2.2.2 Alarm Detail Fields

Alarm

Name of the event.

Alarm Type

Number representing the event type.

- 1: Warning
- 2: Alarm

Date/Time

Date and time the event was logged.

Duration

Time elapsed since event was logged.

Threshold

Sensor-reading at which an event is triggered.

Unit

Cooling unit to which the alarm applies.

Value

The current value to which the threshold is compared.

2.2.3 Silencing an Audible Alarm

Touch the screen to silence an audible alarm. If the alarm is non-latching, the alarm silences when the condition clears.

NOTE: The audible alarm must be enabled in display options to sound. See Enabling the Audible Alarm Notification on page 56.

2.2.4 Acknowledging Alarms

Depending on the notification settings, alarms and warnings must be acknowledged or reset. An event is active as long as it is unacknowledged, with the exception of the network failure events described in **Table 2.2** on the facing page. Once acknowledged, an event remains active until the situation that triggered the event is resolved, see **Table 2.1** on the previous page, for event status indicators. When an event acknowledged and cleared, it is removed from the Alarms panel and the LED stops flashing red.

NOTE: Acknowledging alarm events does not clear them. To clear an issue, it must be corrected, reset automatically by the controller or reset manually.

To Acknowledge Alarms

- 1. On the ALARMS panel, touch *Acknowledge All*. A check mark overlays the status indicator of the active alarms and warnings, and these automatically clear when the condition is no longer present.
 - If a critical event must be manually reset, the acknowledged items are listed with a Reset All button on the ALARMS panel.
- 2. Touch Reset All to manually reset the condition.

Table 2.2 Events That Clear without Acknowledgment

Network Failure	Description
	The Liebert® iCOM™ I/O board assigned as U2U address number XX (2 up to 32) has lost communication with the group.
UNIT XX DISCONNECTED	Make sure all units are powered on at the disconnect.
	Check cable connections and network settings where applicable.
	The Liebert® iCOM™ I/O board assigned as U2U address number 1 has lost communication with the group.
NO CONNECTION W/UNIT 1	Make sure all units are powered on at the disconnect.
	Check cable connections and network settings where applicable.
BMS DISCONNECT	The BMS/BAS has not completed a handshake within the time defined by the BMS/BAS.
DIVIS DISCONNECT	Verify monitoring connections and communication to the BMS/BAS panel.
UNIT CODE MISSING	The factory unit code must be confirmed, saved and executed.
UNIT CODE MISMATCH	The factory unit code must be confirmed, saved and executed.
AMBIENT SENSOR FAILURE	The outdoor temperature / humidity sensor used on the air economizer unit has become disconnected or is no longer working properly.
CAN GC 1 or 2 COMM ERR	See Table 4.3 on page 55.

2.3 Viewing the Event Log

The event log is a list by date/time of the last 400 events generated by Vertiv™ Liebert® iCOM™ for the thermal management unit.

• On the User menu, touch *Event Log*. The EVENT LOG for the cooling unit opens. **Table 2.3** below describes the color coded status for each event.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, the options on your Liebert® iCOM™ display may differ.

Table 2.3 Event Status and Type Indicators

Indicator	Description
Green dot	Message
Yellow dot	Unacknowledged warning event. See Acknowledging Alarms on the previous page .
Red dot	Unacknowledged alarm event. See Acknowledging Alarms on the previous page.
White dot with check mark overlay	Acknowledged event, the cause still exists.
White circle	Acknowledged event, the cause is cleared.

2.4 Viewing Sensor Data

The SENSOR DATA panel lists the standard and optional sensors monitored by Vertiv™ Liebert® iCOM™ and the current reading of each sensor.

• Touch , then > Sensor Data. The SENSOR DATA panel opens.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, the options on your Liebert® iCOM™ display may differ.

2.5 Managing Run Hours for a Component

You can view the run hours for components on a cooling unit, set the total run time limit and reset total run hours to zero.

- 1. Touch , then > Total Run Hours. The RUN HOURS panel opens and the current hours for each component are listed in the Total Run Hours column. To reset the total run hours to zero, see Setting Run Hours to Zero below.
- 2. Use the slider to set the total run time limit for each component, then touch Save. The limits are set.

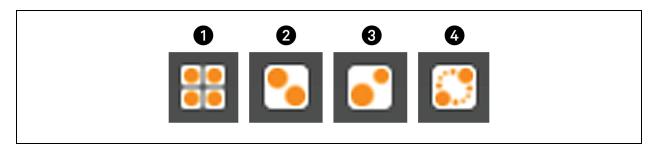
NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, the options on your Vertiv™ Liebert® iCOM™ display may differ.

2.5.1 Setting Run Hours to Zero

- 1. On the RUN HOURS panel, touch to check each box in the *Total Run Hours* column next to the component(s) to reset. The Set to Zero button becomes available.
- 2. Touch Set to Zero. The total run hours for the selected component(s) is set to zero.

2.6 Viewing Teamwork, Standby, and Cascade Status

In the main User panel, the Teamwork Mode icon indicates the mode selected, Figure 2.1 below.


2.6.1 To View the Teamwork Details

Touch the Teamwork Mode icon.

The teamwork dialog opens displaying the teamwork mode, number of units in standby, and number of operating units.

NOTE: You must be logged in with the Service PIN to edit teamwork mode. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

Figure 2.1 Teamwork Icons

Item	Description
1	No teamwork.
2	Mode 1 - Parallel teamwork
3	Mode 2 - Independent teamwork
4	Mode 3 - Optimized aisle teamwork

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

3 Service Operation

3.1 Editing Setpoints for the Cooling Unit

Setpoints are the means by which the cooling unit operation is controlled.

NOTE: Depending on the type of thermal managment unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

3.1.1 Setpoints Options

Fan Control

See Configuring Fan Setpoints on page 36.

High/Low Limit Control

See Configuring High/Low Limit Setpoints on page 31.

Humidity Control

See Configuring Humidity Setpoints on page 32.

Temperature Control

See Configuring Temperature Setpoints below.

3.1.2 Configuring Temperature Setpoints

- I. Touch secondary panel opens.
- 2. Refer to Temperature Control Options on the next page, Temperature Control—
 Temperature Setpoints and Cooling Operation on page 23, and Compressor Control by Cooling Requirement on page 26 to adjust the setpoint options, then touch Save. The setpoint is updated.

NOTE: Proportional band setting is dependent on the heat load and the components specific to your cooling unit.

Additional tuning may be required after start up when using PI temperature control. See Considerations when Using PI Temperature Control on page 25.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Temperature Control Options

Temperature Control Sensor

Selects sensor that controls cooling. Values are:

- Supply Sensor: Temperature control is based on maintaining the temperature of the discharge air from the cooling unit. See Supply Sensors on page 78.
- Remote Sensor: Temperature control is based on the temperature readings from wired remote/rack sensors. See Wired Remote Sensors on page 75.
- Return Sensor: Temperature control is based on maintaining the temperature of the room air.
- Customer input setpoint (remote alarm device).

Temperature Control Type

Control when staging cooling and heating operations. Valid values are:

- Pl: Percent of cooling/heating calculated using the temperature proportional band and temperature-integration time settings. See Considerations when Using PI Temperature Control on page 25.
- Adaptive PID: Auto-tuning PID control loop, can be set for cooling. Only available on Vertiv™ Liebert® CW (chilled water) systems.
- Intelligent: Percent of cooling/heating determined by programmed logic that simulates manual human control.

Temperature Deadband

Widens the setpoint to prevent small temperature changes from cycling compressors and valves maximizing component life. When temperature is within the deadband, no change of the control output (heating/cooling) occurs.

Temperature Integration Time

Adjusts amount of cooling/heating based on the length of time the temperature has deviated from the setpoint. The time selected is the amount of time it will take cooling capacity to reach 100%. For example, if three minutes is selected, cooling capacity will increase to 100% in 3 minutes.

NOTE: Three to five minutes of integration time is adequate for most applications. See Considerations when Using PI Temperature Control on page 25.

Temperature Proportional Band

Adjusts the activation point of cooling components based on deviation from setpoint by placing half of the selected value on each side of the temperature control setpoint. A smaller number causes faster reaction to temperature changes.

NOTE: Setting this too low causes short cycling of compressors.

Temperature Setpoint

Temperature that the unit maintains via cooling.

Temperature Setpoint 2

Alternate setpoint activated by customer input (remote alarm device). When customer input connection is 2nd Setpoint, this value becomes the active temperature setpoint.

Temperature Setpoint Act

Read-only display of adjusted temperature setpoint.

3.1.3 Temperature Control—Temperature Setpoints and Cooling Operation

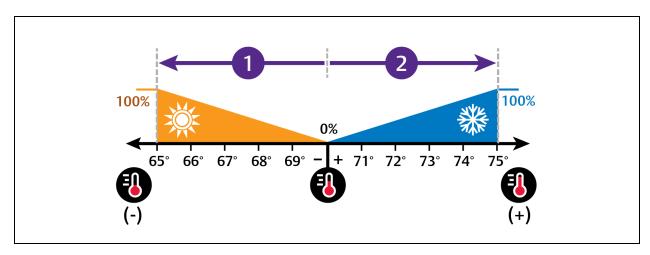
Temperature control refers to the cooling unit's response to programmed setpoints and sensed room/load conditions.

Temperature control is closely tied to the primary cooling source. Liebert® Thermal management units employ several types of primary cooling sources.

Compressor Operation

Vertiv™ Liebert® iCOM™ controls the cooling units based on a calculated need for cooling (and heating, if included on your system). The requirement is expressed as a percentage and is calculated using the selected temperature control type.

Temperature Proportional Band


Use the proportional and deadband parameters to control how your cooling unit(s) respond based on the calculated need for cooling (or heating). Figure 3.1 on the next page, illustrates temperature control using:

- 70° setpoint
- 10° proportional band
- No deadband

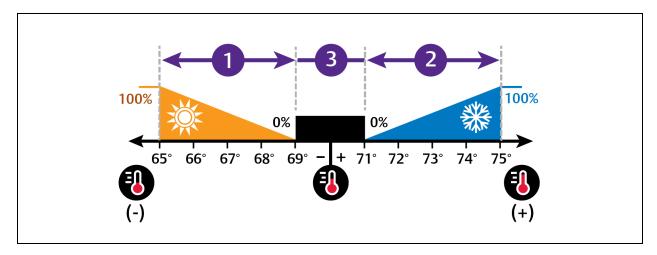
The proportional band is divided evenly on each side of the setpoint:

- 0% cooling capacity is required at 70°.
- As the air temperature increases, cooling also increases along the proportional band.
- If the air temperature reaches 75°, the system operates at 100% cooling capacity.
- If air temperature rises to the end of the proportional band or further, the system operates at 100% capacity to bring the temperature down to the setpoint.
- If your unit includes reheat, the heating capacity operates in the same way as the air temperature falls below the setpoint. See Reheat Control on page 46.

Figure 3.1 Temperature Control without a Deadband

No.	Description
1	½ of proportional band.
2	½ of proportional band.

Temperature Deadband


A deadband widens the setpoint to prevent small temperature changes from activating compressors and valves and cause excessive component cycling. **Figure 3.2** on the facing page, illustrates temperature control using:

- 70° setpoint
- 10° proportional band
- 2° deadband

Like the proportional band, the is also divided evenly on each side of the setpoint:

- 0% cooling capacity is required from 69° to 71°.
- At 71°, the system operates according to the temperature proportional band.

Figure 3.2 Temperature Control with a Deadband

No.	Description
1	½ of proportional band.
2	½ of proportional band.
3	Deadband

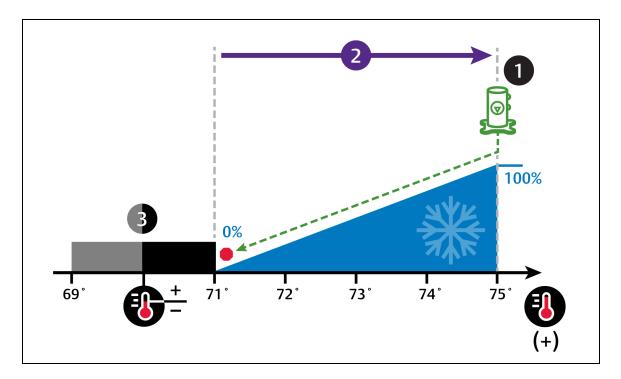
Considerations when Using PI Temperature Control

Several factors, such as room heat load, external heat gains, and component specific performance can affect the PI control loop. Adjusting the temperature proportional band and integration time can improve cooling unit performance and avoid problems detailed in **Table 3.1** below.

Table 3.1 PI Temperature Control Troubleshooting

Problem	Solution
Cooling is slow to activate Decrease the proportional band slightly and monitor operation. Repeat until cooling reaction time is acceptable.	
Compressor short cycle alarm	Increase the proportional band slightly by increasing the integration time between three and five minutes and monitoring compressor run time. Set the temperature deadband to 2 Run time must be more than three minutes to prevent a short cycle of the compressor.
Excessive valve oscillation or hunting	Increase the proportional band and/or increase integration time.

3.1.4 Compressor Control by Cooling Requirement


Compressor control is directly linked to temperature control in that the cooling requirement determined by the temperature proportional band determines compressor operation. Depending on the type of cooling unit, the number and type of compressors varies. The following describes compressor operation along the proportional band for the varying compressor options.

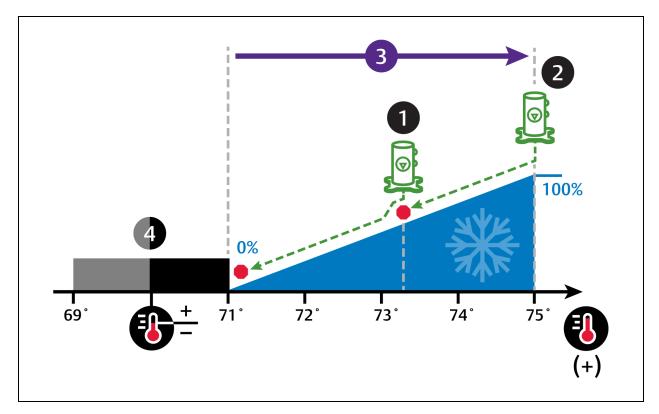
One Scroll Compressor without Unloaders

- 70° setpoint
- 8° proportional band
- 2° deadband

In **Figure 3.3** below, the compressor starts at 75° when the cooling requirement is 100% and continues to operate until 71° is reached when cooling requirement is 0%.

Figure 3.3 Compressor Control—One Step Capacity

No.	Description
1	Single scroll compressor.
2	½ of proportional band.
3	Deadband

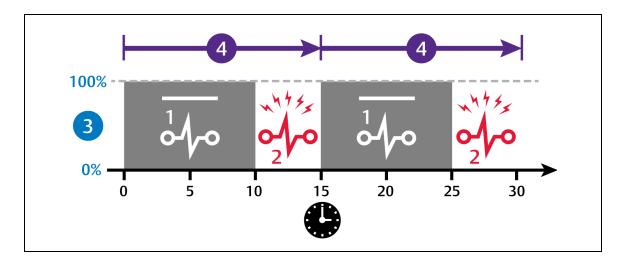

One Scroll Compressor with Unloader

- 70° setpoint
- 8° proportional band
- 2° deadband

In **Figure 3.4** below . the compressor starts unloaded at 73° when the cooling requirement is 50%.

At 75° when the cooling requirement is 100%, the compressor operates loaded until 73° is reached when cooling requirement is 50% and it returns to unloaded operation.

Figure 3.4 Compressor Control—Two Step Capacity Using One Scroll Compressor with Unloaders


Number	Description
1	Scroll compressor unloaded.
2	Scroll compressor loaded.
3	½ of proportional band.
4	Deadband

Digital Scroll Compressors

Digital scroll compressors use time loaded/unloaded to modulate cooling capacity between 10% and 100% to control cooling more precisely than non-digital compressors. Capacity modulation is achieved by opening and closing a digital solenoid valve in 15 second intervals while the compressor runs continuously when the cooling requirement is 10% to 100%.

- When the valve is opened (energized, the compressor is unloaded and capacity is 0% (because the scroll plates are separated so that there is no refrigerant flowing through the compressor).
- When the valve is closed (de-energized), the compressor is loaded and capacity is 100%.
- Capacity is determined by the amount of time that the valve is closed in the 15 second interval. **Figure 3.5** below illustrates solenoid valve operation when cooling requirement is 66%.
 - The valve is closed for 10 seconds (100% cooling).
 - Then valve is open for 5 seconds (0% cooling).
 - This results in 66% cooling. Essentially, the compressor is partially loaded.

Figure 3.5 Digital Scroll Compressor Operation to Provide 66% Cooling Capacity

No.	Description
1	Solenoid de-energized.
2	Solenoid energized.
3	Percent loaded.
4	15 second capacity modulation cycle.

One Digital Scroll Compressor

In a single digital scroll system:

- The compressor starts when the cooling demand is at least 25% (calculated from temperature proportional band) and operates at 50% capacity (valve open 7.5 seconds/closed 7.5 seconds) for an initial period set in Winter Start Delay. See Setting Low Pressure Time Delay on page 45, after which it operates per cooling demand.
- As cooling demand increases, the length of time the valve is closed increases/capacity increases.
- At 100% cooling requirement, the valve remains closed for the entire 15 second interval and the compressor is operating loaded at 100% capacity.
- The compressor stops when cooling demand decreases to 10%.

Figure 3.6 on the next page illustrates digital scroll compressor operation with the following setpoint parameters:

- 70° setpoint
- 8° proportional band
- 2° deadband

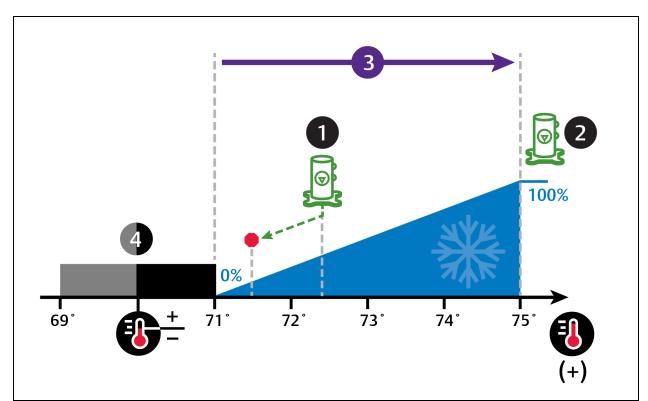


Figure 3.6 Compressor Control—Single Digital Scroll Compressor

No.	Description
1	Digital-scroll begins operation
2	Digital-scroll operation at 100%
3	$rac{1}{2}$ of proportional band
4	Deadband

3.1.5 Configuring High/Low Limit Setpoints

Setting dehumidification low limits avoids over cooling a room during dehumidification. When a low limit is reached, the cooling source used for dehumidification is disabled. Dehumidification resumes when air temperature rises above the low limit reset value.

NOTE: Dehumidification lockout can occur with improper low limit settings. To avoid lockout, increase heat load for efficient operation, decrease low limit settings slightly, and where applicable, decrease the reheat proportional band to allow reheat sooner.

To Set High and Low Limits

- 1. Touch secondary panel opens.
- 2. Adjust the setpoint options, then touch Save. The setpoint is updated.
 - Touch Cancel to discard the changes.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

High/Low Limit Control Options

Dehum Low Limit X

Temperature at which dehumidification is interrupted, where X is limit 1 or 2.

Dehumidification Low Limit Sensor

Selects the sensor that is used for the low limit determination.

Dehumidification Low Limit Setpoint

Temperature below which dehumidification is disabled.

High Return Limit

Enables/disables use of additional fan speed based on return air temperature.

Return Limit P-band

Calculates fan speed based on proportional deviation from the return air temperature.

Supply Limit Enabled

Enables/disables use of additional fan speed based on supply air temperature.

Supply Temp Limit Setpoint

Supply air temperature at which use of additional fan speed is enabled.

3.1.6 Configuring Humidity Setpoints

2. Refer to Configuring Humidity Setpoints above and Humidity Control on the facing page to adjust the setpoint options, then touch Save.

The setpoint is updated.

• Touch Cancel to discard the changes.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Humidity Control Options

Control Dew Point

Dew point setpoint.

Dew Point Deadband

Widens the setpoint to prevent small changes from cycling compressors and valves maximizing component life. When temperature is within the deadband, no change of the control output (humidification) occurs.

Dew Point P-Band

Adjusts the activation point of humidification/dehumidification components based on deviation from setpoint by placing half of the selected value on each side of the dew point setpoint. A smaller number causes faster reaction to humidity changes.

Dew Point Setpoint

Humidity level (based on actual return air temperature and humidity) by adding moisture to or removing moisture from the air.

Humidity Control Sensor

Selects sensor used when calculating relative humidity.

Humidity Control Type

Controls humidification/dehumidification operation. Valid value:

PI: Percent of humidification calculated using proportional and integral terms.

Humidity Deadband

Widens the setpoint to prevent small changes in humidity from cycling components and also maximizes component life. When humidity is within the deadband, no humidification/dehumidification occurs.

Humidity Integration Time

Adjusts unit capacity based on the length of time the humidity has deviated from the setpoint. Works in conjunction with the proportional band to maintain tight setpoint control.

Humidity Proportional Band

Adjusts the activation point of humidifier/dehumidification components based on deviation from setpoint by placing half of the selected value on each side of the humidity-control setpoint. A smaller number causes faster reaction to humidity changes.

Humidity Setpoint

Humidity level by adding moisture to or removing moisture from the air.

Humidity Setpoint 2

Alternate setpoint activated by customer input (remote alarm device). When customer input connection is 2nd Setpoint, this value becomes the active humidity setpoint.

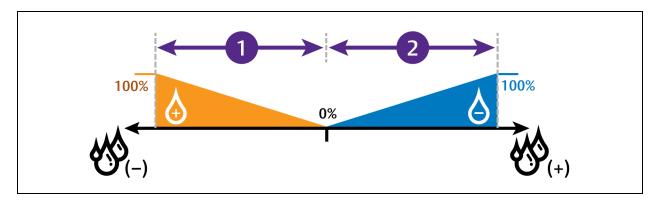
3.1.7 Humidity Control

Humidity control refers to the cooling unit's response to programmed setpoints and sensed humidity conditions.

Vertiv™ Liebert® iCOM™ controls humidity based on temperature and humidity sensor readings. The requirement is expressed as a percentage and is calculated using the selected humidity control type.

Humidity Proportional Band

Use the proportional and deadband parameters to control how your cooling units respond based on the calculated need for humidification/dehumidification. As the return air humidity deviates from the humidity setpoint, Vertiv™ Liebert® iCOM™ responds with a humidification or dehumidification capacity of 0% to 100% in 1% increments.


Figure 3.7 below, illustrates humidity control using:

- 50% setpoint
- 8% proportional band
- No deadband

The proportional band is divided evenly on each side of the setpoint.

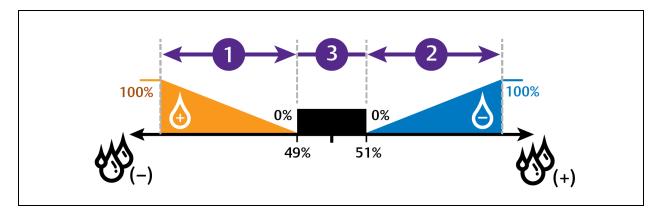
- 0% humidifying capacity is required at the humidity setpoint.
- The humidifier starts operating when the humidification requirement reaches 100% and continues to operate until the humidification requirement drops to 0%. During this period, the display shows 100% humidification
- The dehumidifying capacity responds in the same way as the return air humidity rises above the setpoint. Dehumidification is accomplished by a request for cooling that activates as soon as the required dehumidifying capacity reaches 100% and continues operating until the required dehumidifying capacity drops to 0%. During this period, the digital compressor loading scales between a minimum percentage (Advanced setting: A557) and 100% depending upon required dehumidifying capacity. The display always shows 100% dehumidification.

Figure 3.7 Humidity Control without a Deadband

No.	Description
1	½ of proportional band.
2	½ of proportional band.

Humidity Deadband

A deadband widens the setpoint to prevent small changes in humidity from activating humidifiers, compressors and valves and cause excessive component cycling.


Figure 3.8 below, illustrates humidity control using:

- 50% setpoint
- 8% proportional band
- 2% deadband

Like the proportional band, the deadband is also divided evenly on each side of the setpoint.

- 0% cooling capacity is required from 49% to 51%.
- Below 49%, humidification operates according to the humidity proportional band.
- Above 51%, dehumidification operates according to the humidity proportional band.

Figure 3.8 Humidity Control with a Deadband

No.	Description
1	½ of proportional band.
2	½ of proportional band.
3	Deadband

3.1.8 Reduction of Fan Speed Due to High Latent Content

In the event the unit is experiencing situations where latent content is high, there are some cases where water carryover from the coil due to air velocity could occur. In this situation, Vertiv™ Liebert® iCOM™ shall support a routine where the fan speed shall automatically reduce due to the high latent content it may be experiencing. An inlet NTC fluid temperature sensor shall assist with monitoring fluid temperature associated within this routine. Once the return dew point levels are approximately 3.0K lower than the fluid temperature for 60 seconds, the fan speed shall automatically be limited to 75% for at minimum 20 minutes and event 'Fan Speed Limit Started' shall be annunciated. Once the dew point is back within an acceptable range, the fan speed limit shall be disabled and event 'Fan Speed Limit Ended' shall be annunciated.

NOTE: This routine is available on CW-based Vertiv™ Liebert® CRV's only. This routine is not applied during the first 15 minutes after unit start-up, when the return dew point value is invalid, or when water inlet temperature is invalid.

3.1.9 Configuring Fan Setpoints

Configures fan speed control to operate independent of compressor loading (decoupled mode).

- 1. Touch then > Setpoints > Fan Control. The FAN CONTROL secondary panel opens.
- 2. Adjust the setpoint options, then touch Save. The setpoint is updated.
 - Touch Cancel to discard the changes.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Fan Control Options

Fan Control Sensor

Selects the sensor that controls automatic fan speed, see Automatic Fan Speed Control on the facing page,

– or –

Selects manual control, see Manual Fan Speed Control below.

Options are:

- Supply: Air flow/fan speed is adjusted based on reading from the supply air temperature sensor.
- Remote: Air flow/fan speed is adjusted based on reading from a wired, remote temperature sensor.
- Return: Air flow/fan speed is adjusted based on reading from the wired, return air temperature sensor.
- Manual: Air flow/fan speed is adjusted using a building management system.
- Pl: Regulation is based on proportional and integral terms. Provides best temperature control and helps avoid fan speed oscillation.
- Adaptive PID: Auto-tuning PID control loop, can be set for cooling or fan speed.

Fan Delta

Fan temperature setpoint, it is the temperature difference compared to the cooling setpoint.

Fan Speed Proportional Band

Adjusts the fan speed based on the deviation from the setpoint. A smaller number causes faster reaction to temperature changes.

Fan Speed Integration

Adjusts fan speed based on time away from the setpoint to maintain accurate temperature control.

3.1.10 Manual Fan Speed Control

In Manual fan control mode, the speed of the motor can be set in one of the following ways:

- The manual (fixed) fan speed may be set via Vertiv™ Liebert® iCOM™.
- Remotely using a Vertiv™ Liebert® IntelliSlot card.

Setting Remote Fan Speed Control

- 2. Touch then > BMS & Teamwork Setup > BMS Setup.
- 3. On BMS SETUP, touch Control Settings. The CONTROL SETTINGS sencondary panel displays:
 - In Fan Control Sensor, select Manual.
 - Touch Save. BMS control of fan speed is set, and the BMS fan speed is displayed on the Fan Speed slider.

NOTE: Set the fan speed via BMS by writing to the Fan Speed Maximum Setpoint monitoring point. For details, see SL-28170 IntelliSlot Reference Guide found at https://www.Vertiv.com/en-us/support/.

NOTE: Local adjustments to fan speed are overridden when remote/BMS fan speed control is set.

3.1.11 Automatic Fan Speed Control

Vertiv[™] Liebert® iCOM[™] on the Vertiv[™] Liebert® CRV is factory set for supply air sensor control of fan speed and cooling capacity to ensure that the iCOM[™] is delivering precise cooling to the cold aisle.

Remote rack sensors allows decoupling of fan speed and cooling capacity for the preferred operating method of Liebert® iCOM™(s) in a hot/cold aisle configuration. Decoupling modulates cooling capacity based on supply-sensor readings and relies on readings from the remote rack sensors for fan control to ensure that cool air is delivered to the rack inlets on the cold aisle.

In the Setpoint screen, the controlling temperature sensor (S102) can be set to either Supply, Return or Remote. As the selection is changed from one sensor to another, the setpoint is displayed next to the corresponding sensor on the illustration, showing the sensors placement in relation to the Liebert® iCOM $^{\text{TM}}$.

Temperature sensors can control fan speed using one of three modes based on the type of sensor selected as the fan control sensor: supply, return, or remote, see **Table 3.2** below. Control is based on the selected sensor for both fan control and temperature control and their setpoints as follows:

- Coupled: The fan control and temperature control sensor selection is the same. When coupled, fan speed is determined by the temperature setpoints.
- Decoupled: The fan control and temperature control sensor selection is different. When decoupled, fan speed is determined by the fan setpoints.

Table 3.2 Fan Speed Controlling Sensor Options

		Temperature Control Sensor selected			
		Supply Sensor	Remote Sensor	Return Sensor	
	Supply Sensor	Coupled	N/A	N/A	
Fan Control Sensor Selected	Remote Sensor	Decoupled (Recommended)	Coupled	N/A	
	Return Sensor	Decoupled	Decoupled	Coupled	

To set parameters for automatic fan speed control:

- Set Fan Control Type to Manual
- Select a Fan Control Sensor.
- Adjust the setpoint options, then touch Save.

Sensor-based fan speed control is set.

- 2. Touch Temperature Control.
- 3. On the TEMPERATURE CONTROL secondary panel:
 - Select a Temperature Control Sensor.
 - Adjust the setpoint options, then touch Save.

3.2 Scheduling Condenser and Cooling Unit Tasks

The Scheduler configures operating conditions and modes for specific intervals. Tasks to schedule include:

- Condenser set back: See Scheduling Condenser Low Noise Operation below.
- Condenser fan reversal: See Scheduling Condenser Fan Reversal on the facing page .

3.2.1 Scheduling Condenser Low Noise Operation

Condenser setback schedules low noise fan operation on units equipped with Vertiv™ Liebert® MC premium efficiency control. Fans spin more slowly during specified times to reduce noise, and faster when low noise is unnecessary.

NOTE: Low noise operation is overridden to prevent a high pressure condition.

- 2. Adjust the schedule settings, and touch Save. The schedule is set up.
 - Touch Cancel to discard the changes.

Condenser Setback Task Properties Options

Disabled Day

Selects specific days on which noise reduction operation is disabled when the schedule is enabled.

Interval 1

Start and finish time of day that noise-reduction operates.

Interval Day

Selects days on which noise reduction operation for the interval specified in Interval 1.

Max Speed in Low Noise Mode

Sets the maximum speed for the condenser fan during low noise operation.

Max Speed in Normal Mode

Sets the maximum speed for the condenser fan during normal or high efficiency operation.

Noise Reduction

Enable/disable noise reduction. When checked, the schedule is run. When unchecked, the scheduling parameters are ignored.

Status

Indicates if low noise operation is active or inactive.

Whole Day

Selects whole days for which noise-reduction operation is available for the condenser fan.

3.2.2 Scheduling Condenser Fan Reversal

Condenser fan reversal schedules a reversal of the condenser fans, reversing air flow to help remove dust, paper, leaves and such from the suction side of the condenser coil.

- 1. Touch , then > Scheduler > Condenser Fan Reversal Schedule. The TASK PROPERTIES panel opens.
- 2. Adjust the schedule settings, and touch Save. The schedule is set up.
 - Touch Cancel to discard the changes.

Condenser Fan Reversal Task Properties Options

Reverse Fans At Duration

Length of time, in seconds, the fans are reversed.

Reverse Fans Every

Selects number of days between fan reversal.

Reverse Fans Now

Enables/disables immediate fan reversal.

3.2.3 Scheduling Sleep Times for Thermal Management Units

Unit sleep schedules turn off units during low demand as long as return temperature remains below the alarm threshold.

- 1. Touch then scheduler > Unit Sleep Schedule. The TASK PROPERTIES panel opens.
- 2. Adjust the schedule settings, and touch Save. The schedule is set up.
 - Touch Cancel to discard the changes.

Unit Sleep Schedule Task Properties Options

Interval 1/2

Start and finish time of day that sleep mode operates.

Interval Day

Selects days on which sleep mode operates for the interval specified in Interval 1 and Interval 2.

Sleep Mode

Enable/disable sleep schedule. When checked, the schedule is run. When unchecked, the scheduling parameters are ignored.

Timer Mode Type

Selects unit operation when in sleep mode. Values are:

- Unit Off: The unit stops (fans are off).
- Deadband: The unit operates in a limited capacity (fans are on) based on an additional deadband added to the temperature deadband.

Timer Reset

Selects whether or not the sleep mode timer resets.

Whole Day

Selects specific days on which sleep mode is active for the entire day when the schedule is enabled.

3.3 Setting General Thermal Management Unit Options

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

3.3.1 Setting Miscellaneous Options

- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Miscellaneous Cooling Unit Settings Options

Auto Restart Enable

When enabled, the cooling unit returns to the status at which it was operating when input power returns after a power failure. (ON if it was powered on and OFF if it was powered off before the failure.) See Automatic Restart after Power Failure on the next page.

Display Off Enabled

On this cooling unit, sets whether or not the unit powers on/off when the on/off button on the Vertiv™ Liebert® iCOM™ display is used.

- No: On/off requests via the display are ignored.
- Yes: Unit powers on/off when requested via the display.

EEV Alarm Board

Sets the events sent to the alarm board as:

- NC. Normally closed.
- NO. Normally opened.

Free Cool Capacity Transition Filter

Selects how quickly capacity changes between modes of operation to avoid overshooting during the transition.

• Only a factory trained service technician should adjust this setting.

K11 (WA Relay) and AL Relay

Sets action of the alarm and warning relays.

- Direct: Open when power is applied to the control.
- Reverse: Closed when power is applied to the control.

Loss of Power Autoreset Delay

Selects the length of time that a Loss of Power event (that triggers after a power cycle that occurs when the cooling unit is operating) is active when power is restored. When the delay time elapses, the event resets and is cleared automatically.

Restart BMS Off and Disconnected

Selects cooling unit's response/action when BMS is disconnected.

- No: Unit remains in a monitoring-off state.
- Yes: Unit may power-on from a monitoring-off state.

Single Unit Auto Restart

Selects time elapsed (in seconds) before unit restarts when Auto Restart Enable is enabled.

Warning Activates Alarm Relay

When enabled, a warning event activates the common alarm relay.

3.3.2 Automatic Restart after Power Failure

Set the cooling unit to return to the status at which it was operating when input power returns after a power failure. (ON if it was powered on and OFF if it was powered off before the failure.)

- 2. Set *Auto Restart Enable* to Yes, and use the slider to set the number of seconds to delay before restart, then touch *Save*. Automatic restart is enabled.
 - Touch Cancel to discard the changes without saving.

3.3.3 Setting Fan Options

Air flow is adjustable via Vertiv™ Liebert® iCOM™ manually using a building management system (BMS) or automatically using locally installed temperature sensors.

NOTE: Thermal management units ship with the factory setting Return Sensor for the temperature control sensor and the fan speed control sensor.

- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Fan Settings Options

Airflow Calibration

• Maximum allowed fan output voltage.

Allow Fan Modulation with Comp

Enables/disables fan modulation with compressor operation. Values are:

- No: Fan speed ramps to STD when a compressor starts operating.
- Yes: Fan speed modulates based on CFF while compressor operates.

Dehumidification Fan Speed

Maximum fan speed when dehumidification is in progress, assisting with the dehumidification process.

Fan Back Draft Mode

Enables/disables fan operation in back draft mode.

Fan Speed at Unit Start

Speed at which the fans run on unit start up.

Fan Speed at Unit Start Timer

Length of time fans run at the speed selected in fan speed at unit start.

Fan Speed Filter at 0%

Decreases the rate at which the fan speed changes when close to or at the temperature setpoint to avoid undershooting the setpoint.

Fan Speed Filter at 100%

Increases the rate at which the fan speed changes for a quicker reaction of fan speed at high temperatures.

Fan Speed Reposition Delay

Length of time before fan speed can decrease, allowing temperature to stabilize before the change occurs.

Fan Speed Reposition Mode

Sets a one time delay that allows the fan to maintain current speed when a call to increase or decrease is made to allow the temperature to stabilize.

Fan Speed Transition Filter

Sets how quickly the fan speed changes between operating modes. Prevents an instant reaction when fans turn on or off and prevents unstable operation.

Max Deceleration Rate

Selects the rate and which the fan speed changes during deceleration.

Maximum Fan Speed

Maximum speed at which the fan will operate.

MIN at CFC for EC Fan

Cooling deviation at which the fan will operate at minimum speed.

Minimum Fan Speed

Minimum speed at which the fan will operate.

No Power Fan Speed

Speed at which the fans operate when using emergency power.

STD at CFC for EC Fan

Cooling deviation at which the fan will operate at maximum speed.

3.3.4 Setting Compressor Options

- 1. Touch then > Options Setup > Compressor Settings. The COMPRESSOR SETTINGS panel displays.
- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Compressor Settings Options

Ball Valve Setpoint Offset

Adjusts sensitivity to compressor discharge pressure or liquid pressure by increasing sensitivity. The higher the added pressure, the more the valve opens.

Capacity Change at 0%

Decreases the rate at which cooling capacity changes when close-to or at the temperature setpoint to avoid undershooting the setpoint.

Capacity Change at 100%

Increases the rate at which the cooling capacity changes for a quicker reaction of cooling at high temperatures.

Winter Start Delay

Length of time, in minutes, that a low pressure condition is ignored during compressor start-up. See Setting Low Pressure Time Delay on the facing page .

Setting Low Pressure Time Delay

At compressor start up, a low-pressure condition is ignored for a set period to avoid false trips due to bubbles in the refrigerant or other misreading of the low pressure device.

NOTE: The factory default setting is a three minute delay for air cooled units and a zero to one minute delay for water cooled units.

- 1. Touch then > Options Setup > Compressor Settings.
- 2. Use the Winter Start Delay slider to select the number of minutes for the delay, and touch Save.

Adjusting Ball Valve Pressure Offset

NOTE: Only a properly trained and qualified technician should modify the motorized ball valve setting.

The number of times the valve opens and closes is adjusted based on added pressure offset.

- 1. Touch , then > Options Setup > Compressor Settings.
- 2. Use the *Ball Valve Setpoint Offset* slider to select amount of pressure added to open the valve wider, and touch *Save*.

Compressor Sequencing for Balancing Run Times

Compressor sequencing, available in two compressor cooling units, allows assigning a lead compressor or allowing automatically leading with the compressor with the lower run hours logged.

When Auto is selected, the following applies as Vertiv[™] Liebert® iCOM[™] attempts to maintain equal run time of the compressors:

- If only one compressor is available because of safety delays, it is given first priority to start/stop.
- If both compressors are off, the compressor with fewer run hours in the next to start.
- If both compressors are operating, the compressor operating for the longest time since the last start is the first to shut off.

NOTE: Automatic compressor sequencing will not power off a compressor if it is required to properly condition the space.

To set up compressor sequencing:

- 1. Touch , then > Options Setup > Compressor Settings.
- 2. Select the Compressor Sequence option to use, and touch Save.

3.3.5 Setting Reheat Options

If the room air temperature becomes too cold, heating is activated based on the temperature proportional band setting. Depending on the type of cooling unit, there are different types of reheat (configured at purchase/set at factory). There may also be one to three stages of reheat, which is also factory set. The only service operation available is setting the number of heat stages.

- I. Touch, then > Options Setup > Reheat Settings. The REHEAT SETTINGS panel displays.
- 2. Refer to Reheat Settings Options below, and Reheat Control below to adjust the setpoint options, then touch Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Reheat Settings Options

Number of Electrical Heat Stages

Number of electric stages that may be activated during reheat.

• Depending on your cooling unit, the maximum setting may be 1, 2, or 3.

3.3.6 Reheat Control

If your cooling units are equipped with a heating option, reheat control is directly linked to temperature control in that the heating requirement determined by the temperature proportional band determines reheat operation. See Temperature Control—Temperature Setpoints and Cooling Operation on page 23.

3 Service Operation

Electric, Hot Gas, and Hot Water Reheat

Depending on the type of cooling unit, there may be one to three stages of electric and hot gas/hot water reheat. **Table 3.3** below, shows the nine electric reheat options.

Table 3.3 Electric, Hot Gas, and Hot Water Reheat Configurations

Туре	Stage 1	Stage 2	Stage 3
А	Electric 1	_	_
В	Electric 1	Electric 2	_
С	Electric 1	Electric 2	Electric 3
D	Hot gas	_	_
Е	Hot gas	Electric 1	_
F	Hot gas	Electric 1	Electric 2
G	Hot water	_	_
Н	Hot water	Electric 1	-
I	Hot water	Electric 1	Electric 2

NOTE: During dehumidification, hot gas/hot water are not influenced by the electric reheat setting. Hot gas is set only when the selected compressor is operating (See Setting Reheat Options on the previous page .)

Reheat is controlled by dividing the heating half of the temperature proportional band (below the setpoint) by the number of stages. **Figure 3.9** on the next page, illustrates electric reheat operation with 3 stages as follows:

- 70° setpoint
- 8° proportional band
- 2° deadband
- Three stage reheat

The proportional band is divided evenly on each side of the setpoint. The deaband is divided evenly on each side of the setpoint. The temperature proportional band below the setpoint is divided into thirds, one for each stage.

- From 70° to 69°, 0% heating is required.
- At 68.7° air temperature (heating demand 33%), Stage 1 activates and continues operating until temperature reaches 69°.
- When temperature decreases to 67.4° (heating demand 66%), Stage 2 activates, and continues until temperature reaches 68.7° (heating demand 33%).
- When temperature decreases to 67.4°(heating demand 100%), Stage 2 activates, and continues until temperature reaches 68.7° (heating demand 66%).
- When temperature decreases to 63°(heating demand 100%), Stage 3 activates, and continues until temperature reaches 67.4° (heating demand 33%).

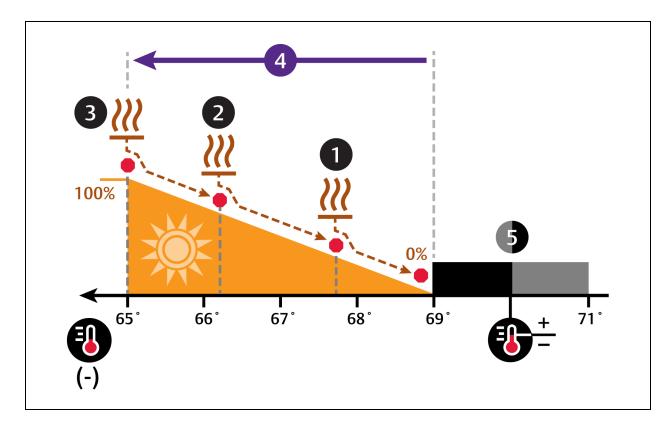


Figure 3.9 Temperature Control for Reheat—Three Stage Electric Reheat

No.	Description	No.	Description
1	Stage 1 reheat	4	½ of proportional band
2	Stage 2 reheat	5	Deadband
3	Stage 3 reheat		

3.3.7 Setting Humidifier Options

The type of humidifier used depends on the cooling unit model and application requirements for your system.

NOTE: Except for externally mounted humidifiers, humidifier operation is limited by the return air temperature. If return air temperature reaches 80°F (26°C) or higher, the humidifier is disabled. The humidifier will not resume operation until the temperature falls to 75°F (24°C) or remains below 80°F (26°C) for 20 minutes.

- 1. Touch , then > Options Setup > Humidifier Settings. The HUMIDFIER SETTINGS panel displays.
- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Humidifier Settings Options

Humidification System Enabled

Enables/disables group wide (network wide) humidification by the cooling units in the group. Once enabled at the system level, individual units may be enabled using the Humidification Enabled parameter.

Humidification Enabled

Enables/disables humidification at the unit level.

Humidifier Model

The type of humidifier installed.

Vertiv[™] Liebert® CRV uses a steam generating canister for humidification, selection is SGH.

3.3.8 Setting Dehumidification Options

- 1. Touch , then > Options Setup > Dehumidification Settings. The DEHUMIDIFICATION SETTINGS panel displays.
- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Dehumidification Settings Options

Capacity Increase on Dehumidification

Capacity increase permitted during dehumidification.

Dehumidification Enabled

Enables/disables whether or not the compressor/valve is used for dehumidification when humidity is above the setpoint.

Dehumidification Timer

Length of time, in minutes, the dehumidifier may operate.

3.3.9 Setting Water Leak Detector Options

- 2. Make adjustments as needed and click Save. The option settings are updated.
 - Touch Cancel to discard the changes without saving.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Water Leak Detector Settings Options

Water Detector

Type of water leak detector installed.

4 Managing Events: Alarms, Warnings, and Messages

Events are notifications of operating status for the cooling unit, its components, and auxiliary devices. All events are recorded in the Event Log, and alarm and warning events are also displayed on the Alarms panel (See Viewing the Event Log on page 17, and Viewing Unit Alarms on page 15.)

In some cases, depending on configuration, an alarm event may power off the cooling unit, but not always. However, if a standby unit is configured, all alarm events stop the faulty unit and start the standby unit. Message and warning events do not.

4.1 Event Properties

The ALARMS & EVENTS panel lists all events available on the system. You can view and modify events and the criteria that trigger visual and audible alarms including:

- Critical thresholds
- Time delays
- Enable/disable
- Event type
- Adding custom events

NOTE: Not all event properties may be adjusted, depending on the criticality of the event, which is factory set.

4.1.1 To Open the Panel

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, the options on your Vertiv™ Liebert® iCOM™ display may differ.

Alarms and Events Panel Fields

Property

Lists groups of events, expanding displays the events in each group. See Enabling Events and Editing Event Settings on the next page .

Type

Event type. See Selecting Event Type and Setting Alarm/Warning Notification on page 53.

Ack

Indicates type of acknowledgment required. See Acknowledging Alarms on page 16. This option is not available with all alarm types.

- Auto: The alarm is acknowledged automatically. It goes away if the situation that triggered alarm event is no longer true.
- Manual: The alarm goes away only when acknowledged, even if the situation that triggered the alarm event is resolved/no longer true.

Reset

Indicates type of reset required for the event.

- Auto: The alarm resets automatically after acknowledgment.
- Manual: The alarm must be reset manually after acknowledgment. See Acknowledging Alarms on page 16.

This option is not available with all alarm types.

4.2 Enabling Events and Editing Event Settings

In the ALARMS & EVENTS panel, events are grouped into categories for easier management, for example, the factory set remote sensor alarms and humidification/dehumidification events. In some cases, touch the group heading provides edit options for the entire group, like thresholds, delays and enable/disable. Each event includes settings specific for that event and the notification option where event-type and alarm notifications are selected (See Selecting Event Type and Setting Alarm/Warning Notification on the facing page).

- 1. Touch then > Alarm/Event Setup. The ALARMS & EVENTS panel opens.
- 2. Scroll or search to find the event, touch the set's heading to display the properties and values for the entire set in the EDIT panel.
 - or –

Touch an individual alarm or event to display it's specific values in the EDIT panel.

NOTE: To edit the event type and notification, see Selecting Event Type and Setting Alarm/Warning Notification on the facing page .

3. Use the EDIT panel to adjust the settings for the selected event or group of events.

4.3 Selecting Event Type and Setting Alarm/Warning Notification

Setting notification delays and disabling visual notification prevents nuisance notifications. Customize to notify of critical events on your cooling system.

NOTE: If the event includes a safety function, such as high pressure, low pressure, main fan overload, etc., the safety function executes regardless of event type or notification setting. However, notification timing delays still apply.

Table 4.2 on the next page, lists the events for the Vertiv™ Liebert® CRV. **Table 4.3** on page 55, describes events for the Vertiv™ Liebert® MC Condenser.

To select event type and notification:

- 1. Touch , then > Alarm/Event Setup.
- 2. Scroll or search to find the event and touch the alarm or event.
- 3. On the EDIT panel, touch Notifications. The EDIT panel displays the notification properties.
- 4. Adjust the notification properties described in the Notification Properties below, then touch Save. The notification is updated.
 - Touch Cancel to discard the changes without saving.

4.3.1 Notification Properties

Delay

Time, in seconds, to delay notification after event trigger. Depending on the event, the delay may or may not be adjusted.

• If the notification delay for the event is greater than the delay set for the event group, the group's delay includes the event's delay.

Enable

Enables/disables notification. Touch the switch to set On or Off.

When disabled, events are not logged or displayed and visual/audible alarm notifications are not made.

Type

Logging and notification level of the event. Table 4.1 below, describes the event type and notification it generates.

Table 4.1 Notification Types

Туре	Description
Message	Stored in event log only. No visual or audible notification.
Warning	Listed with a yellow status dot on the ALARMS panel and the LED flashes. See Table 10.1 on page 87, and Viewing Unit Alarms on page 15.
Alarm	Listed with a red status dot on the ALARMS panel, the LED flashes, and the audible alarm sounds. See Table 10.1 on page 87, Viewing Unit Alarms on page 15, and Enabling the Audible Alarm Notification on page 56.

Table 4.2 below, describes events available with a Vertiv[™] Liebert® CRV.

Table 4.2 Events Supported by Liebert® CRV

BMS Disconnected	Heaters Overheated	On-Off Key Disabled	Unit 09 Disconnected
Bottom Fan Failure	High CW Temp	Power Off	Unit 10 Disconnected
Call Service	High Return Humidity	Power On	Unit 11 Disconnected
Clogged Filters	High Return Temperature	Rack Sensor 1 Failure	Unit 12 Disconnected
Comp 1 High Pressure	High Supply Temperature	Rack Sensor 10 Failure	Unit 13 Disconnected
Comp 1 Hrs Exceeded	High Temperature	Rack Sensor 2 Failure	Unit 14 Disconnected
Comp 1 Low Pressure	Hp Transducer 1 Fail	Rack Sensor 3 Failure	Unit 15 Disconnected
Comp 1 Pumpdown Fail	Hum Disabled	Rack Sensor 4 Failure	Unit 16 Disconnected
Comp 1 Short Cycle	Hum Enabled	Rack Sensor 5 Failure	Unit 17 Disconnected
Comp Power Reduction	Hum Hrs Exceeded	Rack Sensor 6 Failure	Unit 18 Disconnected
Compressor Lockout	Humidifier Cylinder Worn	Rack Sensor 7 Failure	Unit 19 Disconnected
Cond Pump-High Water	Humidifier High Amps	Rack Sensor 8 Failure	Unit 20 Disconnected
Condenser 1 Failure	Humidifier Lockout	Rack Sensor 9 Failure	Unit 21 Disconnected
Control Valve Failure	Humidifier Low Amps	RAM / Battery Fail	Unit 22 Disconnected
Customer Input 1	Humidifier Low Water	Reheat Lockout	Unit 23 Disconnected
Customer Input 2	Humidifier Problem	Room Humidity Problem	Unit 24 Disconnected
Customer Input 3	Loss of Airflow	Room Sensor Failure	Unit 25 Disconnected
Customer Input 4	Loss of CW Flow	Smoke Detected	Unit 26 Disconnected
Dehum Disabled	Loss of Flow	Standby Mode	Unit 27 Disconnected
Dehum Disabled 12hrs	Loss of Power	Supply Sensor Failure	Unit 28 Disconnected
Dehum Enabled	Low Memory 1	System Off Confirmed	Unit 29 Disconnected
Dehum Hrs Exceeded	Low Return Humidity	System Off Requested	Unit 30 Disconnected
Dig Scroll1 High Temp	Low Supply Temperature	Top Fan Failure	Unit 31 Disconnected
Dscroll 1 Sensor Fail	LP Transducer 1 Fail	Unit 01 Disconnected	Unit 32 Disconnected
El Heat1 Hrs Exceeded	Lwd Sensor Fail	Unit 02 Disconnected	Unit Code Missing
Fire Alarm	Maintenance Done	Unit 03 Disconnected	Unit Disabled
Fluid Sensor Failure	Maintenance to be Done!	Unit 04 Disconnected	Unit Hrs Exceeded
General Alarm	Middle Fan Failure	Unit 05 Disconnected	Unit Off
HCB Not Connected	Network Failure	Unit 06 Disconnected	Unit On
Heat Rej SPD	No Connection with Unit1	Unit 07 Disconnected	Unit Shut Down
Heat Rej VFD	No Power	Unit 08 Disconnected	Water Under Floor

Table 4.3 below, describes events available with a Vertiv[™] Liebert® MC Condenser.

NOTE: A CANbus connection between the Liebert® MC condenser and Vertiv™ Liebert® iCOM™ is required to trigger these events.

Table 4.3 Events Specific to Liebert® MC Condenser

Event	Description		
CAN GC 1 or 2	 The Liebert® iCOM™ board cannot establish communication with the Liebert® MC condenser board for 10 seconds consecutively. Alarm notification displayed for the corresponding circuit. Liebert® EconoPhase pump operation disabled for the circuit affected. When Liebert® iCOM™ re-establishes communication with the Liebert® MC board, the event is reset. 		
GC 1 or 2 Rem Shutdown	 Remote shut down requested. Compressor(s) and Liebert® EconoPhase pump(s) in the corresponding circuit are powered off. If event occurs on the lead circuit, then the lead-lag order of the compressors/tandem banks changes. When the Liebert® MC condenser remote shutdown circuit returns to inactive state (closed), the event is reset and the compressors in that circuit may be powered-on. Normal compressor lead-lag sequence resumes when both compressors are off. 		
GC 1 or 2 Board Fail	An unrecoverable failure of the Liebert® MC condenser control board has occurred causing a condenser shutdown.		
GC Pres Sens Fail C1 or C2	Condenser pressure sensor failure		
GC High Cond Press C1 or C2	High condensing pressure		
GC Low Cond Press C1 or C2	Low condensing pressure		
GC 1 or 2 Amb Sens Fail	Ambient temperature-sensor failure		
GC 1 or 2 Amb Temp Limit	High/low ambient temperature		
GC Temp Sens Fail C1 or C2	Refrigerant liquid line temperature sensor failure		
GC High Cond Temp C1 or C2	High refrigerant liquid line temperature		

Table 4.3 Events Specific to Liebert® MC Condenser (continued)

Event	Description		
GC Low Cond Temp C1 or C2	Low refrigerant liquid line temperature		
GC 1 or 2 Fan 1 through 4 FAIL	The following events may result from a fan-failure alarm. Refer to the specific fan manufacturer's literature for troubleshooting information. VSD high link current VSD drive error VSD earth to ground fault VSD electronics heat sink thermal overload VSD hall failure VSD line failure VSD line fault VSD motor locked VSD motor thermal overload VSD phase failure VSD phase failure VSD specific uncategorized alarm detected VSD electronics high-temperature condition VSD high link voltage VSD low link voltage RS-485 communications failure		
GC 1 or 2 TVSS Failure	TVSS alarm		

4.4 Enabling the Audible Alarm Notification

- 1. Touch , then > Display Options > Display Properties.
 The UNIT DISPLAY panel opens.
- 2. Touch the Alarm Buzzer Pattern value, and select a pattern from the drop-down list.
 - Selecting None disables the audible notification.
- 3. Touch Save to save the property settings.
 - Touch Cancel to discard changes.

4.5 Remote Alarm Device and Customer Input Events

Remote alarm devices are various sensors and detectors outside the cooling unit that provide information about conditions and situations that may affect operation. Remote alarm devices include smoke detectors, filter condition, valve status.

Included in the remote alarm devices option are up to four customer input events depending on cooling unit configuration. In some cases, two additional, optional customer input events are available. See Setting Up Customer Input Events on the facing page.

Remote alarm devices and customer input notifications are set in the same way as other events. See Selecting Event Type and Setting Alarm/Warning Notification on page 53.

4.5.1 Setting Up Customer Input Events

Input devices must be wired to Terminal 24 through a dry contact to locations 50, 51, 55 and 56 for alarms 1 through 4, respectively (For the terminal location, refer to the cooling unit electrical schematic and installation manual). **Table 4.4** below , maps the customer input to the RAD.

Table 4.4 Customer Input Terminals to RAD Terminals

Customer Input	Customer Input Terminal	RAD Number	RAD Terminal
1	24	1	50
2	24	2	51
3	24	3	55
4	24	4	56

- 2. In *Customer Input X (where X is the input number)*, select the input type that best describes the wired device/input, see **Table 4.5** on the next page .
- 3. In Customer Input X Active When, select whether the input is active (triggers events) when Opened or Closed.
- 4. Once input(s) are set, touch *Save*. The customer-input settings are saved.

Customer Input Options

Customer Input X

Selects the customer wired input, where X is the input number. See **Table 4.5** on the next page, for a description of available values.

Customer Input X Active When

Selects when the input triggers an event. Options are:

- Opened: Events are triggered when the contacts across the corresponding RAD terminal strip are open.
- Closed: Events are triggered when the contacts across the corresponding RAD terminal strip are closed.

NOTE: Depending on customization, some events listed in **Table 4.5** below, may not be available with your system.

Table 4.5 Customer Input Options

Input	Action/Description
Smoke	Event only
Flow Alarm	Event only
C-Input 1	Event only
C-Input 2	Event only
C-Input 3	Event only
C-Input 4	Event only
Rht Lockout	Event + Electric heaters disabled
Hum Lockout	Event + Humidifier disabled
Rht+Hum Lock	Event + Electric heaters and humidifier disabled
Comp Lockout	Event + Compressor(s) disabled w/o pump down
Call Service	Event only
High Temp	Event only
HTRJ VFD	Activates the HEAT REJ VFD ALARM. No other function.
HTRJ SPD	Activates the HEAT REJ SPD ALARM. No other function.
FIRE ALARM	Event + Shuts-down the unit.
2ND SETPOINT	No event, but switches to the second setpoint.
COND 1 FAIL	Event only
HUM	Event + For internal humidifier: a.) stops filling when the bottle is full. b.) activates the HUMIDIFIER CYLINDER WORN event, and locks-out humidifier when input is active for 24 hours and steam remains below 50%. For external humidifier: activates the HUMIDIFIER PROBLEM event and locks-out the humidifier.
C PMP Alarm A	Event + Activates COND PUMP-HIGH WATER event only.
C PMP Alarm L	Event + Activates COND PUMP-HIGH WATER event and locks-out the humidifier.
C PMP Alarm SD	Event + Activates COND PUMP-HIGH WATER event and shuts-down the cooling unit.
POWER A	Event only
POWER B	Event only

5 Unit to Unit (U2U) Networking

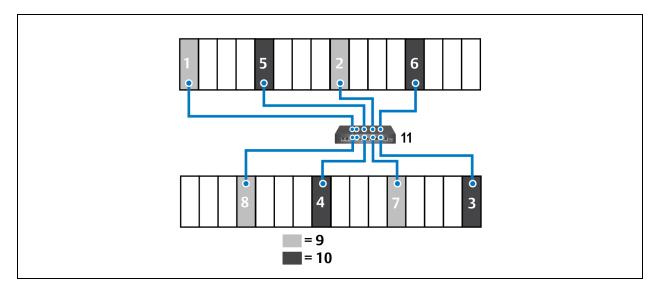
Vertiv™ Liebert® iCOM™ controlled thermal management units connected in an Ethernet unit to unit (U2U) network are able to efficiently cool and control humidity in the conditioned space by exchanging data in several modes of operation.

U2U networking is required to set up and control the following operating features:

- Teamwork
- Standby (lead/lag)
- Rotation
- Cascading

NOTE: The U2U network must be separate from other networks. Use a communication card, such as a Vertiv™ Liebert® IntelliSlot™ Unity, to communicate securely between your building management system or other networks.

5.1 Preparing for U2U Group Set Up


Cooling units in the network will be assigned to groups, which affects how units function in teamwork, standby, rotation, and cascading operations. Especially in large rooms, it is important to consider several factors before setting up groups to balance cooling unit operation with room conditions.

NOTE: For ease of set up and use, we recommend using only one group unless you have multiple rooms, differing software versions, or different types of cooling units.

- 1. Make a map of the room and indicate the location of all heat generating devices and cooling units to plan for proper heat load management and cooling air distribution.
- 2. Note the type of units by product, model, size, etc.
- 3. Determine the number of units to network together to ensure proper air flow and environmental control, up to 32 units.
- 4. Determine number of standby units.
- 5. Determine if using teamwork, and if so, which mode.
- 6. Plan U2U address assignments.
 - Refer to the U2U Display and Control-board settings on page 61, for guidelines assigning cooling unit control board addresses and Vertiv™ Liebert® iCOM™ display board addresses.
 - Balance/Alternate unit address assignments based on room layout and because standby and teamwork
 operate in numeric order by unit number. Figure 5.1 on the next page, shows an example layout
 assignment with half of the cooling units in standby and half operating. Without a plan, adjacent units
 could be operating or inactive, which may not provide proper heat-load balance or efficient use of cooling
 capacity.
- 7. Read and record all programmed settings for each of the individual units. See 9.2 on page 82.
- 8. Verify that network cabling and switches are provided, ready to connect, and labeled by unit at the network switch.

NOTE: Cooling units are factory wired for stand alone operation. Do not connect the U2U network cabling before setting the U2U network configuration/groups. Network communication conflicts and unreliable display readings will result. Configure the network using Configuring U2U Network Settings on the next page, then refer to U2U Wiring Connections on page 121, to connect the network cabling and hardware.

Figure 5.1 Example Layout Standby/Operating Unit Address Assignment

Item	Description
1 to 8	Assigned address of the Liebert® CRV
9	Operating units
10	Units on standby
11	Network switch

5.2 Configuring U2U Network Settings

NOTE: Always change and save the control board settings first. If you change the display settings first, you could lose access to the control board via Vertiv™ Liebert® iCOM™.

The U2U NETWORK SETTINGS configure iCOM's unit-to-unit communication and includes information buttons, that display pop-up field descriptions. The panel also indicates issues with the network settings. For resolution, see Troubleshooting Network Settings Issues on page 62.

5.2.1 To Configure U2U Networking

- 1. Touch , then > BMS & Teamwork Setup > U2U Setup. The U2U NETWORK SETTINGS panel opens.
- 2. Touch the field to edit. The keypad opens.
- 3. Type the entry and touch
- 4. When all fields to edit are updated, touch Save & Restart.

NOTE: Depending on the changes made, the Save button updates to indicate the components that need rebooted or restarted. If the control board reboots, the cooling unit suspends operation for 60 seconds, then resumes operating.

U2U Display and Control-board settings

Broadcast

Logical address at which connected units receive datagrams.

NOTE: Messages sent to the broadcast address is typically received by all network attached hosts.

CB Firmware Version

Display configuration, based on the firmware version of the control board within the cooling unit, as follows:

- CR-2.03: CRV
- PA-2.01: CW/DS
- PA-2.04: DSE
- PA-2.05: DSE, PDX/PCW, Mini-Mate
- PA-2.06: CW/DS, DSE, PDX/PCW, Mini-Mate

NOTE: CB firmware version does not alter or affect the firmware running on the control board. It only updates the display configuration. If incorrect, menus and data in the Vertiv™ Liebert® iCOM™ display will be invalid or missing.

Gateway

Routes data and acts as proxy server/firewall for display and control board during network set up.

Generate U2U Compatible Broadcast

Facilitates U2U communication between the display and control board.

NOTE: Do not uncheck. Failure to generate the compatible broadcast address results in loss of communication between the display and control board.

IP Address

Network address of the display and control board.

NOTE: The last three digits must be a unique value and need not be sequential. However, we recommend that they match the U2U address for easier reference later.

Netmask

Divides IP addresses in subnet and specifies network available to hosts for the display and control board. Display and control board Netmask must be identical on the U2U network.

MAC Address

Unique, read-only identifier of the display or control board Ethernet device.

U2U Address

For the display, a unique identifier for each display on the U2U network. Address range is 33 to 64.

For the control board, a unique identifier for each control board on the U2U network. Address range is 1 to 32 and must be consecutive from the previous control-board address in the U2U group. This is the address used for stand by/lead-lag and cascade operation, see **Figure 5.1** on page 60

NOTE: For both board and display, we recommend matching the U2U address to the last three digits of the IP address for easier reference later.

U2U Group

For the display, select the zone/group to which the unit belongs.

For the control board, selects the zone/group with which the unit will be configured in teamwork/standby/rotation scenarios.

NOTE: Units with a specific thermal area of influence should be assigned to the same zone/group, typically when a network spans separate rooms rather than by aisles. Groups are also handy when cooling units vary by cooling type, compressor type, or version of Vertiv™ Liebert® iCOM™ firmware and otherwise do not operate together efficiently or at all.

U2U Target Address

The address of the control board targeted by the display.

• The unit's U2U target address must match the control board U2U address.

5.2.2 Troubleshooting Network Settings Issues

At the bottom of the U2U NETWORK SETTINGS panel, an Issues button indicates whether or not there are problems with the network settings. The button indicates the number of issues and changes color when a problem exists, see **Table 5.1** below.

Table 5.1 Issues Button Status Colors

Color	Description
Green	No problems. Number of issues is zero.
Red	Problem(s) detected. Number of issues displays.

To View Network Issues

- 1. When an issue is indicated, touch the Issues button on the U2U NETWORK SETTINGS panel. The ISSUES dialog opens.
- 2. Note the problems and Close the dialog, then address the issue:
 - Touch the setting to correct.
 The on screen keyboard opens.
 - Make adjustments and touch Go.
 - Continue making corrections until no problems are indicated.
- 3. Verify that U2U communication is established, then touch Save.

NOTE: Depending on the changes made, the Save button updates to indicate the components that need to be rebooted or restarted. If the control board reboots, the cooling unit suspends operation for 60 seconds, then resumes operating.

5.2.3 Modifying U2U Network Settings

3. Verify that U2U communication is established, then touch Save.

NOTE: Depending on the changes made, the Save button updates to indicate the components that need to be rebooted or restarted. If the control board reboots, the cooling unit suspends operation for 60 seconds, then resumes operating.

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

6 Teamwork, Standby, and Rotation for Cooling Units

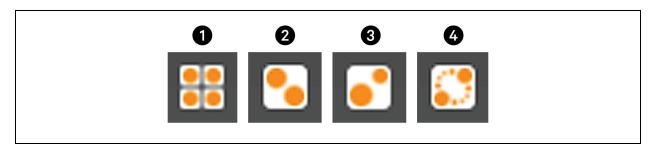
Vertiv™ Liebert® iCOM™ U2U communication via private network and additional hardware (see Unit to Unit (U2U) Networking on page 59) allows the following operating features for the cooling units:

- Teamwork
- Standby (Rotation)
- Cascade

6.1 Teamwork Modes

When Vertiv™ Liebert® iCOM™ controlled thermal management units are connected to a network in a group or team, use teamwork to optimize performance and efficiency, depending on the mode chosen and its application.

In a panel with Status content, the Teamwork mode icon indicates the mode selected, **Figure 6.1** below . Touching the icon displays the Teamwork dialog from which you can access the teamwork control settings.


6.1.1 To Set Up Team Work

1. Touch the Teamwork mode icon, then touch *Edit* on the teamwork dialog.

- 2. Select the mode from the *Teamwork Mode* drop down in the TEAMWORK MODE CONTROL panel. The TEAMWORK/STANDBY panel opens.
- 3. Touch Save. Teamwork mode is set.
 - Touch Cancel to discard changes.

Figure 6.1 Teamwork Icons

Item	Description
1	No teamwork.
2	Mode 1 - Parallel teamwork
3	Mode 2 - Independent teamwork
4	Mode 3 - Optimized aisle teamwork

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Teamwork Control Options

Cascade Units

Stages on standby units based on room temperature/humidity load. Available in Teamwork modes 1 and 3, the options differ for each:

- Teamwork mode 1 Parallel options are:
 - Cooling: standby units cascade on with a call for cooling only.
- Teamwork mode 3 Optimized Aisle options are:
 - Fan Pl: Standby units cascade on, based on the inability of active units to reach setpoint temperature or if using static pressure control, setpoint pressure while operating at full capacity.
 - Fan speed: Standby units cascade on, based on the inability of active units to reach setpoint temperature
 or if using static pressure control, setpoint pressure while operating at full fan speed.

Cascaded Units Delay

Length of time in minutes to delay the activation of a standby unit after the previously activated unit starts, to prevent staged cascaded units from starting too close together or at the same time.

Cascaded Units Min Run

Length of time in minutes that an cascade on unit must run before powering off.

Cascaded Units Off Delay

Length of time, in minutes, to delay powering off a cascaded unit after fan speed drops below the Stop Next Unit at SYS Fan Speed setting.

Cascaded Units Quick Start

After a power cycle of the master unit, identical to Cascaded Units Delay except that it should be shorter to get units to start more quickly after a power cycle.

• This delay remains in effect until all cascaded units have been restarted, then the delay reverts to setting of Cascaded Units Delay.

Max. Intermediate System Speed

Limits the fan speed of the group until all units in cascade are powered on. Once all units are operating, the fan speed may increase beyond this setting.

Number of Connected Units

Number of units connected in the group if U2U networked.

Start Next Unit at SYS Fan Speed

Fan speed at which the next cascaded unit is powered on.

Stop Next Unit SYS Fan Speed

Fan speed at which the next cascaded unit is powered off. Unit power off may be delayed by Cascaded Units Off Delay.

Teamwork is Based On

Select the way the sensor readings from each cooling unit in the group are used to control temperature and humidity. Options are:

- Maximum: Based on the highest reading from a sensor in the group.
- Average: Based on the average readings from the sensors in the group.

Teamwork Mode

Teamwork mode to use for the group.

6.1.2 No Teamwork—Multiple Zones in One Room

When a Teamwork mode is not used, cooling units work independently based on their own sensors. Standby and unit rotation may be used, but cascading cannot.

6.1.3 Teamwork Mode 1—Parallel Operation

In Teamwork mode 1, fan speed and cooling capacity are ramped up in parallel, which means that all units operate identically.

Teamwork mode 1 is best for small rooms with balanced heat loads. A master unit collects the controlling readings for temperature and humidity from all the operating (fan on) units in the group, then determines the average or worst-case reading, and sends operating instructions to efficiently distribute cooling capacity across available units.

In Teamwork mode 1, most parameters are shared and, when set in any unit, are set in all units in the group.

6.1.4 Teamwork Mode 2—Independent Operation

Teamwork mode 2 works well for most applications, and best in large rooms with unbalanced heat loads by preventing units in a group from operating in opposing modes, some cooling and some heating. All temperature and humidity parameters are shared by the group. The master unit monitors all available unit sensor readings and determines the demand for cooling, heating, humidification and dehumidification, then sends operating instructions to address the greatest demand.

In Teamwork mode 2, the setpoints for all units must be identical. The proportional band, deadband, and related settings may differ by unit. Fan speed is modulated per unit. Rotation and cascading is not available, so expect uneven distribution of work hours.

6.1.5 Teamwork Mode 3—Optimized Aisle Operation

In Teamwork mode 3, the fan speed for all units operates in parallel, which means fan speed operation is identical at each unit. However, cooling capacity operates independently for each unit.

Teamwork mode 3 takes advantage of variable-speed fan options and variable capacity component options to maintain rooms with an unbalanced load and to prevent units in a group from operating in opposing modes. All units operate in the same mode based on the average or worst case (maximum) readings from the unit sensors. A local control (cooling capacity supply sensor) provides input to manage and maintain the discharge-air temperature at each unit. In addition, fan speed and operation are controlled based on readings from the unit temperature or static-pressure sensors to control air delivery to the cold aisle.

NOTE: Standby and lead/lag are available when using optimized aisle mode, but is not recommended because it requires less power to run all units at reduced capacity.

6.2 Assigning Cooling Units to Standby (Lead/Lag)

Standby assigns some units to operate while others are on standby, meaning a unit is idle but ready to become active in the event of an alarm condition in one of the operating units or based on a rotation schedule.

When a unit is in standby mode, fan(s) are off and no cooling occurs. In multiple cooling unit systems, assigning units to standby lets you:

- Configure redundancy in case of failure scenarios (standby).
- Manage cooling unit run time (lead/lag). See Setting a Rotation Schedule on the facing page .
- Modulate for very low loads to full design load (to be temperature reactive) by cascading activation of standby units (configured when setting up teamwork mode).

The U2U network has built-in fail over conditions that are automatically employed when standby units have been assigned:

- During single cooling unit or component failure, a standby unit is activated to replace the failed unit.
- Alarm event causes unit shut down, a standby unit is activated. If the activated unit also has an alarm event, the
 next available standby unit is activated. If all units have an alarm event, and no more standby units are available, a
 unit with a non-critical alarm event will be activated.

NOTE: Redundancy is employed if units are assigned to standby regardless of the teamwork mode selected, including no teamwork.

6.2.1 To Set Up Lead/Lag Operation

- 1. Touch , then > BMS & Teamwork Setup > Teamwork / Standby.
 The TEAMWORK/STANDBY panel opens.
- 2. Touch Standby. The STANDBY CONTROL panel displays.
- 3. Adjust the settings, then touch Save.
 - Touch Cancel to discard the changes.

Standby Options

High Temperature Threshold

Temperature at which all standby units are activated.

Number of Standby Units

Number of units in standby mode.

Standby Fan Timer at Reheat/Humidification

Length of time in minutes that the fan continues to operate after the cooling unit enters standby mode if reheat or the humidifier were operating when unit powered off.

Start All Standby Units by High Temperature

When enabled, all units are activated to cool when a high temperature alarm occurs.

6.3 Setting a Rotation Schedule

You can set a rotation schedule to switch operating and standby units to manage run time of the cooling units.

- 1. Touch , then > BMS & Teamwork Setup > Teamwork / Standby. The TEAMWORK/STANDBY panel opens.
- 2. Touch Unit Rotation. The UNIT ROTATION CONTROL panel displays.
- 3. Adjust the settings, then touch Save. Touch Cancel to discard the changes.

6.3.1 Unit Rotation Options

Lead Lag Overlap Timer

Length of time in minutes that cooling units operate in parallel when one begins operating (from standby) and the other goes into standby.

Rotate At

Selects exact time at which rotation occurs. Adjustable, based on a 24-hour clock where minutes are 0 to 59 and hours are 0 to 23.

Rotate By

Number of positions by which the cooling units rotate. For example, rotate by 3 in a group of 10 units and start with unit 1 operating. At rotation, unit 1 goes to standby and unit 4 activates, then 7, 10, 2, and so on. You can select 1 to 8 units in a single rotation schedule.

Rotate Every

Selects rotation period. Valid values are:

- 12 hours
- 24 hours

Rotate Now

Immediately performs rotation.

Rotation Frequency

Frequency at which rotation occurs. Options include:

- No: Rotation disabled.
- Daily: Rotation occurs every day.
- Every [Day of Week]: Rotation occurs weekly on the same day.
- Monthly [Day of Week]: Rotation occurs monthly on the same day.

6.3.2 Manually Rotating the Operating and Standby Units

You can rotate the operating and standby units outside of the set schedule using Rotate Now.

NOTE: Manual rotation may only be performed at the cooling unit designated as the lead unit, "U2U Address = 1," of the group.

NOTE: The Rotate Now button may only be available when a Rotation Frequency is selected. See Setting a Rotation Schedule on the previous page .

- 1. At the cooling unit, verify that it is the lead unit of the group:
 - Touch then > BMS & Teamwork Setup > U2U Setup.
 - In the CONTROL BOARD column, verify that the U2U Address is 1.

If it is the lead unit, continue with step 2.

If it is not the lead unit, find the lead unit and start at step 1.

- 2. Touch , then > BMS & Teamwork Setup > Teamwork / Standby. The TEAMWORK/STANDBY panel opens.
- 3. Touch Unit Rotation. The UNIT ROTATION CONTROL panel displays.
- 4. Touch Rotate Now, then touch Save. The operating and standby units are rotated.

7 External Monitoring and Building Management Systems

Vertiv[™] Liebert[®] iCOM[™]-controlled cooling units are equipped with Vertiv[™] Liebert[®] IntelliSlot[™] plug-in slots for optional communication cards to communicate with external monitoring systems including Building Management Systems (BMS), Network Monitoring Systems (NMS) and Vertiv[™] Liebert[®] SiteScan[™] Web.

NOTE: Because the Liebert® iCOM™ U2U network must be separate from other networks, use external monitoring or BMS to communicate securely between networks.

Two cards are available to provide remote communication to Liebert® iCOM™.

- 1. Liebert® IntelliSlot IS-Unity-DP communication card—communicates with up to two third-party protocols to monitor and manage a range of parameters and events and requires Velocity V4 monitoring protocol (standard on firmware versions PA1.04.033 and later). Unity cards deliver:
 - Velocity Protocol for Vertiv™ Liebert® *Trellis*™, Liebert® SiteScan™ and Vertiv™ Liebert® Nform.
 - Embedded Vertiv™ Liebert® LIFE™ Technology for Remote Service Delivery
 - SNMP (v1/v2/v3) for NMS
 - HTTP/HTTPS for Web-page viewing
 - SMTP for e-mail
 - SMS for mobile messaging
 - Modbus RTU-Modbus Remote Terminal Unit communication protocol for BMS over an RS-485 serial network (Modbus RTU RS-485)
 - Modbus TCP-Modbus Transmission Control Protocol for BMS over Internet or LAN.
 - BACnet IP—BACnet over Internet Protocol for BMS over Internet or LAN.
 - BACnet MSTP—BACnet Primary-Secondary/Token Passing communication protocol for BMS over an RS-485 serial network (Modbus MSTP RS-485)
- 2. Liebert® IntelliSlot SiteLink-E™ Card (IS-485EXI)—provides monitoring and management via ground fault isolated connection to a Liebert® SiteLink-E.

7.1 BMS and Vertiv™ Liebert® IntelliSlot Settings

When communicating with a building management system (BMS) with an optional Liebert® IntelliSlot™ Unity card or via embedded Unity function, the BMS settings are identical and include:

- Disconnect fail safe
- Manual fan speed control
- Backup fan control

7.1.1 Configuring BMS Communication with Vertiv™ Liebert® IntelliSlot Card

Modbus, BACnet, SNMP, SMS and HTTP communication cannot be configured via iCOM. To set up third-party protocols, refer to the appropriate Liebert® IntelliSlot Card user manual avalable at https://www.Vertiv.com/en-us/support/.

NOTICE

Risk of loss of communication with Liebert® IntelliSlot cards. Can cause operational problems.

Do not change the monitoring address of the Liebert® IntelliSlot card (set at 3) unless directed by a technical support representative.

7.1.2 Setup Communication with a Card

- 1. Touch then > BMS & Teamwork > BMS Setup.

 The BMS SETUP panel opens.
- 2. Select IntelliSlot Card Settings and refer to Vertiv™ Liebert® IntelliSlot Options below, to make selections.
- 3. Touch Save.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

Vertiv™ Liebert® IntelliSlot Options

Monitoring Address

Address used by an optional, installed Liebert® IntelliSlot card. Factory default is 3.

Do not modify the monitoring address unless directed to do so by Vertiv technical support.

Monitoring Protocol

Protocols used for communication with BMS. Options are:

- Velocity V3: Legacy Velocity communication cards
- IGM: IGMNet communication cardss
- Velocity V4: Liebert® IS-Unity card.
- Embedded: Embedded IS-Unity function.
- Embedded & IS V4 Both Embedded Unity function and Velocity V4 for an optionally installed Liebert® IS-Unity card.

7.1.3 Setting BMS Control Settings

- 1. Touch strive, then > BMS & Teamwork > BMS Setup > Control Settings. The CONTROL SETTINGS secondary panel opens.
- 2. Adjust the settings, and touch Save. The settings are configured.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

BMS Control Settings Options

BMS is Connected To

- Velocity
- Analog Input 1-4

BMS Fan Speed Local Override

Enables/disables local override of the fan speed set via BMS.

Fan Control Sensor

Currently selected fan control sensor. Must be set to Manual for BMS control. See Configuring Fan Setpoints on page 36.

Handshake

Sets time period, in minutes, in which communication between the BMS and Vertiv™ Liebert® iCOM™ must occur.

Maximum Fan Speed

Current fan speed setting (set via fan setpoints or by BMS).

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

8 Configuring Auxiliary Devices

With Vertiv™ Liebert® iCOM™, you can manage and control many devices that work with your thermal management unit(s).

8.1 Fluid Temperature Monitoring

A fluid sensor may be connected the supply inlet pipe to monitor local and remote fluid temperature differential.

- I. Touch , then > Auxiliary Device Setup > Sensors > Fluid Sensors > CW T.
 The SENSOR PROPERTIES panel opens.
- Adjust the temperature offset, and touch Save.
 The fluid-temperature sensor settings are saved.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

8.1.1 Fluid Sensor Options

Current Fluid Temperature

Actual temperature reading.

Fluid Temperature Offset

Correction (calibration) value added to the fluid temperature reading. Used in the event that the fluid temperature sensor readings are incorrect.

• May be a positive or negative value.

8.2 Wired Remote Sensors

Wired remote rack sensors can function as control sensors and subsequently provide input individually at the unit level, or at the system level for temperature control and teamwork functions.

Each wired remote rack sensor has two thermistors/probes. In Individual Sensor mode, the higher temperature reading or the average temperature reading of the two probes can be used. In Unit Sensors mode, some or all of the rack sensor's temperature readings are considered for higher (maximum) or average calculation. For example, setting three sensors as control and average for unit mode, averages the three highest temperature readings.

At the system level, using aU2U network, the same maximum or average calculations can be based on readings from all of the sensors in all of the units in group (including those in standby) using Teamwork. See Teamwork Modes on page 65.

- 1. Touch then Auxiliary Device Setup > Sensors > Wired Remote Sensors > Setup.

 The set up SENSOR PROPERTIES panel opens.
- 2. Adjust the settings for the cooling units sensor array, and touch Save. Wired Remote Sensor Set Up Options on the next page, describes the setting options.

3. Touch a specific sensor. The SENSOR PROPERTIES for that sensor open.

NOTE: The sensor number listed corresponds to the DIP switch assignment of the sensor made during installation.

4. Touch Name, and use the keyboard to give the sensor a descriptive name.

NOTE: This is the name displayed on the REMOTE SENSORS panel for non-service users.

5. Refer to the Wired Remote Sensor—Sensor Property Options on the facing page to adjust the remaining settings, and touch *Save*. The wired-remote sensors for the cooling unit are configured.

8.2.1 Wired Remote Sensor Set Up Options

Average Rack Temp

Calculated average of temperature readings from the control sensors.

Individual Remote Sensors Mode

When controlling at the sensor level, selects the method of using the readings from the two temperature thermistors (probes) on the sensor. Options are:

- Maximum: Use the highest temperature reading of the two thermistors.
- Average: Use the average of the readings from the two thermistors.

Max Rack Temp

Highest temperature reading from the unit remote sensors.

REM Sensors Set to Control

Number of sensors set to control.

Unit Remote Sensors Mode

When controlling at the unit level, selects the method of using the inlet rack temperature readings from the control sensors to control fan speed. Options are:

- Maximum: Use the highest temperature reading of the sensors set to Control.
- Average: Use the average of the readings from the sensors set to Control and included in AVG.

Unit Remote Sensors Included in AVG

When Unit Remote Sensors Mode is *Average*, selects the number of sensors used to calculate the average temperature.

• If the number selected is smaller than the number of REM Sensors set to Control, only the highest readings are used for the calculation.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

8.2.2 Wired Remote Sensor—Sensor Property Options

Function

Sets the function of the sensor when Unit Remote Sensors Mode is enabled.

- Disable: Sensor readings are ignored.
- Reference: Sensor readings are considered for Max Rack Temp, but are not used in maximum/average calculations.
- Control: Sensor readings are used in maximum/average calculations.

Left Lead Current Value

Current reading of the left sensor probe. The left probe is always a temperature reading.

Left Lead Offset

Correction (calibration) value added to the reading. Used in the event that the sensor reading is incorrect.

• May be a positive or negative value.

Name

Custom, descriptive name to assist in identifying the sensor's location/function in the facility, for example, the name of the rack on which it is installed. The name is limited to:

- Up to four alphanumeric characters in length.
- Upper and lower case characters.
- These special characters: & * / . + : @ \.

Right Lead Current Value

Current reading of the right sensor probe. May be a temperature or humidity reading, depending on the connected sensor.

Right Lead Offset

Correction (calibration) value added to the reading. Used in the event that the sensor reading is incorrect.

• May be a positive or negative value.

8.3 Supply Sensors

When the supply air sensor is set as the control sensor for temperature, additional supply air configuration parameters (valve pulse, cooling filters, and return compensation) can be used to enhance the supply air control.

The valve pulse and cooling filter timer can be adjusted to prevent oscillation around the supply setpoint and still allow for rapid cooling-capacity adjustments to compensate for heat load changes. Contact Vertiv technical support for adjustments.

NOTE: Supply control air temperature sensors are required to use Optimize Aisle Teamwork (mode 3).

NOTE: On units equipped with a 3P actuator type valve, response can be improved by using the feedback signal.

9 Administering Firmware, Settings, and Security

9.1 Vertiv™ Liebert® iCOM™ Firmware Upgrades

NOTE: The Liebert® iCOM™ Service Tool (iST) is required to update control board firmware. Contact technical support at 1-800-543-2778 for information on control board updates.

9.1.1 Compatibility with Earlier Versions of Vertiv™ Liebert® iCOM™

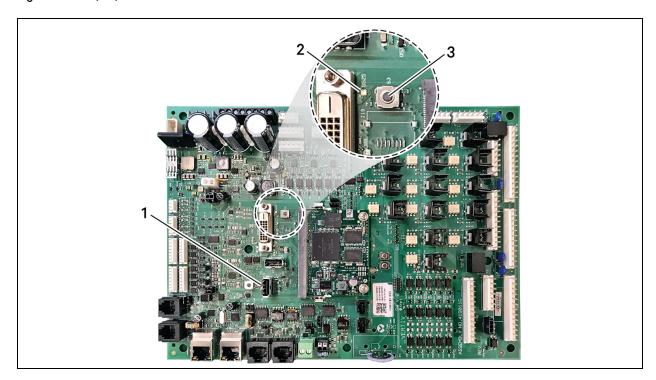
Versions of Liebert® iCOM™-control firmware CR 2.xx.xxR are incompatible with earlier firmware versions CR 1.xx.xxR.

Contact your Vertiv representative to upgrade firmware.

9.1.2 Updating Vertiv™ Liebert® iCOM™ Control Board Firmware

The FIRMWARE UPGRADE panel shows the firmware version of the control board of the cooling unit. It also includes settings to use while performing the upgrade.

NOTE: Only personnel who have completed Vertiv training should perform a control board update. The iCOM™ Service Tool (iST) is required to update control board firmware. Contact technical support at 1-800-543-2778, opt. 5 for information on control board updates.


- 1. Save the Liebert® iCOM™ software to a USB flash drive formatted with a FAT32 file system.
 - Make sure that the file-name extension is all lower case. For example, .xbp not .XBP.
 - Remove all other files with the .xpb extension from the flash drive.
 - Plug the USB flash drive into the P76 USB port on the iCOM™2 internal control board.
- 2. At iCOM™ control:
 - Touch, then > Backup & Security > Firmware Upgrade. The FIRMWARE UPGRADE panel opens.
 - Make sure the Lock for Upgrade is selected.
 - Refer to Control Board Firmware Upgrade Options on the next page, for the reset and retain options.

- or -

On the Vertiv[™] Liebert[®] iCOM[™] control board:

- Insert the flash drive into the P76 USB port. After a few seconds, the DS25 LED lights up green.
- P75 does not work for firmware upgrade.
- To continue with the upgrade, press the S3 button near the LED within 15 seconds. The LED blinks blue to indicate that the upgrade has commenced. When the upgrade completes, the LED blinks fast green, and the board reboots with the new firmware.
- 3. Remove the USB flash drive after the board reboots.

Figure 9.1 P76, S3, and DS25 LED on the Board

Item	Description
1	P76 port
2	DS25 LED
3	S3 button

9.1.3 Control Board Firmware Upgrade Options

Lock for Upgrade

When selected, the unit is locked for a firmware upgrade.

Reset to Default Configuration

When selected, the unit is reset to the factory-default configuration during the upgrade.

Retain Network Configuration

When selected, the current network settings and options are retained while all other settings are reset to the factory default configuration.

Unlocking the Control Board Before Upgrade

If changes are made to the settings after the control board is locked for firmware upgrade, use the following steps to unlock the board and execute the changes.

- 1. In the Lock for Upgrade field on the FIRMWARE UPGRADE PARAMETERS panel, select Unlock, then select Yes.
- 2. Touch Save. The changes are executed.

9.1.4 Reverting to Firmware in Dormant Partition

The Vertiv™ Liebert® iCOM™ control board holds firmware in two partitions:

- The active partition holds the currently running firmware.
- The dormant partition holds the previously installed firmware.

Upon firmware upgrade, the new firmware writes to the dormant partition, which switches to the active partition when the upgrade is complete. If needed, you can revert to the previously installed version that is now in the dormant partition while the board boots after the upgrade.

To return to pre-upgrade firmware:

- 1. At boot, watch for the DS25 LED to flash red then blue for a second or two, and after it flashes red then blue, press and hold S3 for six to 10 seconds until DS25 lights solid red then release. **Figure 9.1** on the previous page, shows DS25 and S3 on the board.
- 2. Upon releasing S3, DS25 blinks for three seconds, and you must press and release S3 during that three seconds. If completed correctly, DS25 lights solid green and the board is reverted to the pre-upgrade firmware in the dormant partition. If incorrect, DS25 is not lit and the board boots normally.

NOTE: Use these steps to switch between active/dormant partitions (current/previous firmware) as needed. The switch can only be initiated right after a boot of the system, so power-off the unit, wait five seconds, and power on the unit, then start at step 1 above, as the system boots.

9.2 Backing Up, Importing/Exporting and Restoring Display Settings

Vertiv[™] Liebert® iCOM[™] display settings may be saved to a local disk or USB drive. Setpoint parameters cannot be exported, only Liebert® iCOM[™] display settings. Saved files may be imported to restore Liebert® iCOM[™] if it is replaced or if a problem occurs and to transfer settings to another Liebert® iCOM[™]. Liebert® iCOM[™] can also be returned to factory default settings.

- Back-up: Saves a copy of the settings in a file named with the IP address of the display board. The saved settings include network settings, unit name, panel configuration and other details of the Liebert® iCOM™ display. Use a backup file to restore the unit settings in the event of a failure.
- Restore: Copies settings from a backup file to return Liebert® iCOM™ function to exactly what it was before the
 problem or failure. The settings may be restored from a file on the local disk or a USB drive. When restoring from
 a file on USB, make sure that you use the correct backup file to restore settings, otherwise settings for the display
 may be incorrect.
- Export: Saves a copy of the Liebert® iCOM™ display settings for later import to another Liebert® iCOM™ for identical display settings on both systems.
- Import: Loads Liebert® iCOM™ display settings from a previously exported file to an additional Liebert® iCOM™ system for identical settings, including panel customization and custom labels, on both.

9.2.1 To Back Up or Restore Display Settings

- 1. Touch , then > Backup & Security > Display Backup/Restore. The BACKUP & RESTORE panel opens.
- 2. Touch the *Action Type* drop-down, and select the action to perform, then touch the *Location* where the backup/import file is located or will be saved.

NOTE: USB drives connected to Ports 1 or 2 on the Vertiv™ Liebert® iCOM™ display are automatically detected and displayed as options for Location selection.

- 3. Touch the action button in the lower-right corner. A notification indicates that the back up/restore/import/export is complete.
 - Remove the USB drive from the port if used.

9.2.2 Resetting Display Settings to Defaults

Return the Vertiv™ Liebert® iCOM™ display to factory default settings including panel customization, display network settings, and custom labels. Reset does not affect control board network settings, setpoints, or alarm thresholds.

- 1. Touch , then > Backup & Security > Backup and Restore. The BACKUP & RESTORE panel opens.
- Touch the Reset to Defaults button in the lower-right corner, then Continue on the confirmation dialog. (or Cancel to disregard the reset). The display restarts, and the start up wizard opens to assist in configuring the reset display.

9.3 Backing Up and Restoring Control Board Settings

Vertiv[™] Liebert[®] iCOM[™] settings may be saved to a local disk or USB drive, and the saved files may be imported to restore Liebert[®] iCOM[™] if it is replaced or if a problem occurs and to transfer settings to another Liebert[®] iCOM[™].

- 1. Touch then sackup & Security > Control Backup/Restore. The BACKUP & RESTORE panel opens.
- 2. Touch the Action Type drop-down, and select the action to perform.
- 3. Select the location, site, and system to save backup files or load restore/replicate files. See Control Board Back Up and Restore Options below, for descriptions.

NOTE: USB drives connected to Ports 1 or 2 on the Vertiv™ Liebert® iCOM™ display are automatically detected and displayed as options for Location selection.

- 4. Touch the action button in the lower right corner. A notification indicates that the back up/restore/replicate is complete.
- 5. Remove the USB drive from the port.

9.3.1 Control Board Back Up and Restore Options

Action Type

Selects the back-up or restore function. Options are:

- Backup: Saves a copy of the settings in a file named with the IP address of the Vertiv™ Liebert®iCOM™ control board. Use a back-up file to restore the unit settings in the event of a failure.
- Replicate: Loads only the configsafe files (general settings/setpoints) from a backup file from another system.
- Restore: Loads a back up configuration from a previously saved back up file. For example, when a control board fails and must be replaced, you can load the configuration from a back up of the failed board.

Location

Indicates the port to which the USB drive is connected.

Site

Indicates the folder you created on the USB drive to which the back-up system file is saved.

System

The back up file named with the IP address of the control board from which it was saved.

9.4 Managing Access Permission and Passwords

NOTICE

Risk of loss of access to Vertiv™ Liebert® iCOM™. Can cause operational problems.

When a password is changed, make sure you record the new password and inform authorized users. If problems arise, passwords can be reset by Vertiv Technical Support, visit https://www.Vertiv.com/en-us/support/.

The default four-digit passwords provide certain levels of permission to access the various Liebert® iCOM™ menus levels within the iCOM™ user interface. The end-user may edit the default four-digit passwords based on need so that only those provided with the current configured passwords may be granted access to the appropriate menus. You can change the value of each password so that only those provided with the current password may access the menus that it unlocks.

The factory-default password for user and service log in are:

- User Login default: 1490
- Service Login default: 5010
- Advanced: Contact Vertiv Technical Support
- Administrator: Contact Vertiv Technical Support

NOTE: To change the password, you must use the Administrator password currently assigned to unlock the Service menu.

- 2. Touch the role to change, then touch the *Value* field for the password to change. The keypad opens.
- 3. Type a new four digit/character password, then touch save.

 The password is saved.
 - Touch Cancel to discard the change.

9.5 Configuring with the Start Up Wizard

Upon initial use of the VertivTM Liebert[®] iCOMTM display or after resetting to defaults, the Liebert[®] iCOMTM start-up wizard offers to guide you through first-time set up.

9.5.1 To Update System Information Using the Wizard

- 1. Touch , then Backup & Security > Display Backup/Restore, then touch Reset to Defaults. The display reboots.
- 2. On the WELCOME panel, touch Next. The DATE & TIME panel opens.
- 3. Touch each field to make your selections,, then touch Next. The UNIT DISPLAY panel opens.
- 4. Touch each field to make your selections, then touch Next. The NETWORK panel opens.
- 5. Determine the use of network communications and configure as needed, then touch *Next*. The SUMMARY panel opens.
- 6. Review the selections and settings and, if correct, touch Finish.
 - If corrections are needed, touch *Previous* to return to the appropriate panels.

9.5.2 Start Up Wizard Options

Calibrate Screen

Optimizes touch response. See Calibrating the Touchscreen on page 8.

Language

Selects the display language.

Import

Imports previously-saved display settings. See Customizing the Vertiv™ Liebert® iCOM™ Display on page 95.

Next

Continues configuration using the set up wizard.

Skip

Closes the start-up wizard and uses the factory-default settings.

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

10 Performing Diagnostics

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.1 Cooling Unit Status LED

Just below the Vertiv™ Liebert® iCOM™ touchscreen display is an LED that changes color and flashes on and off to indicate cooling unit status. See **Table 10.1** below, for the LED colors and meanings.

State Color(s) Meaning Solid Green Powered on and operating. Solid Amber In diagnostic/service mode or powered-off. Solid Red Active warning or alarm present and acknowledged Flashing Amber/Green In sleep or U2U standby mode and available to operate. Flashing Red/Green Operating with an active warning or alarm. Flashing Amber/Red Shut down (not operating) because of an unacknowledged alarm. Red Flashing Active warning or alarm present but unacknowledged. Flashing Blue Liebert® iCOM display is starting up or updating Liebert® iCOM firmware.

Table 10.1 Cooling Unit LED Colors and State Meanings

10.2 Enabling Manual Mode for Diagnostics

Use manual mode to test components, validate operation, and evaluate performance.

NOTE: When manual mode is enabled, the cooling unit does not operate normally:

- Fan operation depends on the diagnostic category in use.
- Safety routines will prevent the use of some diagnostic features.
- Active alarms may prevent some the use of some diagnostic functions.
- · In most cases, all components are turned off.

NOTE: When manual mode is disabled, all components and the cooling unit return to normal operation. See Disabling Diagnostics Manual Mode on the next page. Manual mode will time out after 30 minutes of inactivity and normal operation resumes.

- 1. Touch , then > Diagnostic/Service > Diagnostics > Manual Mode in the Category list. The MANUAL MODE panel displays.
- 2. Touch the *Enable* check box in the upper-right of the *MANUAL MODE* panel. The MANUAL MODE confirmation dialog opens.
- 3. Touch OK to enable manual mode. Enable is checked and manual control for diagnostics enabled.
 - Touch Cancel to close the dialog and manual mode remains disabled.

10.2.1 Disabling Diagnostics Manual Mode

- 1. Touch Service > Diagnostic/Service > Diagnostics > Manual Mode in the Category list. The MANUAL MODE panel displays.
- 2. Remove the check mark from the Enable box by touching it. Manual mode is disabled.

10.3 Diagnosing Evaporator Fan Issues

- 1. Touch then Diagnostic/Service > Diagnostics > Evaporator Fan in the Category list. The EVAPORATOR FAN panel displays.
- 2. Refer to Diagnostics—Evaporator Fan Options below, for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.3.1 Diagnostics—Evaporator Fan Options

Analog Output 1 - 4

OV to 10V analog output that drives the speed of the evaporator fan. Typically, the evaporator fan is Analog Output 1 by default.

Analog Output 1 Selection

Var SpeedDrive.

Current Fan Speed

Current speed of fan.

Fan Speed Manual Speed

Maximum fan speed during manual/diagnostic mode.

Low Supply Temperature Counter

Number of low-temperature alarm events.

Fan Motors

Enables/disables fan motor during manual/diagnostic mode.

Status Airflow 1/2

Indicates if the status of the Air Safety Switch is open or closed.

Status Filter

Status of the air filter.

Status Remote Shutdown

Indicates whether remote shutdown is on or off.

10.4 Diagnosing Compressor Circuit Issues

- 1. Touch , then > Diagnostic/Service > Diagnostics > Compressor Circuit 1 in the Category list. The COMPRESSOR CIRCUIT panel displays.
- 2. Refer to Diagnostics—Compressor Circuit Options below, for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.4.1 Diagnostics—Compressor Circuit Options

Cooling Suspended Mode

Enables/disables the cooling-suspended mode and sets the fan speed to 10% when the compressor stops (low load condition).

Compressor 1 Capacity

Enables/disables compressor capacity during manual/diagnostics mode.

Compressor 1 Operation

Enables/disables compressor during manual/diagnostics mode.

Compressor Cycle Ramp

Capacity at which compressor runs in manual mode.

Compressor Mode

Selects compressor operation during manual/diagnostics mode. Options are:

- 0: Run (normal operation)
- 1: Evacuate
- 2: Charge

Compressor Overload

Compress overload status.

Compressor State

Compressor status, on or off.

Discharge Pressure

Current pressure of the compressor discharge.

High Pressure Alarm Code

 ${\it Code of high-pressure a larm. To address the alarm condition, see {\it Resetting High Pressure Alarm Code on the facing page}.$

- 0: Okay.
- Non-zero: High head pressure situation.

High Pressure Status

Status of compressor's high pressure switch.

High Temperature Alarm Counter

Number of high temperature alarm events. To address the alarm condition, see Resetting High Temperature Alarm Counter on the facing page

Liquid Line Solenoid Valve

Enables/Disables the valve during manual/diagnostics mode.

Low Pressure Alarm Code

Code of low pressure alarm. To address the alarm condition, see Resetting Low Pressure Alarm Code on the facing page .

- Zero: Okay.
- Non-zero: Low suction pressure condition.

Low Pressure Status

Status of compressor's low pressure switch.

Status HT1

Count of times compressor is powered off for high scroll temperature.

Suction Pressure

Current pressure of the compressor suction.

Sump Temperature

Current temperature at the sump.

10.4.2 Resetting High Pressure Alarm Code

When a high pressure problem has caused a compressor to lock off, resetting the High Pressure Alarm Code to zero unlocks the compressor for operation.

NOTE: Cycling main power of the cooling unit will also unlock the compressor.

2. On the COMPRESSOR CIRCUIT panel, touch *Set to Zero* next to High Pressure Alarm Code, then touch *Save*. The code is reset and the compressor can now operate.

10.4.3 Resetting Low Pressure Alarm Code

When a low pressure problem has caused a compressor to lock off, resetting the Low Pressure Alarm Code to zero unlocks the compressor for operation.

NOTE: Cycling main power of the cooling unit will also unlock the compressor.

- On the Service menu, touch *Diagnostic/Service > Diagnostics*.
 The DIAGNOSTICS panel opens.
- 2. Touch Compressor Circuit 1in the Category list.
- 3. On the COMPRESSOR CIRCUIT panel, touch *Set to Zero* next to Low Pressure Alarm Code, then touch *Save*. The code is reset and the compressor can now operate.

10.4.4 Resetting High Temperature Alarm Counter

- 1. Touch , then > Diagnostic/Service > Diagnostics > Compressor Circuit 1in the Category list.
- 2. On the COMPRESSOR CIRCUIT panel, touch *Set to Zero* next to High Temperature Alarm Counter, then touch *Save*. The code is reset and the compressor can now operate.

10.5 Diagnosing Humidifier Issues

- 1. Touch , then > Diagnostic/Service > Diagnostics > Humidifier in the Category list. The HUMIDIFIER panel displays.
- 2. Refer to Diagnostics—Humidifier Options below, for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.5.1 Diagnostics—Humidifier Options

Humidifier

Enables/disables humidification in manual/diagnostic mode.

Humidifier Drain

Enables/disables humidifier drain.

Local Hum PI

Current humidity PI percentage.

Status Humidifier Problem

Current status of the humidifier. OK indicates that the status is good.

Supply Humidity

Current supply air humidity.

Supply Temperature

Current supply air temperature.

10.6 Diagnosing Digital Output Issues

- I. Touch , then > Diagnostic/Service > Diagnostics > Digital Outputs in the Category list. The DIGITAL OUTPUTS panel displays.
- 2. Refer to Diagnostics—Digital Output Options below for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.6.1 Diagnostics—Digital Output Options

Alarm Relay

Enables/disables alarms during manual/diagnostic mode.

Q15 Output State

Enables/disables Q15 output during manual/diagnostic mode.

10.7 Diagnosing Analog Output Issues

- 1. Touch , then Diagnostic/Service > Diagnostics > Analog Outputs in the Category list. The ANALOG OUTPUTS panel displays.
- 2. Refer to Diagnostics—Analog Output Options below, for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your iCOM display.

10.7.1 Diagnostics—Analog Output Options

Analog Output N

Controls analog outputs during manual/diagnostic mode. (Where N is the analog output number.)

10.8 Diagnosing Customer Input Issues

- I. Touch , then > Diagnostic/Service > Diagnostics > Customer Inputs in the Category list. The CUSTOMER INPUTS panel displays.
- 2. Refer to Diagnostics—Customer Input Options below, for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.8.1 Diagnostics—Customer Input Options

Input N (1-4)

Provides the status for Customer Input #1 - #4.

10.9 Diagnosing Dehumidifier Issues

- 1. On the Service menu, touch *Diagnostic/Service > Diagnostics*. The DIAGNOSTICS panel opens.
- 2. Touch Dehumidification in the Category list. The DEHUMIDIFIER panel displays.
- 3. Refer to Diagnostics—Dehumidifier Options below for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.9.1 Diagnostics—Dehumidifier Options

12h Dehum Counter

Number of dehumidification time outs.

Dehumidification Envelope

Current status of dehumidification envelope.

• Active: Dehumidification is disabled because the Dehum Timer has timed out.

10.10 Managing Brown Out Protection

- 1. On the Service menu, touch Diagnostic/Service > Diagnostics. The DIAGNOSTICS panel opens.
- 2. Touch Brown Out Protection in the Category list. The brown out protection panel displays.
- 3. Refer to Diagnostics—Brown Out Protection Options below for descriptions of diagnostic options.

NOTE: Depending on the type of thermal management unit, included components, and control settings of your system, all of the options listed may not be available on your Vertiv™ Liebert® iCOM™ display.

10.10.1 Diagnostics—Brown Out Protection Options

[Digital Input] Delay

Sets on/off and off/on delay for all digital inputs designated as follows:

- REM: Remote shut down.
- CI N: Customer input, where N is the number assigned to customer input.
- T FAN: Top fan.
- HP: High pressure.
- LP: Low pressure.
- EHO: Heater safety thermostat.
- B FAN: Bottom fan.

Enable Brown Out Protection

Enables/disables brownout protection during manual/diagnostic mode.

11 Customizing the Vertiv™ Liebert® iCOM™ Display

11.1 Setting General Display Properties

NOTE: You must be logged in to adjust the settings. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

- 1. Touch , then > Display Options > Display Properties. The DISPLAY PROPERTIES panel opens.
- 2. Touch a value to select the setting from the drop-down list.
- 3. Touch Save to save the property settings.
 - Touch Cancel to discard changes.

11.1.1 Unit Display Options

Alarm Buzzer Pattern

Selects or disables the audible alarm notification. See Enabling the Audible Alarm Notification on page 56.

Allow System On/Off

Enables/disables powering on/off the entire system of networked units from the Vertiv™ Liebert® iCOM™ display.

Backlight Brightness

Selects the brightness of the display back light.

Inactivity Timer

Time to elapse before display locks and dims.

Language

Selects the display language.

LED Brightness

Percentage brightness of the display.

Measurement System

Selects the units of measurement. Options are:

- Imperial (°F)
- Metric (°C)

Skin

Selects the color/background format of the user interface. Options are:

- Dark blue
- White
- Dark grey

Touch Beep

Enable/disable sound when display is touched.

Touch Shockwave

Enable/disable visual shockwave when display is touched.

Turn Unit On/Off without Password

When enabled, a Power On/Off button displays in the upper-right corner of the Vertiv™ Liebert® iCOM™ main display so personnel can turn the unit on or off with out logging-in and accessing the User/Service menus.

11.2 Customizing Main Display Views

The default Vertiv™ Liebert® iCOM™ display view is essentially a layout of two panels, one with status content and the other with alarms content. You can create custom display views by adding, changing, moving, and resizing the content objects.

NOTE: You must be logged in to customize the view. See Powering On the Vertiv™ Liebert® iCOM™ and Logging In/Unlocking Controls on page 6.

11.2.1 Moving Content

You can drag and drop content objects anywhere you like on the main display.

- 1. Touch then
- 2. Touch in the upper right corner of the display and just below the control header.
- 3. Touch an object to select it (highlighted green), and drag it to the new location.

11.2.2 Resizing Content

You can resize content objects on the main display.

- 1. Touch, then
- 2. Touch in the upper right corner of the display and just below the control header.
- 3. Touch an object to select it (highlighted green), touch and drag a handle to re-size the object, see Add/Remove Content Icons and Resizing Handles on the facing page.

2

73°F

Max Rack Temp
75°F

2

73°F

2

Figure 11.1 Add/Remove Content Icons and Resizing Handles

item	Description
1	Content adjustment icon
2	Resizing handles
3	Remove content icon

11.2.3 Adding and Adjusting Content

You can add a variety of content to the main display.

- 1. Touch then
- 2. Touch in the upper right corner of the display and just below the control header, then touch A menu of content options opens, described in Main/User Display Content Options on the next page.
- 3. Touch the Move icon next to the content and drag it onto the display, the use the re-size handles to adjust as needed.
- 4. To adjust the content object or the way the it displays, touch Resizing Handles above .

Table 11.1 Main/User Display Content Options

Content	Description
Separator	Separating line to place between content sections. You can adjust the thickness and orientation of the separator.
Dial	Status dial. Select the sensor readings displayed in the center of the status dial when you touch to scroll through the readings.
Setpoint Readout	Displays the current reading of a connected sensor, for example: Return-temperature at 72°F.
Setpoint Bar	Displays a bar graph for a selected setpoint with customizable empty and full limits. For example, if a temperature setpoint bar is empty at 60°F and full at 80°F, and the reading is 70°, the graph will be filled half way.
Sensor Bar	For remote sensors only, functions the same as the setpoint bar, but only offers connected remote sensors, and displays the customerassigned name of the sensor next to the graph.
Shortcut	Shortcut opens panels directly instead of browsing through menus. You can select the destination of the shortcut, whether or not an icon displays, and the size, label, and frame of the shortcut.
Alarms	Alarms panel. You can select whether or not the information may be exported.
Event Log	Event log panel. You can select whether or not the information may be exported.
Run Hours	Run hours panel. Summary of the component run hours and limits.
EconoPhase Diagram	Liebert® EconoPhase operating diagram.
EconoPhase Status	Compressor/econophase status bar. Indicates the operating mode and the percentage at which the component is operating.

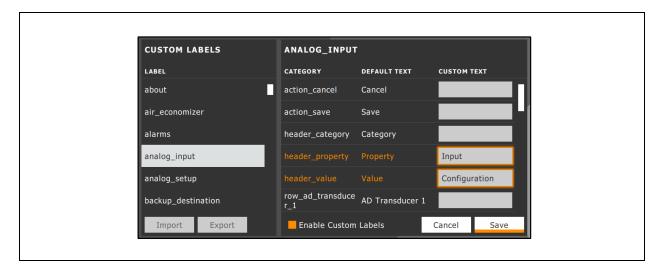
11.2.4 Removing Content

You can easily remove content from the main display.

- 2. Touch in the upper right corner of the display and just below the control header.
- 3. Touch an object to select it (highlighted green), then touch see Add/Remove Content Icons and Resizing Handles on the previous page.

11.3 Customizing Parameter and Field Labels

You can customize header labels for parameters in the menus and you can customize field names.


NOTE: You can export labels for back up or to use a text editor to customize the labels. See Exporting, Importing and Customizing Labels Using a Text Editor on page 100.

- 1. Before going to the customization panel, use the search box and on-screen keyboard to find the label(s) that you want to customize. Once you know where they are, you'll be able to find them in the categories on the Customize Labels panel.
- 2. Touch then > Display Options > Custom Labels. The CUSTOM LABELS panel opens. The labels are divided into categories that represent the names of menus, sub-menus, and screen panels.

- 3. Locate the category that contains the label(s) to customize that you determined in step 1, and touch to expand it.
- 4. In the Custom Text column, touch the text box to edit, make changes and touch See **Figure 11.2** below, for an example of changing the column names for Property and Value (in the Analog Inputs panel) to Input and Configuration.
 - Touch Cancel to discard the change.
- 5. When finished editing labels, make sure the Enable Custom Labels is selected (or your updates will not display), and touch Save.

The label(s) are updated. **Figure 11.3** on the next page, shows the Analog Input Properties panel with the custom labels that replaced Property and Value.

Figure 11.2 Custom Text for the Analog Input Properties Labels

2 ANALOG INPUTS ANALOG INPUT PROPERTIES CATEGORY INPUT CONFIGURATION Imperial (US) Customer Analog Inputs Measurement System Metric Analog Input 1 Analog Input 1 Not Config Analog Input 2 Analog Input 2 Not Config Analog Input 3 Analog Input 3 Not Config Analog Input 4 Analog Input 4 Not Config ✓ Airflow DP Transducer 1 Cancel Save

Figure 11.3 Customized Label Text on Analog Input Properties Panel

11.3.1 Exporting, Importing and Customizing Labels Using a Text Editor

You can export custom label settings to a text file for back up or to modify the labels using a text editor. The text file is exported and imported using a USB drive.

- Insert a USB drive into an open USB port on the rear of the touchscreen display, then navigate to the Custom Labels panel and touch Export. The EXPORT FILE dialog opens, and the connected USB drive is automatically detected.
 - If you are prompted No USB devices are available, check the connection or try reinserting the drive.
- 2. Touch Name and type a descriptive name for the file, then touch Go.
- 3. Touch Export and wait at least 15 seconds, then you can remove the USB drive.
- 4. Insert the USB drive into a PC or laptop and locate the file, which is named with the Name you entered and the extension cl.txt. For example, if you named your export MyLabels, the file will be MyLabels.cl.txt.

5. Open the file in a text editor. The file contains all of the labels available for customization listed with the menu/panel on which the label is located, the label identifier, and an equal sign (=) as shown in the following example:

NOTE: You must use an editor that interprets Linux line endings, otherwise all of the lines will run together. For example, Microsoft WordPad will interpret the Linux line endings but Microsoft Notepad will not.

```
analog_input/row_customer_analog_inputs=Unit A Inputs
analog_input_properties/header_property=Property
analog input properties/header value=Value
```

6. To customize, type a new label name to the right of =, and save the text file.

The following example will result in the same custom labels shown in **Figure 11.3** on the previous page.

```
analog_input/row_customer_analog_inputs=Unit A Inputs
analog_input_properties/header_property=Input
analog_input_properties/header_value=Configuration
```

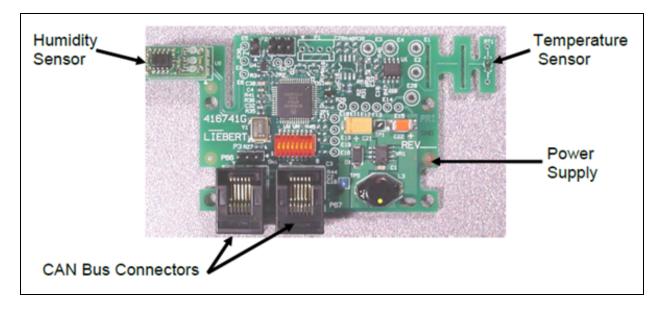
- 7. Remove the USB drive with the updated/saved text file from the PC/laptop, insert it into an open USB port on the rear of the touchscreen display, then navigate to the Custom Labels panel and touch *Import*.
- 8. Locate the updated text file in the drop-down list, and touch *Import*.

 The dialog closes and the customizations display on the menus and panels that you updated.

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

12 Vertiv™ Liebert® iCOM™ Hardware Installation


Your unit includes the Liebert® iCOM™ controller. This section describes the installation of connections and cabling to fully utilize the Liebert® iCOM™ features.

12.1 Return Air Temperature/Humidity Sensor

The return temperature/humidity sensor is located in the unit return air section and is supplied on all Liebert systems with Vertiv™ Liebert® iCOM™ controls. The assembly connects to plug connection P67 on the Liebert® iCOM™ internal control board on all Vertiv™ Liebert® CRV systems.

Troubleshooting is accomplished by observing a green LED located on the sensor internal control board. If the LED is solid green, the sensor is communicating properly with the Liebert® iCOM™ controller. If the LED is continuously flashing green, the sensor is not communicating properly and the P3 CANbus termination should be verified that it is properly terminated. No LED indicates the sensor does not have power present.

Figure 12.1 Temperature/Humidity Sensor Internal Control Board

12.1.1 P67: Return Air Temperature—Humidity Board

P67-1: CAN communication

P67-6: CAN communication

Figure 12.2 Standard Return Air Sensor

Figure 12.3 Optional Remote Sensor A, B, C

Jumper P3

Jumper P3

Jumper P3

DIP Switch #1

Figure 12.4 Temperature/Humidity Sensor with Dip Switch/Jumper Settings

Table 12.1 Temperature/Humidity Sensor Dip Switch Settings

Sensor	Pos. #1	Pos. #2	Pos. #3	Pos. #4	Pos. #5	Pos. #6	Pos. #7	Pos. #8
Return T/H Sensor	Off							
Optional Sensor A	On	Off	Off	Off	On	Off	Off	Off
Optional Sensor B	Off	On	Off	Off	On	Off	Off	Off
Optional Sensor C	On	On	Off	Off	On	Off	Off	Off

Table 12.2 Temperature/Humidity Sensor Jumper Settings

Jumper Label	Туре	Position			
P2	BDM Header	*Open			
P3	CANbus Termination	*Shunt on Pins 2 and 3			
P4	Programming	*Open			
E10-E13	Serial Port	*Open			
*Factory default positions and settings.	*Factory default positions and settings.				

12.1.2 Jumper P3 CANbus Termination

The correct position of this jumper is dependent on your system configuration. If the sensor is physically the first or last node in the CANbus device loop, the jumper must be terminated or shunted across pins #2 and #3 (default position). If the sensor is a middle node in the CANbus device loop, the jumper must be unterminated or shunted across pins #1 and #2.

12.2 Installing Wired Remote Sensors

Up to 10 remote sensor modules, installed in the monitored racks and connected to the cooling unit, provide control and reference input to Vertiv™ Liebert® iCOM™ and building management systems. Using remote, rack sensors combats cooling problems related to recirculation air, uneven rack loading, and air distribution.

Each Liebert® iCOM comes with three 2T sensors standard. Although using and adding additional remote sensors is optional, we recommend attaching one remote sensor to each rack that the unit is intended to cool because they allow more efficient and effective operation of the cooling unit.

The sensor array consists of 2T sensors that each have two temperature probes on a 6 ft. (1.8 m) probe connection cable, Figure 12.5 below, and requires several steps to prepare, connect, and begin monitoring the racks:

- Set DIP switches in each sensor.
- Terminate final sensor on CANbus link.
- Install sensors on racks.
- Install CANbus cabling between sensors.
- Connect CANbus cable to the cooling unit.
- Configure the sensors in Liebert® iCOM™.

NOTE: The 2T sensor shown in **Figure 12.5** below , may differ slightly for your system, depending on equipment installed.

Figure 12.5 2T Sensor for Rack Monitoring

12.2.1 Setting DIP Switches and Labeling 2T Sensors

Tools required:

- Small, non-conductive tool to set switches.
- Small, Phillips-head screw driver to open 2T housing.

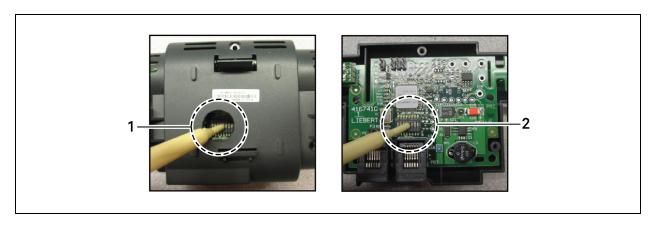
Each sensor requires a unique address in the CANbus loop connected to the cooling unit. We recommend that you set the DIP switch sensor number setting to correspond to the sensor's location on the CANbus run. If settings are incorrect, the control will not operate properly.

The DIP switches in 2T sensors included with each Liebert® iCOM $^{\text{m}}$ are factory-set according to **Table 12.3** below. If adding additional 2T sensors, use the steps that follow to set the DIP switches.

Table 12.3 DIP Switch Settings for Factory-Supplied Rack Sensors

2T Sensor	DIP Switch position							Factory Termination	
Number/Address	1	2	3	4	5	6	7	8	Setting
1	Off	Off	On	Off	On	Off	Off	Off	Unterminated
2	On	Off	On	Off	On	Off	Off	Off	Unterminated
3	Off	On	On	Off	On	Off	Off	Off	Terminated

NOTE: Sensors are connected in a daisy chain via CANbus cabling to the cooling unit control board. You can extend the sensor network (up to 10) by adding sensors to the end of the chain and adjusting the termination settings. Do not run individual wires from the sensors to the cooling unit.


- 1. Apply numbered stickers to the sensor housing that corresponds to the sensor's position in the chain.
- 2. Locate the DIP-switch hole on the rear of the sensor housing, Figure 12.6 below.

– or –

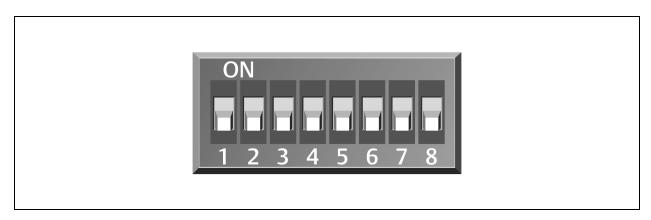
If the hole is not present, or the settings are difficult to make through the hole, remove the cover by removing the Phillips-head screws (typically 3). See **Figure 12.6** below.

NOTE: Use the non-conductive DIP-switch tool (included) or a similar tool to set switches. **Do not** insert any metal object into the sensor case.

Figure 12.6 DIP Switch Opening/DIP Switches Inside of 2T Sensor

Item	Description
1	Hole in sensor housing
2	Cover removed

- 3. Referring to **Table 12.4** below, and using the non-conductive tool, set the DIP switches for each sensor to its number in the chain (from sticker applied in step 1).
 - Figure 12.7 below, shows a representation of the DIP switches.
- 4. Confirm that the DIP switches are set correctly for each sensor, and replace the housing cover if necessary.

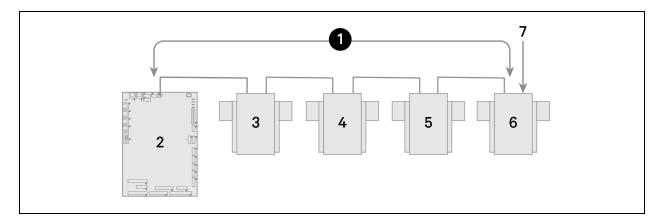

Table 12.4 DIP Switch Settings for Wired Remote Sensors

2T sensor				DIP-switch	n position				Factory Setting
number/address	1	2	3	4	5	6	7	8	ractory setting
Factory-supplied sensors									
1	Off	Off	On	Off	On	Off	Off	Off	Unterminated
2	On	Off	On	Off	On	Off	Off	Off	Unterminated
3	Off	On	On	Off	On	Off	Off	Off	Terminated
Optional added sensors									
4	On	On	On	Off	On	Off	Off	Off	Unterminated
5	Off	Off	Off	On	On	Off	Off	Off	Unterminated
6	On	Off	Off	On	On	Off	Off	Off	Unterminated
7	Off	On	Off	On	On	Off	Off	Off	Unterminated
8	On	On	Off	On	On	Off	Off	Off	Unterminated
9	Off	Off	On	On	On	Off	Off	Off	Unterminated
10	On	Off	On	On	On	Off	Off	Off	Unterminated

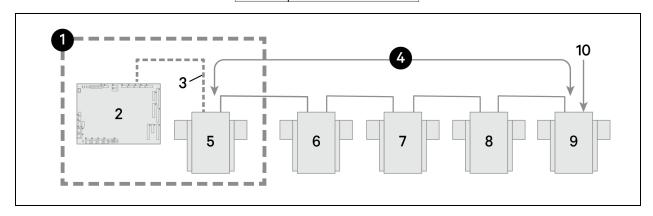
The last 2T sensor in the array must be terminated. If more than the 3 factory-supplied sensors are installed, sensor #3 must be unterminated and the last sensor must be terminated.

NOTE: Up is on, down is off on the DIP switch.

Figure 12.7 DIP Switches in 2T Sensor



12.2.2 Terminating the Last Sensor on the CANbus Link

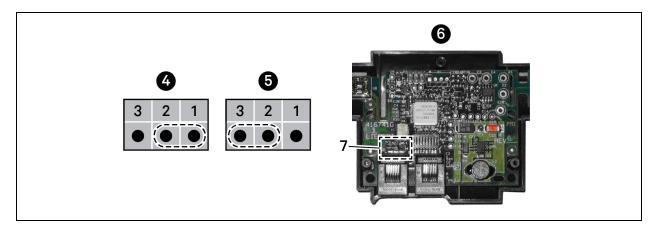

The 2T sensor need not be installed in the numeric order of their address/sensor number (although it may be easier for later maintenance). However, the last sensor in the chain must be terminated. All others must remain unterminated. We also recommend that you make a record of the sensor numbers along with the name/number of the rack on which they are installed. Figure 12.8 below, shows an example CANbus arrangement.

NOTE: To add sensors, unterminate final sensor, add sensors to the chain, and terminate the new final sensor.

Figure 12.8 Example Sensor CANbus Arrangement

Item	Description
1	CANbus communication loop
2	Liebert® iCOM™ control board
3	2T sensor
4	2T sensor
5	2T sensor
6	2T sensor
7	Terminated sensor

ltem	Description
1	Inside the Liebert®iCOM™ unit
2	Liebert® iCOM™ control board
3	Factory wiring
4	CANbus communication loop
5	Unit temperature/humidity sensor
6	2T sensor
7	2T sensor
8	2T sensor
9	2T sensor
10	Terminated sensor


To terminate the last sensor:

1. Locate the sensor that will be last on the network.

NOTE: The last sensor on the network will be the sensor with only one CAN cable after all sensors are connected to the CANbus network. See Connect the CANbus Cable and Ground on page 119.

- 2. Open the sensor's case by removing the Phillips head screws (typically 3) on the rear of the housing to access the jumper used for terminating.
- 3. Remove the black jumper from pins 1 and 2 on the P3 pin connector, and install it on pins 2 and 3 as shown in **Figure 12.9** on the facing page.
- 4. Replace the sensor cover. The 2T sensor is terminated in the CANbus link.

Figure 12.9 Termination Jumper on 2T Circuit Board

Item	Description
1	Position 1 (P3 jumper)
2	Position 2 (P3 jumper)
3	Position 3 (P3 jumper)
4	Unterminated
5	Terminated
6	Rear of sensor, cover removed
7	P3 termination jumper

12.2.3 Routing CANbus Cable and Preparing for Sensor Installation

Depending on the Vertiv[™] Liebert[®] iCOM[™] model number, the CANbus cables may enter the cooling unit from differing locations to connect to the return air temperature sensor.

- For 300 mm (24 in.): CR019 and CR032 models, the CANbus cable may enter through the top or bottom. See Preparing for Sensor Cabling of Vertiv™ Liebert® CRV 300 mm (12 in.) Units—CR019 and CR032 on the next page .
- For 600 mm (12 in.): CR020, CR035, and CR040 models, the CANbus cable enters through the top of the unit. See Preparing for Sensor Cabling of Vertiv™ Liebert® CRV 600 mm (24 in.) units—CR020, CR035 and CR040 on page 114.

NOTE: Connecting the CANbus sensors requires entering the high voltage electrical compartment in the unit. Consider hiring a certified electrician.

Preparing for Sensor Cabling of Vertiv™ Liebert® CRV 300 mm (12 in.) Units—CR019 and CR032

WARNING! Risk of electric shock. Can cause equipment damage, injury or death. Open all local and remote electric power supply disconnect switches and verify with a voltmeter that power is off before working within any electric connection enclosures. Service and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

- 1. Verify that all power entering the unit is disconnected.
- 2. Open the rear door on the back of the unit and remove the filters to access the unit disconnect switch.
- 3. Turn the high voltage disconnect switch to Off.
- 4. Locate the 10 ft. (3 m) CANbus cable that shipped with the 2T sensors in the box on the unit skid.
- 5. Determine whether routing through top or bottom of unit, and locate low-voltage field wiring entry points, shown in CANbus Wire Routing for Vertiv™ Liebert® CRV 300 mm (12 in.) Units—CR019 and CR032 on the facing page .
 - Route the cable through the low-voltage-access, 7/8 in. knockout using the proper strain relief.
 - Once inserted through knockout, route the cable to the Vertiv™ Liebert® IntelliSlot bracket inside the unit.

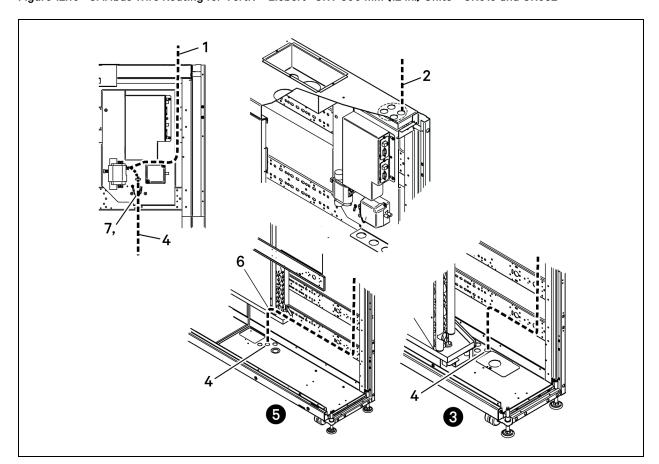
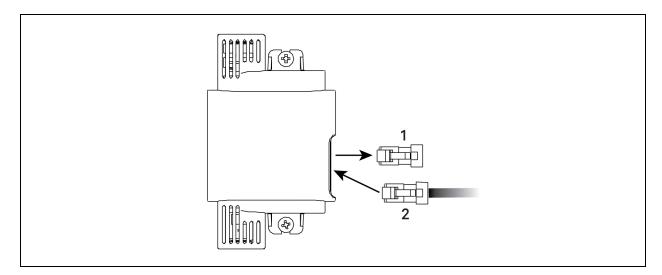



Figure 12.10 CANbus Wire Routing for Vertiv™ Liebert® CRV 300 mm (12 in.) Units—CR019 and CR032

Item	Description
1	Top-entry field routing of CANbus wiring
2	Top-entry field routing of low-voltage wiring
3	Liebert® CW unit
4	Bottom-entry field routing of low-voltage and CANbus
5	Liebert® DX unit
6	CANbus and low-voltage wiring route in Liebert® DX unit
7	Ground connector (factory installed)

- 6. Remove the termination plug from the temperature sensor (which is installed on the Vertiv™ Liebert® IntelliSlot bracket), and discard the plug, and connect the cable to the open CANbus port, **Figure 12.11** below.
- 7. Connect the CANbus ground to the factory-supplied ground connector.

Figure 12.11 Remove Termination Plug and Insert CAN Cable

item	Description
1	Termination plug
2	CAN cable

Preparing for Sensor Cabling of Vertiv™ Liebert® CRV 600 mm (24 in.) units—CR020, CR035 and CR040

WARNING! Risk of electric shock. Can cause equipment damage, injury or death. Open all local and remote electric power supply disconnect switches and verify with a voltmeter that power is off before working within any electric connection enclosures. Service and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

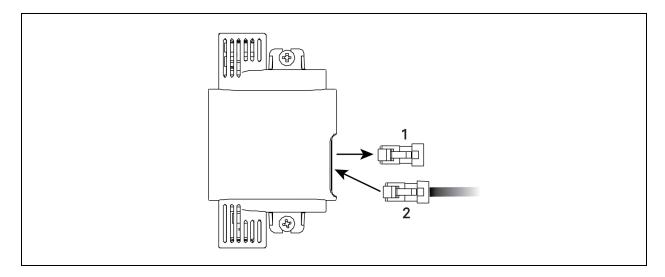

- 1. Verify that all power entering the unit is disconnected.
- 2. Open the top, display door on the front of the unit, **Figure 12.12** on the facing page .
- 3. Turn the high voltage disconnect switch to off.
- 4. Locate the 10 ft. (3 m) CANbus cable that shipped with the 2T sensors in the box on the unit skid.
- 5. At the top of the cabinet, route the cable through the 7/8 in. knockout using the proper strain relief, then route the cable to the return air temperature sensor inside the unit, **Figure 12.12** on the facing page.

Figure 12.12 CANbus Top Entry Wiring for Vertiv™ Liebert® CRV 600 mm (24 in.) units—CR020, CR035, and CR040

Item	Description
1	Top/Display door
2	Cable-connection top entry
3	Temperature sensor
4	Rear view
5	Front view

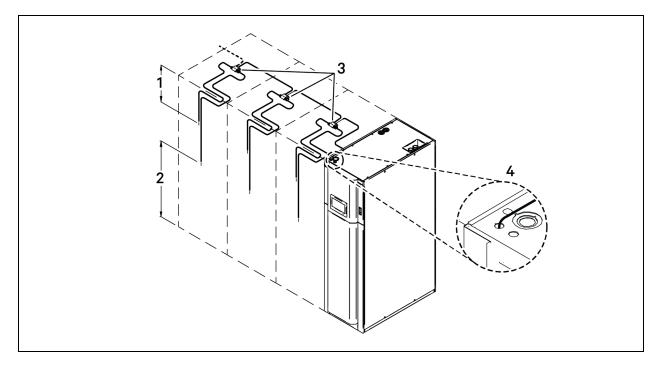
- 6. Remove the termination plug from the temperature sensor, and discard the plug, and connect the cable to the open CANbus port, **Figure 12.13** below.
- 7. Connect the CANbus ground to the factory-supplied ground connector.

Figure 12.13 Remove Termination Plug and Insert CAN Cable

item	Description
1	Termination plug
2	CAN cable

12.2.4 Installing 2T Sensors in the Racks to Monitor

Tools required:


- Medium, flat head screw driver to open electric panel dead front
- Cutting tool to trim cable ties

To install the sensors on the racks:

NOTE: Do not leave sensor probes coiled on top or coiled inside of a rack. Do not install a sensor in the hot aisle, or if a sensor is installed in the hot aisle, make sure that it is set to "reference" to ensure that its readings are not used for fan or cooling control.

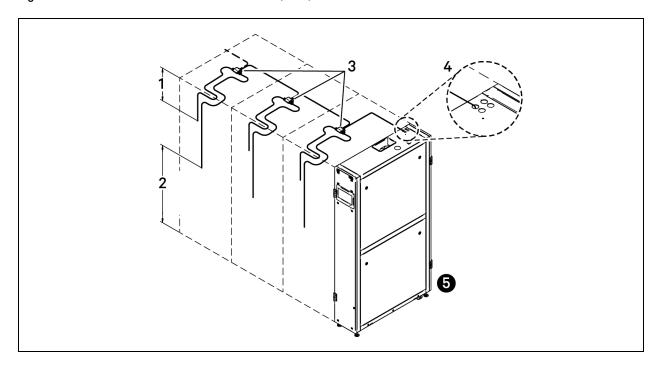

1. Install the rack temperature sensors on the rack adjacent to the Vertiv™ Liebert® CRV as shown in **Figure 12.14** below or **Figure 12.15** on the next page .

Figure 12.14 Rack Sensor Placement for 600 mm (24 in.) Models

Item	Description
1	First probe, 12 in. (305 mm) from top
2	Second probe, in approximate center of rack and in front of the equipment
3	2T sensors with labels visible
4	Cable-connection top entry point (use a field-supplied and field-installed protective bushing)

Figure 12.15 Rack Sensor Placement for 300 mm (12 in.) models

item	Description					
1	First probe, 12 in. (305 mm) from top					
2	Second probe, in approximate center of rack and in front of the equipment					
3	2T sensors with labels visible					
4	Cable-connection top entry point. Use a field-supplied and field-installed protective bushing.					
5	Cable-connect bottom entry, refer to Preparing for Sensor Cabling of Vertiv™ Liebert® CRV 600 mm (24 in.) units—CR020, CR035 and CR040 on page 114, and use a field-supplied and field-installed protective bushing.					

NOTE: Both probes on the 2T sensor must be installed on the same rack.

- 2. Install the 2T sensor probes the front door of the rack (inside or outside the door):
 - a. Using a cable tie, secure the sensor wire so that a probe is approximately 12 in. (305 mm) from the top and in the center of the front door.
 - This sensor monitors hot air coming over the top of the rack from the hot aisle.

NOTE: Do not wrap cable ties around the actual sensor probe. If the rack has no door, secure the probes to the rack at the side of the front opening.

- b. Use a cable tie to secure the sensor wire of the second probe to the front door so that it is centered in front of the heat-generating equipment drawing air.
 - If the cabinet is completely filled with equipment, determine the center based on cabinet width and height.
- c. With probes in place, use cable ties to route the wires neatly up the rack door and into the rack leaving enough slack in the wire so that the rack door opens and closes without binding or pinching the wire.
- d. Using the supplied, hook and loop fastener, connect the 2T sensor housing to the rack in an easily accessible location and with the sensor number visible.
- 3. Repeat step 2 until all sensors are installed.

12.2.5 Connect the CANbus Cable and Ground

WARNING! Risk of electric shock. Can cause equipment damage, injury or death. Open all local and remote electric power supply disconnect switches and verify with a voltmeter that power is off before working within any electric connection enclosures. Service and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

Cabling considerations:

- For cable up to 150 ft. (45 m) long, no special considerations are needed.
- Cable 150 ft. (45 m) and higher, please consult the factory.
- The CANbus cable network requires a ground wire.

To connect the cables:

1. Connect CANbus cable and a ground wire between each sensor for the cooling unit, **Figure 12.16** below, taking the following precautions:

NOTE: Remember that the last sensor on the chain must be terminated as described in Terminating the Last Sensor on the CANbus Link on page 109.

- Use only approved hangers, and do not secure cables in a way that could damage them.
- Limit bends to less than four times the diameter of the cable.
- When securing and hanging, avoid deforming the cable.
- Keep cables away from devices that may cause interference such as high voltage wires, machinery, fluorescent lights and electronics.

NOTE: High voltage sources much be at least 12 in. (305 mm) from CAN wires.

- Avoid stretching cables.
- Avoid using excess cable between sensors.
- Make sure that cables have the correct pin-out. Mismatched pins at the RJ2 connection will damage the CAN device.
- 2. Connect the ground connection between each sensor, Figure 12.16 below.

Figure 12.16 CANbus and Ground Connection on 2T Sensor

12.3 Installing the U2U Network

12.3.1 Required Network Equipment

Ethernet cable CAT5 or greater.

- Maximum cable length is 328 ft (100 m).
- An Ethernet repeater is required for cable lengths greater than 328 ft (100 m).

Network switch

- IEEE 802.3: IEEE 802.3u
- 10/100 Mbps speed
- Multiple 10/100 RJ 45 ports, one shared.
- RJ 45 up link port

NOTE: Up to 32 cooling units may be connected in a U2U network.

12.3.2 Planning Wiring Runs

When planning the layout of the conditioned space, consider the following:

- Good wiring practices.
- An Ethernet repeater is required for cable lengths greater than 328 ft. (100 m).
- A private network that only connects and manages the cooling units is required.
- Keep control and communication cables away from power cables to prevent electromagnetic interference.
- Keep cables away from noise introducing device such as machines, fluorescent lights, and electronics.
- Do not bend cables to less than four times the diameter of the diameter of the cable.
- Do not deform cables when hanging or securing in bundles.
- Do not exceed 25 lb. (11 kg) of tension when pulling cables to avoid stretching.
- Do not damage cables when securing them. Use only approved hangers, such as telephone wire/RG 6
 coaxialwire hangers.

12.3.3 U2U Wiring Connections

NOTICE

Cooling units are factory wired for stand alone operation. Do not connect the U2U network cabling before setting the U2U network configuration/groups. Network communication conflicts and unreliable display readings will result.

Before you begin, refer to Preparing for U2U Group Set Up on page 59, and Configuring U2U Network Settings on page 60.

– or –

Contact Vertiv Technical Support at 1-800-543-2778 or https://www.Vertiv.com/en-us/support/.

U2U Network Requirements

The network must be private.

- Isolate from other network traffic.
- Switches connecting the units must be dedicated to Vertiv™ Liebert® iCOM™ communication only.
- Do not connect the U2U network to the building or IT network. If the U2U network experiences a failure, the cooling units continue to operate independently.

Liebert® iCOM™ supports up to 64 nodes on the U2U network. The following are considered nodes:

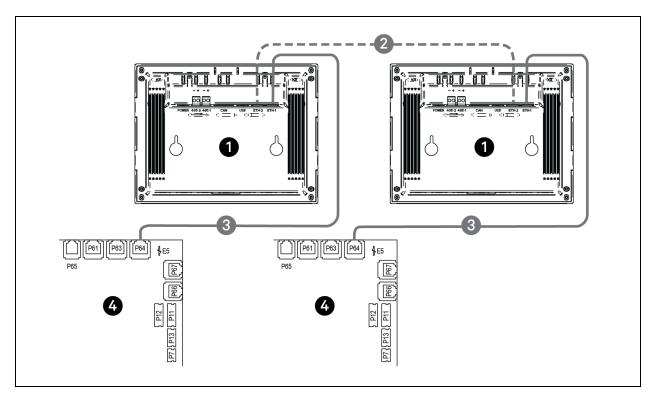
- Input/output board (one in each cooling unit)
- Large wall mount display

Small touchscreen displays on the cooling unit are not considered nodes because they are directly connected to the input/output board in the unit, not the network.

Of the 64 nodes, up to 32 may be cooling unit input/output boards connected as a group. **Table 12.5** below, provides U2U network configuration examples.

No. of Wall Configuration No. of Input/Output Boards Private Switch Mount Example (Cooling Units) Required? Displays Α 2 0 No В 2 Yes C 3 0 Yes D 8 1 Yes Ε 32 5 Yes Yes

Table 12.5 Example Liebert® iCOM™ U2U Network Configurations


12.3.4 Wiring Cooling Units without Wall Mount Displays

NOTE: Cooling units are factory wired for stand alone operation. Do not connect the U2U network cabling before setting the U2U network configuration/groups. Network communication conflicts and unreliable display readings will result

NOTE: Before you begin, refer to Preparing for U2U Group Set Up on page 59, and Configuring U2U Network Settings on page 60.

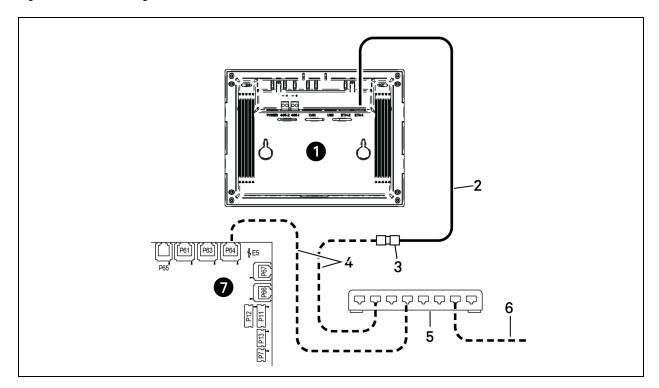
• Connect a crossover CAT5 cable to the ETH-2 connector on the rear of each display as shown in **Figure 12.17** below.

Figure 12.17 Connection Between Only Two Cooling Units, No Network Switch Needed

item	Description
1	Touchscreen (rear view)
2	Ethernet cable (field supplied)
3	Ethernet cable (factory supplied)
4	Liebert® iCOM™ I/O board

• On each unit, connect one plug on the CAT5 cable to ETH-2 on the rear of the display, and the other to the network switch, see Figure 12.18 below.

Figure 12.18 Connecting Two or More Units with a Network Switch

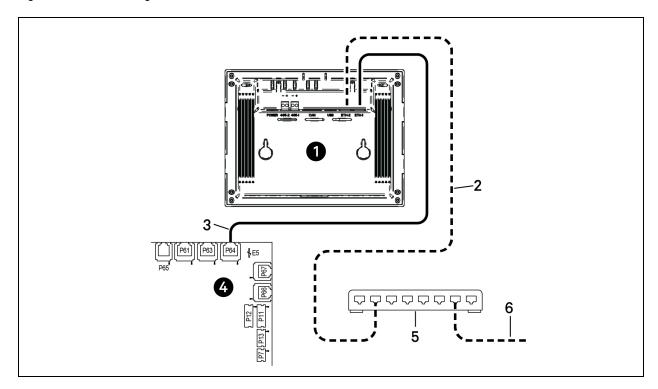


Iten	n	Description
1		Touchscreen (rear view)
2		Ethernet cable (field-supplied)
3		Ethernet cable (factory-supplied)
4		Liebert® iCOM™ I/O board
5		Network switch (field-supplied)
6		to ETH-2 on rear of other cooling unit touch screens

To connection 12-in (300mm) units, refer to Connecting 12-in. (300 mm) Units below

- 1. Unplug the red cable from P64 at the I/O board, connect it to the crossover coupler provided.
- 2. Connect a field-supplied, straight-through Ethernet cable to the crossover coupler and the network switch.
- 3. Connect a second field supplied, straight through Ethernet cable to P64 and the network switch.

Figure 12.19 Connecting 12-in. (300 mm) Units



ltem	Description
1	Touchscreen (rear view)
2	Ethernet cable (factory-supplied)
3	Coupler (factory-supplied)
4	Straight-through Ethernet cables
5	Network switch (field-supplied)
6	to ETH-2 on rear of other cooling unit touch screeens
7	Liebert® iCOM™ I/O board

To connect 600 mm (24 in.) units:

• On each unit, connect one plug on the CAT5 cable to ETH-2 on the rear of the display, and the other to the network switch, **Figure 12.20** below.

Figure 12.20 Connecting 600 mm (24 in.) units

Item	Description
1	Touchscreen (rear view)
2	Ethernet cable (field supplied)
3	Ethernet cable (factory supplied)
4	Liebert® iCOM™ I/O board
5	Network switch (field supplied)
6	to ETH-2 on rear of other cooling unit touchscreens

12.3.5 Wiring Cooling Units with Wall Mount Displays

NOTE: Cooling units are factory wired for stand-alone operation. Do not connect the U2U network cabling before setting the U2U network configuration/groups. Network communication conflicts and unreliable display readings will result.

NOTE: Before you begin, refer to Preparing for U2U Group Set Up on page 59, and Configuring U2U Network Settings on page 60.

Large, wall-mount displays may be used to remotely configure, control, and monitor all cooling units connected on the U2U network.

- Each display requires 120 VAC or 230 VAC input power.
- An AC-adapter wall plug is factory supplied.

To connect wiring:

- 1. On each wall mount display (32 maximum), connect one plug of a straight through Ethernet cable to port P64 on the rear of the display.
- 2. Connect the other end to the U2U network switch.

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

Appendices

Appendix A: Technical Support and Contacts

A.1 Technical Support/Service in the United States

Vertiv Group Corporation

24x7 dispatch of technicians for all products.

1-800-543-2378

Liebert® Thermal Management Products

1-800-543-2378

Liebert® Channel Products

1-800-222-5877

Liebert® AC and DC Power Products

1-800-543-2378

A.2 Locations

United States

Vertiv Headquarters

505 N. Cleveland Ave.

Westerville, OH, 43082, USA

Europe

Via Leonardo Da Vinci 8 Zona Industriale Tognana

35028 Piove Di Sacco (PD) Italy

Asia

7/F, Dah Sing Financial Centre

3108 Gloucester Road

Wanchai, Hong Kong

Vertiv™ Liebert® iCOM™ Installer/User Guide

This page intentionally left blank

Appendix B: Setpoints and Alarm Settings by Line ID

These tables list the parameters by the line identification assignments employed before the Vertiv™ Liebert® iCOM™ touchscreen. The tables include range/options of the parameter, the factory-default setting, and a description of the parameter function.

The line IDs are not listed in the User or Settings menus, only in the parameter directory. You can search the parameter list to find the line ID and it's associated label and value in the Liebert® iCOM $^{\text{\tiny M}}$ user interface.

B.1 To Search the Parameters List

- 1. Log in at the Service level, then touch
- 2. Enter a line ID or term in the Search field, and touch

B.2 Line IDs for Setpoint Parameters

Table B.1 User Menu Setpoints by Line ID

Line ID	Parameter Name	Range	Default Setting	Description
	Temperature	32 - 113°F	73°F	
	Setpoint Act	0.0 - 45.0°C	23.0°C	Selects the temperature that the cooling unit will maintain by applying cooling and/or reheats. Temp Set value is the temperature that has been set
U102	Temperature	41 - 104°F	73°F	by the User to control the temperature. Temp Act value is a read-only value
0102	Setpoint	5.0 - 40.0°C	23.0°C	that indicates if another routine, such as supply compensation, has internally modified the temperature controlling value. If compensation has not be
	TempSetUsr	41 - 104°F	73°F	activated, the ACT and SET values will always match.
	rempoetosi	5.0 - 40.0°C	23.0°C	
U103	Temperature Control Sensor	Supply Sensor Remote Sensor Return Sensor	Return Sensor	Selects the sensor that will control the cooling capacity; either chilled water valve, compressors, free cooling valve, or air economizer. Unloading type compressors can be set to any type of sensor; however, fixed style compressors can only be set to Return or Remote sensors.
	Humidity Dew	41 - 65°F	48°F	
U104	Point Setpoint	5.0 - 18.3°C	8.9°C	Selects a humidity level that the cooling unit will maintain by removing or adding moisture to the air. The humidity setpoint will be represented in % RH
0.10.1	Humidity Setpoint	20 - 80%RH	50%RH	or Dew Point value depending on what the humidity control type is set for.
U105	Humidity Control Sensor	Remote Sensor Return Sensor	Return Sensor	Defines which humidity value the setpoint will be compared with. The return sensor is equipped with Temp/Humidity sensor and can calculate the dew point based on Liebert® iCOM™s internal lookup table. If a sensor other than the return sensor is selected, the iCOM will calculate the correct %RH based on the sensor selected and its actual temperature reading.

Table B.1 User Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
U106	Humidity Control Type	Relative Compensated Predictive Dew Point	Predictive	Selects the humidity control calculation. If set to Relative, the unit will control the humidity without considering any temperature deviations. If set to Predictive and Absolute, the control will consider the temperature deviation from temperature setpoint so that a constant level of moisture is kept in the area based on the humidity sensor reading and the temperature deviation from setpoint. Dew Point allows the Liebert® iCOM™ controller to calculate the actual dew point of the space and to control the humidity based on a user entered dew point temperature.
U107	Fan Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 22.8°C	Required anytime the fan operates from a different sensor than that used for the temperature setpoint. For example, The temperature setpoint is set to Supply Air and the fan control is set to Remote Air. This is considered Optimized Aisle control, which decouples the fan and cooling capacity modulation. The remote sensor setpoint would modulate the fan speed and the supply sensor setpoint would modulate the cooling.
U108	Fan Control Sensor	Supply Sensor Remote Sensor Return Sensor Manual	Disabled	Determines which sensor will control the speed of the fan. If set to Manual, then the fan control can be set through the local Liebert® iCOM™ display or through the BMS system via one of the various Liebert® IntelliSlot monitoring cards.
U110	Optimized Aisle Enabled	Disabled Enabled	Disabled	This read-only value indicates if the Liebert® iCOM™ controller is setup in a Optimized Aisle configuration. To enable optimized aisle via the Liebert® iCOM™ display, the Supply Air sensor must be set to control the cooling capacity and the remote sensor must be set to control the fan speed. This allows the cooling unit to maintain rack temperatures while still maintaining an even under floor air temperature when controlling unbalanced rooms.
U113	2nd Temperature Setpoint	41 - 104°F 5.0 - 40.0 °C	73°F 23.0 °C	Allows for a dry contact through the customer input connections. When a customer input connection is set for 2nd temperature setpoint and that input is triggered, then the value set in this parameter sets the active temperature setpoint the unit will maintain. If the unit is configured for Decoupled mode, then this setpoint will only affect the temperature control setpoint; it will not affect the fan control setpoint.
U114	Supply Temp Limit Setpoint	41 - 81°F 5.0 - 27.0°C	41°F 5.0°C	Selects the minimum discharge air temperature. When the actual sensor reading approaches this parameter, the cooling capacity will be limited to avoid going below the Supply Limit Temperature value. This parameter must be enabled in the Service Menu / Setpoints menu prior to setting a supply limit setpoint.
U116	BMS Backup Temp Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 23.0°C	Selects a temperature setpoint that will be activated in the event of a BMS time out or a customer input signal. The BMS timer and/or the customer input must be configured for this parameter to activate. If the unit is operating in De- coupled mode, then this setpoint will only affect the temperature control setpoint; it will not affect the fan control setpoint.

Table B.1 User Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	BMS Backup Fan	41 - 104°F	73°F	Selects a temperature setpoint when the backup fans will be activated in the
U117	Setpoint	5.0 - 40.0°C	23.0°C	event of a BMS time out or a customer input signal. The BMS timer and/or customer input must be configured in order for this parameter to activate. If
	BMS Backup Fan Speed	0 - 100%	100%	the unit is operating in Decoupled mode, then this setpoint will only affect the temperature control setpoint; it will not affect the fan control setpoint.
U119	Return Compensation Setpoint	41 - 104 °F 5.0 - 40.0°C	73 °F 23.0 °C	Allows the return air sensor to be used even when in Supply or Remote temperature control mode. Return Compensation modifies the temperature setpoint to ensure that the return air temperature is kept above a specific temperature. If the return compensation value is set to 80 °F and the actual return temperature falls to 75 °F, then the controlling temperature setpoint will be increased and will reflect in the "Control Temp Act" parameter.

Table B.2 Service Menu Setpoints by Line ID

. 45.0 5.2	Service Menu Serpoints by Line ib				
Line ID	Parameter Name	Range	Default Setting	Description	
S102	Temperature Control Sensor	Supply Sensor Return Sensor Remote Sensor	Return Sensor	Selects which sensor will be controlling and influencing the cooling capacity. Cooling Capacity is either the Chilled Water Valve, Compressor, Free Cooling Valve, or Air Economizer. Unloading type compressors can be set to any sensor type, however fixed style compressors can only be set to Return or Remote control sensor.	
	Temperature Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 23.0°C	Selects a temperature that the cooling unit will maintain by applying cooling and/or reheats. The temperature setpoint value that has been set by the User to control the temperature.	
S103	Temperature Setpoint Actual	32 - 113°F 0.0 - 45.0°C	73°F 23.0°C	The temperature setpoint actual value is a read-only value that indicates if another routine, such as supply compensation has internally modified the Temperature controlling value. If compensation has not been activated, the ACT and SET will always match.	
S104	Temperature Control Type	Proportional PI Adaptive PID Intelligent	PI	Sets the type of control to be followed: Proportional, PI, Adaptive PID (autotuning), Intelligent	
S105	Temperature User Low Limit	41 - 104°F 5.0 - 40.0°C	41°F 5.0°C	Defines the temperature range below setpoint; temperature setpoint cannot be adjusted below this value. If the setpoint value has been adjusted lower than this setting, then the setpoint will automatically default back to its previous setting.	
3.33	Temperature User High Limit	41 - 104°F 5.0 - 40.0°C	104°F 40.0°C	Defines the temperature range above setpoint; temperature setpoint cannot be adjusted above this value. If the setpoint value has been set higher than this setting, then the setpoint will automatically default back to its previous setting.	
S106	Temperature Proportional Band	4 - 200°F 22 - 111.0 K	12°F 6.7 K	Adjusts the activation points of compressors/chilled water valves or rate of changed based on the actual sensor values deviation from setpoint. The smaller this number, the faster the compressors/chilled water values will increase capacity. Too small of a number may cause the unit to short cycle compressors or excessively reposition the valve.	
	Temperature Integral Time	0.0 - 15.0 min	5.0 min	Adjusts the capacity of the units based on time away from setpoint so that accurate temperature control can be maintained. The proportional and integral time settings work together to maintain setpoint. Large p-band and small integral time is typical when controlling to supply air.	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
S107	Temperature Derivative Time	0 - 900 sec	0 sec	
S108	AutoSet Enable	No Yes	Yes	Sets the temperature and humidity proportional bands automatically based on the type of unit when this parameter is set to YES and if teamwork modes are selected. To change the proportional bands, this parameter must be set to NO. If supply or remote sensors are used, then this value is always set to NO.
S109	Temperature Deadband	0 - 36°F 0 - 20.0 K	2°F 1.1 K	Avoids overshooting of the setpoint and cycling between cooling and reheats. The value entered in this field will be split in half by the temperature setpoint.
S110	Supply Limit Enabled	No Yes	No	Chilled water units may be set up with the supply air sensor to maintain a minimum air temperature under the raised floor to help prevent condensation. In order to avoid supply temperatures that are too low, the Supply Limit can influence the opening of three-point or analog actuators or the output of analog
3110	Supply Limit Setpoint	41 - 81°F 5.0 - 27.0°C	41°F 5.0°C	values. The control compares the deviation from the return air setpoint & the supply limit setpoint, and calculates the output to the actuator from the smaller deviation.
S111	Heater Deadband	0 - 36°F 0 - 20.0 K	0°F 0.0 K	Changes the amount of deviation below the temperature setpoint that the heaters will cycle ON and OFF. This value is added to the heating side of the normal temperature deadband.
S113	Enable Temperature Compensation	No Return Supply Ret+Sup	No	Temperature compensation allows for a second or even a third sensor to be used that that will influence the units cooling or heating. Return compensation can be used when the supply or remote sensors are being used for control. Then the return sensor is then monitored to maintain a minimum return temperature. Supply compensation can be used only when Optimized Aisle (TW3) is enabled. The supply sensor will not only be used for controlling cooling capacity but will also monitor the cold aisle temperature to ensure that the cold aisle temperature setpoint is met.
S114	Return Compensation Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 23.0°C	The temperature setpoint where compensation begins to operate by increasing the supply air setpoint.
S115	Return Compensation Band	0 - 18°F 0.0 - 10.0 K	0°F 0.0 K	The return compensation band/value will determine how quickly the cooling capacity is adjusted as the return temperature drops below the return
	Return Compensation Value	0 - 18°F 0.0 - 10.0 K	0°F 0.0 K	compensation setpoint.
S116	Supply Compensation Value	0 - 18°F 0.0 - 10.0 K	0°F 0.0 K	The Supply Compensation value determines how much the supply temperature setpoint will be reduced when the units fan speed is at 100% and the cold aisle is not able to maintain temperature setpoint. Any modifications to the supply temperature setpoint will be shown at the temperature setpoint on parameter S103 as the actual active control point.
S118	Compressor Capacity Filter at 0 %	0.01 - 99.99 %/s	0.60 %/s	Controls the rate of change during compressor load changes to avoid overshoots. The filter value depends on the current control deviation from setpoint. On the setpoints (at 0% call for cooling), it's typically set lower (slow).

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Compressor Capacity Filter at 100%	0.01 - 99.99 %/s	4.00 %/s	At the end of the proportional band (at 100% call for cooling), it is typically set higher (faster).
S119	Capacity Transition Filter	0.01 - 99.99 %/s	4.00 %/s	This parameter should only be adjusted by a factory-service trained technician. The transition capacity filter controls how quickly the capacity changes between different modes of operation. This filter helps with the transition to avoid overshoot.
S120	CW Capacity Filter @ 0%	0.01 - 99.99 %/s	0.10 %/s	The CW capacity filter controls the rate of change during a valve position adjustment to avoid overshoots. The filter value depends on the current control deviation from setpoint. On the setpoint (at 0% call for cooling), it is typically set lower (slower).
S121	CW Capacity Filter @ 100%	0.01 - 99.99 %/s	0.60 %/s	At the end of the p-band (at 100% call for cooling), i is typically set higher (faster).
0121	BMS Backup Temp Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 23.0°C	Selects a temperature setpoint that will be activated in the event of a BMS time out. The BMS timer must be configured for this parameter to be active.
S122	2nd Temperature Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 23.0°C	Selects a temperature setpoint that will be activated in the event of a customer input signal configured as the second setpoint. The customer input must be configured for the parameter to activate.
S124	Humidity Control Sensor	Remote Sensor Return Sensor	Return Sensor	Defines which humidity sensor the humidity setpoint is compared with. The return sensor is equipped with a Temp/Hum sensor and can calculate the dew point based on Liebert® iCOM™s internal lookup table. If a sensor other than the return sensor is selected, the Liebert® iCOM™ will calculate the corresponding RH% based on that sensors actual temperature.
S125	Dew Point Setpoint	41 - 65°F 5.0 - 18.3°C	48°F 8.9°C	Selects a humidity level that the cooling unit will maintain by removing or adding moisture to the air. The humidity setpoint will either be set in percent RH or as a Dew Point value depending on what the humidity control type is set for.
	Humidity Setpoint	20 - 80%	0.5	
S126	Humidity Control Type	Relative Compensated Predictive Dew Point	Predictive	Selects the humidity control calculation. Setting this parameter to Relative (%RH) will control the humidity without considering any temperature deviations. Predictive and Absolute control considers the temperature deviation from temperature setpoint so that a constant level of moisture is kept in the area based on the humidity sensor reading and the temperature deviation from setpoint. Compensated is recalculated with the actual deviation from temperature setpoint. 1° Celsius is equal to 3 % RH, indirect proportional. If temperature increases, the humidity setpoint is decreased and vice versa.
	Humidity Control Mode	Supply Return	Return	
	Dew Point	2 - 18°F	8°F	Adjusts the activation points of the humidifier and compressors based on the
S127	Proportional Band	1.1 - 10.0 K	4.4 K	actual sensor values deviation from setpoint. The smaller this number, the faster
	Humidity Proportional Band	1 - 20%	0.2	the compressors and humidifier will increase capacity. Too small of a number may cause the unit to short cycle or overshoot setpoint.
S128	Humidity Integration Time	0.0 - 25.0 min	0.0 min	Adjusts the capacity of the unit based on a time away from setpoint so that accurate humidity control can be maintained. If the integration time is set to 0, the

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
				humidity control operates as a proportional only control. When integration time is set, the control mode changes to PI control
S129	Humidity Deadband	0 - 18°F	4°F	Prevents overshooting of the setpoint and cycling between humidification and dehumidification. The value entered in this field will be split in half by the temperature setpoint.
		0.0 - 10.0 K	2.2 K	
S130	Dehum Supply Temperature Setpoint	41 - 104°F	54 °F	Allows for a target temperature setpoint to be activated when a call for dehumidification is enabled instead of the traditional method of over cooling the space by increasing cooling to 100% and lowering fan speed if equipped. Must be in supply air control mode. When a call for dehumidification is active, the supply or remote sensor setpoint will be lowered to this parameter. This parameter should be set below the accepted dew point threshold of your space. Used only when supply dehumidification is enabled.
		5.0 - 40.0°C	12.2°C	
	Actual Dehum Temperature Setpoint	41 - 104°F 5.0 - 40.0°C	50°F 10.0°C	
S131	Dehum Setpoint Adjustment	0 - 18°F	9°F	Sets the amount of that the Dehum Temp Setpoint is adjusted once the reheats activate. For example, if the unit is equipped with a reheat device, this parameter will increase the dehumidification temperature as the call for reheats are increased until the reheat call is at 100%. When the reheats are at 100%, the full Dehum Setpoint Adjustment will be applied.
		0.0 - 10.0 K	5.0 K	
	Dehum Setpoint Filter	0.01 - 0.10 K/s	0.02 K/s	
\$132 \$133	Dehum Reheat/LL Sensor	Supply Sensor Remote Sensor	Return Sensor	Sets the sensor and temperature start point that the reheat will be deactivated and dehumidification will be stopped due to over cooling the space in a call for dehumidification. Dehum/Reheat Low Limit 1
		Return Sensor		
	Dehum Reheat/LL Setpoint Dehum/Reheat Low Limit 1 Temp Hysteresis	41 - 104°F	71°F 21.7°C	
		5.0 - 40.0°C	21.7 C	
		-30.0°F2.0°F	-5°F	
		-16.7K1.1K	-2.5 K	
	Dehum/Reheat Low Limit 2 Temp Hysteresis	-30.0°F2.0°F	-7 °F	Dehum/Reheat Low Limit 2
		-16.7K1.1K	-3.9 K	
010.4	Dehum Reheat Proportional Band	2 - 54°F	14 °F	Sets the reheat proportional band for reheat operation independently of the temperature proportional band. This parameter can be used to activate the reheats at different points below the temperature setpoint.
S13A		2.0 - 30.0 K	7.8 K	
	Estimated Aisle Temp			Sets an estimated cold aisle temperature when humidity control sensor is set to
S13B		41 - 104°F	75°F	remote and no remote temperature sensors are installed at the unit. This estimated temperature will be used to determine the humidity versus using an actual temperature in the cold aisle that may fluctuate during modes of dehumidification or load changes of the IT equipment. This provides a stable control point to reference the actual measured dew point from the return sensor.
3135		5.0 - 40.0°C	23.9°C	
		0 - Disabled		control point to reference the actual measured dew point from the retuit Serisol.
S135	DT1 (Room/Outdoor) Type	1 - Contact		
		2 - EFC	Temp	Sets the activation point of the ambient dry bulb outdoor temperature as it relates
		3 - Temp		to either an indoor actual temperature or temperature setpoint.
		4 - Set		
S136	DT1	2 - 72°F	5°F	Field adjustable setpoint or temperature
3100		1.0 - 40.0 K	3.0 K	Thora dajustable serpoint of telliperature

Table B.2 Service Menu Setpoints by Line ID (continued)

Line	Parameter	Range	Default	Description	
ID	Name		Setting		
	(Room/Outdoor) Value				
\$137	DT2 (Room/FC Fluid) Type	Disabled Contact Temp Set	Disabled	Determines the method to activate the water circuit on Dual Cool and Free Counits. It may be set to CONTACT, TEMP, or SET. CONTACT uses a dry contact activate the free cooling circuit. TEMP uses a sensor reading that can be compared to the return temp to see whether free cooling is possible. SET compares the temperature set to the free cooling sensor to determine free cooling availability.	
S138	DT2 (Room/FC Fluid) Value	0 - 36°F 0.0 - 20.0 K	12°F 6.7K	Sets the delta T between the actual temperature and fluid temperature that must be met before free cooling will occur.	
S139	Minimum Chilled Water Temp Enable	No Yes	Disabled	Enables the temperature at which free cooling can operate independently without assistance of the compressor circuit(s).	
S140	Minimum Chilled Water Temp Value	32 - 68°F 0.0 - 20.0°C	45°F 7.0°C	Sets the water temperature at which 100% free cooling can be provided to handle the full room load. When the fluid temperature is below this setting, then the compressors will no longer turn ON until the water temperature is above the minimum CW temperature.	
S141	Lockout FC at Fluid Below	6 - 50°F -15.0 - +10.0°C	32°F 0.0°C	Prevents frost from building up on the free cooling pipes when the outdoor ambient temperature is extremely low by turning off the free cooling circuit when the water temperature is too low.	
S146	Fan Control Sensor	Supply Sensor Remote Sensor Return Sensor Manual	Return Sensor	Controls the fan speed for modulation. If MANUAL is selected, then the fan speed can be controlled from the local display or through a building management system.	
S147	Fan Setpoint	41 - 104°F 5.0 - 40.0°C	73°F 22.8°C	Activated when a temperature sensor is being used to control the fan speed. If the same sensor is used for temperature control and fan speed control, then this value will reflect the same setpoint as the temperature control setpoint. Manual mode uses fan speed STD for control.	
S148	Fan Temperature Control Type	Proportional PI Adaptive PID	PI	Sets the type of control the unit will use to control fan speed. Pl control gain is set in the Temp Prop/Integral parameter. Pl control will operate the fan speed so that the actual temperature of the fan control sensor is equal to the fan temp setpoint. If PROPORTIONAL only is selected, the fan will change only based on the deviation from setpoint which will allow the actual temp to settle higher than setpoint.	
149	Fan Temperature Control Prop Band	4 - 200°F 2.0 - 111.0 K	36°F 20.0 K	Adjusts the fans peed rate of change based on the actual sensor values deviation from setpoint. The smaller this number, the faster the fans will increase speed. Too small of a number may cause the fans to increase or decrease speed and overshoot setpoint.	
140	Fan Temperature Control Integration Time			Adjusts the fans of the unit based on time away from setpoint so that accurate temperature control can be maintained. The proportional and integral work together to maintain setpoint. Large p-band with small integral time is a typical way to achieve stable control.	
\$150	Fan CFF Hysteresis	0 - 20%	0.02	Modifies the reaction of the fan speed when fan speed is being dictated by the Call for Cooling. Adding the Hysteresis may result in a lagged response to changes in fan speed.	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
	Fan Deadband	0 - 36°F 0 - 20.0 K	1°F 0.6 K	Avoids overshooting of the setpoint. The value entered in this field will be split in half by the fan speed setpoint	
S151	Airflow Calibration	3.0 - 10.0 V	10.0 V	Allows the front display to be scaled to show the actual percentage of airflow independent of the voltage operating the fan speed. This value cannot be set above/below the Analog Output High/Low Limit for the fan set in the Advanc Menu. This also includes the service menu fan speed parameters.	
S152	Fan Speed VSD Setpoint Minimum	0 - 100%	0.7	Sets the range for the variable fans. Minimum sets the minimum speed that the fan will operate at. Fan speed is modulated between MIN and STD based on which sensor is set as the controlling sensor, setpoint, and the PI settings. If the	
	Fan Speed VSD Setpoint Standard	0 - 100%	1	controlling sensor is set to manual, then the STD setting will control the current fan speed. This parameter is also adjustable through the BMS.	
S153	Fan Speed VSD Setpoint Dehum	0 - 100%	70%	Sets the fan speed when a call for dehumidification is active. This allows the units fan speed to be ramped lower to help with any over cooling due to the	
0.00	Fan Speed VSD Setpoint No Power	0 - 100%	100%	dehumidification process. This also allows the coil to remove additional moisture even faster	
S154	Allow Fan Modulation on Compressors	No Yes	Yes	Provides the option to set the fan to fixed speed if unit is equipped with compressors. Once this parameter is set at the local display, it must be removed at the local display to re-engage fan speed control.	
\$155	High Return Limit Enable	Disabled Local Team	No	Sets a control point that will increase the fan speed if the return temperature exceeds the limit set in the High Return Temperature Limit parameter. If set to DISABLED, no limit will be applied to the return air temperature. If set to LOCAL, then only the local units return temperature will be monitored for applying the limit. If set to TEAM, then the highest networked unit return temperature will activate the limit on all connected units.	
S15A	High Return Temperature Limit	41 - 104°F 5.0 - 40.0°C	85°F 29.4°C	Sets the temperature limit that will increase the fan speed to decrease the return temperature. Some compressors may require this limit to prevent extremely high temperatures that could potentially cause degradation of the compressor oil, that could decrease the overall compressor life expectancy.	
S15B	Return Limit Proportional Band	0 - 36°F	20°F	Sets the rate of fan speed increase as the actual return temperature approaches the limit set in the High Return Temperature limit parameter.	
S157	Fan Startup Time	0 - 600 sec	3 sec	Determines the speed of the fan at system startup. The fan will operate at the set speed (%) until the set time has elapsed; at this point the fan will assume normal	
	Fan Startup Speed	0 - 100%	100%	operation.	
S158	Fan Speed Filter at 0%	0.01 - 99.99%/s	0.20%/s	This parameter should only be adjusted by factory service trained technician Cap Filter at 0/100% controls the rate of change during fan speed changes to avoid overshoots. The filter value depends on the current control deviation fr setpoint. On the setpoint (at 0%), its typically set lower (slower). At the end of P-band (at 100%) its typically set higher (faster). The value is given as a % coroutput per second change. This parameter sets the rate of changed based or where actual temperature is when compared to setpoint.	
S159	Fan Speed Filter at 100%	0.01 - 99.99 %/s	1.00%/s	This parameter should only be adjusted by factory service trained technician. The transition fan speed filter controls how quickly the fan speed changes between	
2.000	Fan Speed Transition Filter	0.50 - 99.99	1.00%/s	different modes of operation. This filter helps with the transition to avoid overshoots.	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
		%/s			
S160	Fan Speed Reposition Mode	Decel Both	Decel	This parameter should only be adjusted by factory service trained technician. The fan speed reposition mode/delay is a one time delay as the fan speed is requested to change direction. This delay will be applied only when the fan speed is	
	Fan Speed Reposition Delay	0 - 300 sec	0 sec	commanded from an increasing to decreasing state or decreasing to increasing state. This allows the fan to hold its current position while the temperature stabilizes.	
S161	Max Deceleration Rate	0.01 - 99.99 %/s	0.10 %/s	This parameter should only be adjusted by the factory service trained technician. Only slows the decreasing of the variable fan speed. The control will use the slower of this parameter and the fan speed filter.	
	BMS Backup Fan	41 - 104°F	73°F		
S162	Setpoint	5.0 - 40.0 °C	23.0 °C	Selects a fan speed setpoint that will be activated in the event of a BMS time out.	
	BMS Backup Fan Speed	0 - 100%	1	The BMS timer must be configured for this parameter to activate.	
\$163	BMS Backup Fan Operation	Disabled BMS Backup Spd Coupled BMS Backup Set	Disabled	Sets the default operation of the fan speed control when a BMS time out occurs. Default is disabled which will keep the fan speed at the last value before the disconnect occurred. STD speed will ramp the fan to the STD speed setting. This will drive the fan speed to its maximum speed. The control will use the slower value. COUPLED will set the fan speed to follow the cooling capacity. BACKUP SET will use the BMS Backup Setpoint to drive fan speed.	
S164	Allow BMS to Change Fan Speed	No Yes	Yes	Enables or disables BMS fan speed control. When this parameter is disabled, the BMS will not have write capability to this point.	
	BMS is connected to	Velocity Ana In 1 Ana In 2 Ana In 3 Ana In 4	Velocity	If the BMS is connected to Analog Input (1-4), it is used for manually writing to and	
\$165	BMS Analog Input Signal Type	0-5V 0-10V 4-20mA None	None	controlling the unit fan speed using a low voltage control signal. If the BMS is set to Velocity (V3 or V4), it is used for manually writing to and controlling the unit fan speed via the velocity protocol.	
	BMS Analog Input current value	0 - 100%	100%		
S166	High Temp Limit Approach	Disabled Supply Return	Return	Sets the sensor to be used to increase the fan speed value above the fan speed setpoint STD to the value set in the Analog Output high limit.	
S16A	High Temp Limit Approach at	0 °F / +10°F 0 K / +5.5 K	2°F 1.1 K	Sets the temperature differential below the high supply and high return temperature limit where the fan speed would increase from fan speed setpoint STD to fan speed MAX.	
S16B	FC / AirEco Ramp Up w/ CFC	0 - No 1 - Yes	0 (No)	Sets the selection to decouple the fan output from the call for cooling.	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
S168	Fan Back Draft Control	Disabled Enabled	Disabled	Enables/disables fan back draft control. This feature allows EC fans (only) to operate at very low speeds to prevent airflow from cycling through the unit du a high under floor static pressure than above the floor static pressure. VFDs cannot be used with this feature due to motor and/or bearing degradation tha may occur at the low fan speeds required to support this feature.	
5109	VSD Setpoint Back Draft	0.1 - 5.1 V	1.5 V	The variable speed device setpoint is set as a voltage reference. The lower the voltage, the slower the fans will spin. This parameter is set based on the application. Higher under floor static pressure may require a higher setting to prevent airflow through the unit.	
S171	Not Selectable Zone 1 Low	0.0 - 5.0 V	3.5 V	The not selectable zone 1 and 2 are zones that the EC fans cannot operate within due to vibration harmonics that the fans may introduce to the unit. These parameters will be set from the factory based on model type and should not need adjusted in the field.	
	Not Selectable Zone 2 Low	0.0 - 5.0 V	0 V	The not selectable zone 1 and 2 are zones that the EC fans cannot operate within due to vibration harmonics that the fans may introduce to the unit. These	
	Not Selectable Zone 2 High	0.0 - 5.0 V	0 V	parameters will be set from the factory based on model type and should not need adjusted in the field.	
S1/3	Stop BDR when System is OFF	No Yes	No	The above is true when S173 Stop BDR when System is OFF is set to YES. If set to NO, the BDR mode will not be interrupted, unless BDR is disabled or the unit is restarted.	
51/5	Display Off and BDR	Off Back Draft	Off	When the back draft damper is enabled, different modes can activate this feature. Remote Off, Display Off, BMS Off, and Local Off can all be set to activate te back draft damper operation. This is done by pressing the ON/OFF key at the unit to put the unit in a Display Off condition	
S176	BMS Off and BDR	Off Back Draft	Off	When the back draft damper is enabled, different modes can activate this feature. Remote Off, Display Off, BMS Off, and Local Off can all be set to activate the back draft damper operation. This is done by sending a remote OFF signal from BMS to the unit to be remotely OFF.	
S177	LOC Off and BDR	Off Back Draft	Off	When the back draft damper is enabled, different modes can activate this feature. Remote Off, Display Off, BMS Off, and Local Off can all be set to activate the back draft damper operation. This is done by sending local OFF signal to the unit by pressing the ON/OFF key.	
\$179	SCR Control Type	None Tight Standard	None	Sets the control type for the SCR reheats. If set to Standard, then the reheats will modulate when the temperature is below setpoint based on the control settings. If set to Tight, then one compressor will be locked on and the reheats will modulate to offset the cooling capacity.	
S180	Start 1st Compressor at	-100 / +100%	0%	Sets activation point of the first compressor. This parameter can be used when set to Tight control with SCR.	
S181 I	Stop 1st Compressor at	-200 / +50%	-200%	Sets the deactivation point of the first compressor. This parameter can be used when set to Tight control with SCR.	
S182	1st Compressor stop delay	0 - 30 min	20 min	Sets the delay when the stop compressor setpoint for the first compressor is met.	
S183	Start 2nd Compressor at	-100 / +100%	100%	Sets activation point of the second compressor. This parameter can be used when set to Tight control with SCR.	
S184	Stop 2nd	-200 / +50%	0%	Sets the deactivation point of the second compressor. This parameter can be	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
	Compressor ats			used when set to Tight control with SCR.	
S185	2nd Compressor stop delay	0 - 30 min	0 min	Sets the delay when the stop compressor setpoint for the second compressor is met.	
S186	Cycle Time	1.0 - 200.0 sec	1.0 sec	Set at the factory and should be changed only by an authorized Vertiv/Liebert technician.	
S187	SCR Factor	1.0 - 10.0	1	Set at the factory and should be changed only by an authorized Vertiv/Liebert technician.	
S188	Actual SCR request	0 - 100%	0%	Displays the actual SCR reheat being requested.	
S190	Static Pressure Fan Control	Disabled Limit Control	Disabled	Enables/disables the use of static pressure control for fan modulation.	
	Static Pressure	0.010 - 1.003	0.020		
0101	Setpoint inWC	inWC	inWC		
S191	Static Pressure Setpoint Pa	2 - 250 Pa	5 Pa	Sets the static pressure setpoint to be used by the control to modulate the fan control.	
	Static Pressure	0.010 - 1.003	0.020		
0400	Deadband in WC	inWC	inWC		
S192	Static Pressure Deadband Pa	2 - 250 Pa	5 Pa	Sets the static pressure deadband.	
	SP Pause Time at				
S193	Deadband minimum	0 (Disabled) - 180 sec	30 sec	Sets the minimum and maximum pause times when the static pressure crosses into the deadband border. The fan speed will stop increasing or decreasing based	
3193	SP Pause time at Deadband maximum	2 - 180 sec	60 sec%	on the time set in these parameters.	
S194	SP Pulse Time inside Deadband	2 - 15 sec	3 sec	Sets the pulse time that the speed filter will be performed to the fan analog output.	
	Static Pressure	0.010 - 1.003	0.020		
C10F	Prop Band inWC	inWC	inWC	Sets the proportional band for which the fan speed modulation output calculation is based upon in relation to the difference between the proportion and the SP.	
S195	Static Pressure Prop Band Pa	2 - 250 Pa	5 Pa	is based upon in relation to the difference between the pressure reading the SP Setpoint.	
S196	SP During Dehum	Disabled Enabled	Disabled	Sets the use of static pressure control if dehumidification becomes active. It set to Disabled then the static pressure routines will become inactive and the fan will be allowed to ramp to the dehumidification speed set in Fan Speed Dehum/No Power. If set to Enabled, then the static pressure routines shall remain active during the call for dehumidification.	
S197	Static Pressure Teamwork Mode	Average Minimum	Average	There are modes available for static pressure teamwork functionality: Average and Minimum. When selecting Average Mode, the average of the lowest static pressure sensor readings in the system will be average to generate a shared static pressure value for all units in the team. The number of static pressure sensors to be averaged is set in line S198 SP Sensors in Avg for TW. When this line is set to a value lower than the number of units in the team, the lowest static pressure	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
				readings will be averaged.	
S198	SP Sensors in Avg for TW	1-32	2	Sets the number of sensors used when averaging sensors in the teamwork.	
\$199	Operation on Sensor Failure	SP Off Freeze Speed	SP Off	This parameter determines what action to take if the static pressure sensor fails (non-teamwork). If SP OFF is selected, then the control will use S146 Fan Control Sensor to control the fan when the sensor is lost. If "Freeze Speed" is selected, then the control will keep the fan speed in its last known position. Situations that need to override the fan speed such as Freeze Protection can still change the fan speed.	
S1A1	Static Pressure Upper Range inWC	0.010 - 1.003 inWC	0.030 inWC	The control calculates the Upper Range by using S191 SP Setpoint and S192 SP	
31/11	Static Pressure Upper Range Pa	2.5 - 250.0 Pa	7.5 Pa	Deadband, the results on lines show both values, inWC and Pa.	
S1A2	Static Pressure Lower Range inWC	0.000 - 0.993 inWC	0.010 inWC	The control calculates the Lower Range by using S191 SP Setpoint and S192 SP	
017.2	Static Pressure Lower Range Pa	0.0 - 247.5 Pa	2.5 Pa	Deadband, the results on lines show both values, inWC and Pa.	
S1A4	Enable Static Pressure Control Override	None Remote Sensor Return Sensor	None		
S1A5	SP Requested Speed up to	41 - 104°F 5.0 - 40.0°C	86°F 30.0°C		
S1A6	STD Speed at	41 - 104°F 5.0 - 40.0°C	95°F 35.0°C		
S1A7	Override Integration Time	0.0 - 15.0 min	0.0 min		
S1A8	Control Slew Rate Filter	0.50 - 99.99 %/s	1.00%/s		
S1A9	Current Override Temperature	°F °C	invalid		
S1B1	Current Override Value	0 - 100%	0%		
\$189	Create SuperSaver Signal	0 - No 1 - Local 2 - U2U Group AVG 3 - U2U Group MAX 4 - U2U Group MIN	0 (No)		

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
S1C1	Deadband Low Value	5 - 95%	20%		
S1C2	Deadband High Value	10 - 100%	90%		
S1C3	Update SuperSaver Signal every	30 - 300 sec	120 sec		
S1C4	Update SuperSaver Signal by	1 - 10%	1%		
S1C5	SuperSaver Max Limit	0 - 100%	100%		
S1C6	Current SuperSaver Request	0 - 100%	0%		
	Current SuperSaver Signal	0 - 100%	0%		
S1C7	U2U Aggregated Signal	0 - 100%	0%		
XDU.006	Calibration Leaving Air Temperature	+/-18°F	0°F	Calibrate supply air leaving temperature sensor reading.	
XDU.008	Calibration Entering Fluid Temperature	+/-18°F	0°F	Calibrate entering fluid temperature sensor reading.	
XDU.007	Calibration Leaving Fluid Temperature	+/-18°F	0°F	Calibrate Leaving Fluid Temperature sensor reading.	
XDU.009	Fluid Flow Rate @ Full Scale (20mA)	10 - 1000 l/m	115 l/m	Fluid flow rate at full scale (20mA).	
XDU.010	Fluid Flow Rate Setpoint	5.0 - 1000.0 l/m	50.0 l/m	Display readout showing current fluid flow rate.	
XDU.011	Fluid Pump Initial Speed	30 - 100%	50%	Fluid pump initial speed percentage.	
XDU.012	Fluid Flow Proportional Band	1.0 - 1000 l/m	20.0 l/m	Fluid flow proportional band.	
XDU.013	Fluid Flow Deadband	0.0 - 100.0 l/m	10.0 l/m	Fluid flow deadband.	
XDU.014	Fluid Flow Integration Time	0 - 300 sec	60 sec	Fluid flow integration time.	
XDU.018	Pump Transition Duration	0 - 30 sec	15 sec	Overlap timer for when pumps are rotating from one another.	
XDU.021	Pump Sequence	0 - Auto 1 - Pump 1	(0) Auto	Specifies which is the lead pump. If configured for auto, pumps will rotate for equal run time purposes based off a set schedule.	

Table B.2 Service Menu Setpoints by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
		2 - Pump 2		
XDU.027	Pump Rotation Frequency	0 - 30 days	7 days	Allows end user to define how often pumps should rotate.
XDU.035	Flow Switch Time Delay	1 - 9999 sec	20 sec	
XDU.052	Minimum Fluid Flow Volume	1.0 - 1000.0 l/m	5.0 l/m	Allows end user to specify minimum fluid flow.
XDU.053	Perform Pump Rotation	0 - No 1 - Yes	(0) No	Allows end user to force a pump rotation.

B.3 Line IDs for Alarm Setting Parameters

Table B.3 User Menu Alarm Settings by Line ID

Line ID	Parameter Name	Range	Default Setting	Description
U202	Return Sensor Alarms	Disabled Enabled	Enables or disables the return sensor alarms. When enabled, the ret temperature and humidity values will be compared to a high and low setting.	
U203	High Return Temperature	34 - 210°F 1.0 - 99.0°C	100°F	Allows a user to adjust the point at which the actual return temperature activates a High Temperature Alarm.
U204	Low Return Temperature	34 - 210°F 1.0 - 99.0°C	65 °F	Allows a user to adjust the point at which the actual return temperature activates the Low Temperature Alarm.
U205	High Return Humidity	1.0 - 99.0%	65.0%	Allows a user to adjust the point at which the actual return humidity activates the High Humidity Alarm.
U206	Low Return Humidity	1.0 - 99.0%	35.0% Allows a user to adjust the point at which the actual return humidity activates the Low Humidity Alarm.	
U207	Sensor A Alarms	Disabled Enabled	Disabled Enables or disables the alarms for reference Sensor A. When enabled, the Sensor A temperature and humidity values will be compared to a high a low setting.	
U208	High Temperature Sensor A	34 - 210°F 1.0 - 99.0°C	90°F Allows a user to adjust the point at which the actual Sensor A tempera activates a High Temperature Alarm.	
U209	Low Temperature Sensor A	34 - 210°F 1.0 - 99.0°C	55°F	Allows a user to adjust the point at which the actual Sensor A temperature activates a Low Temperature Alarm.
U210	High Humidity Sensor A	1.0 - 99.0%	70.0% Allows a user to adjust the point at which the actual Sensor A humidity activates a High Humidity Alarm.	
U211	Low Humidity Sensor	1.0 - 99.0%	30.0%	Allows a user to adjust the point at which the actual Sensor A humidity activates a Low Humidity Alarm.

Table B.3 User Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description		
U213	Supply Sensor Alarms	Disabled Enabled	Disabled	Enables or disables the supply sensor alarms. When enabled, the supply temperature value will be compared to a high and low setting.		
U214	High Supply Temperature	34 - 210°F 1.0 - 99.0°C	75 °F Sets the temperature at which the High Supply Temperature Alarm is activated.			
U215	Low Supply Temperature	34 - 210°F 1.0 - 99.0°C	50°F	Sets the temperature at which the Low Supply Temperature Alarm is activated.		
U219	Remote Sensor Alarms	0 - Disabled 1 - Com Set 2 - Sep Set	Disabled	Enables or disables the remote sensor alarms. When enabled, the remote temperature values will be compared to a high and low setting.		
U220	High Remote Temperature	34 - 210°F 1.0 - 99.0°C	90°F	Enables or disables remote sensor temperature alarms. When enabled, the high and low remote temperature alarm will allow a user to adjust the point at which the actual remote temperature activates a High or Low		
0220	Low Remote Temperature	34 - 210°F 1.0 - 99.0°C	55°F	temperature alarm. This parameter is used when common alarm points will be shared by all sensors. Otherwise, the remote sensors can be set individually.		
U224-	High Remote 01-10	34 - 210°F 1.0 - 99.0°C	90°F	Sets the high and low remote temperature sensor alarm points individually for each sensor when the parameter separate thresholds is		
U233	Low Remote 01-10	34 - 210°F 1.0 - 99.0°C	55°F	set to disabled.		
U235	Static Pressure Messages	Disabled Enabled	Disabled	Enables or disables static pressure messages.		
U236	High Static Pressure (inWC)	0.010 - 1.405 inWC	1.284 inWC	Sets the pressure at which the High Static Pressure Alarm is activated		
0200	High Static Pressure (Pa)	2 - 350 Pa	320 Pa	(inWC, Pa)		
U237	Low Static Pressure (inWC)	0.000 - 1.395 nWC	0.000 inWC	Sets the pressure at which the Low Static Pressure Alarm is activated		
0207	Low Static Pressure (Pa)	0 - 348 Pa	0 Pa	(inWC, Pa)		
U238	SP Messages During Unit Off	No Yes	No	Enables or disables Static Pressure messages when the unit is OFF		
U239	SP Messages on Fan Adjust	No Yes	No	Enables or disables the static pressure messages when the fan as been adjusted due to special events. These events include an adjustment for heating, humidification, dehumidification, motor overload, EC fan fault, or loss of airflow.		
U240	SP Transducer High Range (inWC)	0.000 - 1.405 inWC	1.284 inWC	Sets the pressure range at which the High Static Pressure Out of Range alarm is activated.		

Table B.3 User Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	SP Transducer High Range (Pa)	0 - 350 Pa	320 Pa	
U241	SP Transducer Low Range (inWC)	0.000 - 1.395 inWC	0.000 inWC	Sets the pressure range at which the Low Static Pressure Out of Range alarm is activated.
	SP Transducer Low Range (Pa)	0 - 348 Pa	0 Pa	

Table B.4 Service Menu Alarm Settings by Line ID

Line ID	Parameter Name	Range	Default Setting	Description
	Return Sensor Alarms Enable	Disabled Enabled	Enabled	Enables or disables the return
S202	Return Sensor Alarms Init Delay	10 - 9999 sec	90 sec	temperature and humidity sensor alarms.
S203	High Return Temperature Alarm	34 - 210°F 1.0 - 99.0°C	100°F	Sets the temperature threshold for the High/Low Return
	Low Return Temperature Alarm	34 - 210°F 1.0 - 99.0°C	65°F	Temperature alarms.
S204	High Return Humidity Alarm	1.0 - 99.0%	0.65	Sets the humidity threshold for the High/Low Return Temperature alarms.
0201	Low Returm Humidity Alarm	1.0 - 99.0%	0.35	
S205	Sensor A Alarms Enable	Disabled Enabled	Disabled	Enables or disables the alarms associated with Sensor A and
	Sensor A Alarms Init Delay	10 - 9999 sec	90 sec	sets the time delay before the alarm is annunciated.
S206	Sensor A Low Temperature Alarm	34 - 210°F 1.0 - 99.0°C	55°F	Sets the temperature threshold when Sensor A High/Low
3200	Sensor A High Temperature Alarm	34 - 210°F 1.0 - 99.0°C	90°F	Temperature alarm will occur.
S207	Sensor A Low Humidity Alarm	1.0 - 99.0%	30.0%	Sets the temperature threshold when Sensor A High/Low
3207	Sensor A High Humidity Alarm	1.0 - 99.0%	70.0%	Humidity alarm will occur.
S208	Warning Activates Alarm Relay	No Yes	Yes	When set to Yes, a Warning event type will activate the Alarm Relay, in addition to an Alarm event type.

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
S209	K11 (WA Relay) Active On	0 - Dehum 1 - Warning 2 - Emergency Pwr 3 - Free cooling 4 - FC Start	Warning	The Warning Relay (WA Relay) can be activated for different purposes; during a Call of Dehumidification, during a 'Warning' event- type, when unit is on Emergency Power and a Customer Input Alarm is configured for Emergency Pwr during free cooling or during free cooling (FC) Start.
S210	K11(WA Relay) and AL Relay	Direct Reverse	Direct	Determines whether the K11 (WA Relay) is Direct or Reverse acting.
	Water Alarm Shuts Down Unit	No Yes	No	The controller can be configured to shut the following down during an active Water Alarm:
S211	Water Alarm Hum Fill Down	No Yes	No	Shutdown the entire unit Shutdown humidification operation
S21A	Loss of Flow Compressor Timer	0 - 180 sec	0 sec	Allows setting a maximum pump down time during a loss of flow condition to prevent causing a high pressure alarm due to pump down with no water/glycol flow to the condenser. Hidden unless pump down is enabled, Applies only to water/glycol cooled systems.
S21B	Loss of Flow Threshold	0 - 100%	0.1	Sets the threshold for call for cooling loss of flow.
S213	Supply Sensor Alarms Enable	Disabled Enabled	Disabled	Enables or disables the supply sensor alarms. If the unit is not equipped with a supply temperature sensor, then this
3210	Supply Sensor Alarms Init Delay	10 - 9999 sec	90 sec	parameter will show Disabled. A user may also select the time delay before the alarm will become active.
S214	High Supply Temperature	34 - 210°F 1.0 - 99.0°C	75°F	Sets the high and low supply temperature threshold that the
	Low Supply Temperature	34 - 210°F 1.0 - 99.0°C	50°F	alarms will be triggered at.
S215	Dew Point Alarms Enable	Disabled Enabled	Disabled	Enables or disables the Return Air Dew Point alarm. Dew point alarms can be enabled with any

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
				humidity control type. Dew point alarms may be used with or without humidification or
	Dew Point Alarms Init Delay	10 - 9999 sec	90 sec	dehumidification options selected. A user may adjust the time delay before the alarm is activated.
S216	High Dew Point	34 - 210°F 1.0 - 99.0°C	59°F	Sets the high/low dew point
	Low Dew Point	34 - 210°F 1.0 - 99.0°C	39°F	threshold.
S217	Sensor A Dew Point Alarms Enable	Disabled Enabled	Disabled	Enables or disables the optional Sensor A Dew Point alarm. Dew point alarms can be enabled with any humidity control type. Dew point alarms may be used with or
3217	Sensor A Dew Point Alarms Init Delay	10 - 9999 sec	90 sec	without humidification or dehumidification options selected. A user may adjust the time delay before the alarm is activated.
S218	High Dew Point Sensor A	34 - 210°F 1.0 - 99.0°C	62°F	Sets the high/low Sensor A dew
3210	Low Dew Point Sensor A	34 - 210°F 1.0 - 99.0°C	36°F	point thresholds.
S219	Remote Sensor Alarms Enable	0 - Disabled 1 - Com Set 2 - Sep Set	Disabled	Disable prevents remote temperature sensor alarms from occurring. Com set (common settings) allows remote alarm activation based on a common alarm setting. Sep set (separate
	Remote Sensor Alarms Init Delay	10 - 9999 sec	180 sec	settings) allows the user to program unique temperature alarm settings. A user may adjust the time delay before the alarm is activated.
S220	High Remote Temperature	34 - 210°F 1.0 - 99.0°C	90°F	Sets the high/low Remote
	Low Remote Temperature	34 - 210°F 1.0 - 99.0°C	55°F	Sensor alarm thresholds.
S222	EEV Alarmboard	0 - NO 1 - NC	1(NC)	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Operation on Sensor Failure	0 - Cooling 1 - Shutdown	0 (Cooling)	Selects function to occur if the
S22A	Operation on Sensor Failure Cooling Mode	0 - Full 1 - Hold	O (Full)	temperature control sensor fails: Full - Full, CFC Hold - hold last CFC.
S224 - S233, S23A,	Customer Input 1 - 11	0 - Smoke 1 - Water Alarm 2 - C PMP Alarm 3 - Flow Alarm 4 - Stdby G Pump 5 - Stdby Unit 6 - C-Input 1 7 - C-Input 2 8 - C-Input 3 9 - C-Input 4 10 - Rht Lockout 11 - Hum Lockout 12 - Rht+Hum Lock 13 - Comp Lockout 14 - Call Service 15 - High Temp 16 - Air Loss 17 - FC Lockout 18 - Heater Alarm 19 - Flow AL SD 20 - Flow AL LC	1 (Water Alarm) for inputs 1-4 38 (Not Used) for inputs 5-11	Selects the device and operation of the customer inputs. Each event reflects a different alarm scenario and possible action to the unit. A user may select whether the customer input is normally open or normally closed. If the parameter is configured for Factory STD, then it indicates that this input is factory configured and is not configurable in the field.
S224 - S233, S23A, (Cont'd)	Customer Input 1 - 11 (Cont'd)	21- Comp Lock PD 22 - Enable FC 23 - HTRJ VFD 24 - HTRJ SPD 25 - Fire Alarm 26 - 2nd Setpoint 27 - Emergency Pwr 28 - LSI 29 - Cond 1 Fail 30 - Cond 2 Fail 31 - D-Scroll Red 32 - Swap Valve 33 - EC Fan Fault 34 - Eco Airflow 35 - Damper Switch 36 - Power A 37 - Power B 38 - Not Used 39 - Flow AL LFC 40 - Hand Mode 41 - Fan Overrd. 42 - Cool Overrd	1 (Water Alarm) for inputs 1-4 38 (Not Used) for inputs 5-11	Selects the device and operation of the customer inputs. Each event reflects a different alarm scenario and possible action to the unit. A user may select whether the customer input is normally open or normally closed. If the parameter is configured for Factory STD, then it indicates that this input is factory configured and is not configurable in the field.

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
S224 - S233, S23A, (Cont'd)	Customer Input Active Open/Closed	Closed Open	Closed	A user may select if the customer input is active when contacts are open or closed.
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S236	Event Enabled	Disabled Enabled	Enabled	Main fan overload.
	Event: MAIN FAN OVERLOAD	MESSAGE WARNING ALARM	ALARM	
	Initial Loss of Airflow Delay	10 - 600 sec	30 sec	
S237	Event Delay Time (sec)	10 - 9999 sec	30 sec	Loss of airflow.
3237	Event Enabled	Disabled Enabled	Enabled	LUSS OF AIT HOW.
	Event: LOSS OF AIRFLOW	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S238	Event Enabled	Disabled Enabled	Enabled	Clogged filters.
	Event: CLOGGED FILTERS	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	High room temperature.
S239	Event Enabled	Disabled Enabled	Enabled	
	Event: HIGH ROOM TEMP	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S240	Event Enabled	Disabled Enabled	Enabled	Low room temperature.
	Event: LOW ROOM TEMP	MESSAGE WARNING ALARM	WARNING	Low room tomporature.
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S241	Event Enabled	Disabled Enabled	Enabled	High room humidity,
	Event: HIGH ROOM HUM	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S242	Event Enabled	Disabled Enabled	Enabled	Low room humidity.
	Event: LOW ROOM HUM	MESSAGE WARNING ALARM	WARNING	Low room namaley.
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S243	Event Enabled	Disabled Enabled	Disabled	High temperature sensor A.
	Event: HIGH TEMP SENSOR A	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S244	Event Enabled	Disabled Enabled	Disabled	Low temperature sensor A.
	Event: LOW TEMP SENSOR A	MESSAGE WARNING ALARM	WARNING	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S245	Event Enabled	Disabled Enabled	Disabled	High humidity sensor A.
	Event: HIGH HUM SENSOR A	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S246	Event Enabled	Disabled Enabled	Disabled	Low humidity sensor A.
	Event: LOW HUM SENSOR A	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	-	-	
S249	Event Enabled	Disabled Enabled	Enabled	Compressor 1 overload.
	Event: COMP 1 OVERLOAD	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S250	Event Enabled	Disabled Enabled	Enabled	Compressor 2 overload.
	Event: COMP 2 OVERLOAD	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	Circuit 1 high pressure.
S251	Event Enabled	Disabled Enabled	Enabled	
	Event: CIRCUIT 1 HIGH PRESS	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	Circuit 2 high pressure.
S252	Event Enabled	Disabled Enabled	Enabled	
	Event: CIRCUIT 2 HIGH PRESS	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S253	Event Enabled	Disabled Enabled	Enabled	Circuit 1 low pressure
	Event: CIRCUIT 1 LOW PRESS	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S254	Event Enabled	Disabled Enabled	Enabled	Circuit 2 low pressure.
	Event: CIRCUIT 2 LOW PRESS	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S255	Event Enabled	Disabled Enabled	Enabled	Circuit 1 pumpdown failure.
	Event: CIRCUIT 1 PUMPD. FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S256	Event Enabled	Disabled Enabled	Enabled	Circuit 2 pumpdown failure.
	Event: CIRCUIT 2 PUMPD. FAIL	MESSAGE WARNING ALARM	ALARM	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	-	-	Digital scroll 1 high temperature.
S257	Event Enabled	Disabled Enabled	Enabled	
	Event: DIG SCROLL1 HIGH TEMP	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	-	-	
S258	Event Enabled	Disabled Enabled	Enabled	Digital scroll 2 high temperature.
	Event: DIG SCROLL2 HIGH TEMP	MESSAGE WARNING ALARM	ALARM	
	Event Reset Type	0 - AR 1 - MR	0 (AR)	
S259	Event Delay Time (sec)	10 - 9999 sec	10 sec	Electric heat high. Temp AR -
	Event Enabled	Disabled Enabled	Enabled	Auto Reset, MR - Manual Reset.
	Event: EL HEAT HIGH TEMP	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S262	Event Enabled	Disabled Enabled	Enabled	Working hours exceeded.
	Event: UNIT HRS EXCEEDED	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	Smoke detected.
S263	Event Enabled	Disabled Enabled	Enabled	
	Event: SMOKE DETECTED	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S264	Event Enabled	Disabled Enabled	Enabled	Water under floor.
	Event: WATER UNDER FLOOR	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S265	Event Enabled	Disabled Enabled	Enabled	Cond pump high water.
	Event: COND PUMP-HIGH WATER	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	0 = AR 1 = MR	0 (AR)	
S266	Event Enabled	10 - 9999 sec	10 sec	Loss of flow AR , Auto Reset MR - manual reset.
	Event Number 107 Enabled	Disabled Enabled	Enabled	manda 1636t.
	Event: LOSS OF FLOW	MESSAGE WARNING ALARM	ALARM	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S267	Event Enabled	Disabled Enabled	Enabled	Standby glycol pump ON.
	Event: STANDBY GLYCOL PUMP ON	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S268	Event Enabled	Disabled Enabled	Enabled	Standby unit ON.
	Event: STANDBY UNIT ON	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S269	Event Enabled	Disabled Enabled	Enabled	Humidifier problem.
	Event: HUMIDIFIER PROBLEM	MESSAGE WARNING ALARM	ALARM	1
	Event Delay Time (sec)	10 - 9999 sec	300 sec	
S270	Event Enabled	Disabled Enabled	Enabled	No connection with unit 1.
	Event: NO CONNECTION W/ UNIT1	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	-	-	Unit X disconnected.
S271	Event Enabled	Disabled Enabled	Enabled	
	Event: UNIT 01 DISCONNECTED	MESSAGE WARNING ALARM	WARNING	
	Event: Loss of power Autoreset Delay	60 - 3600 sec	300 sec	
S272	Event Enabled	Disabled Enabled	Enabled	Loss of power.
	Event: LOSS OF POWER	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S275	Event Enabled	Disabled Enabled	Enabled	Customer Input 1
	Event: CUSTOMER INPUT 1	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S276	Event Enabled	Disabled Enabled	Enabled	Customer Input 2
	Event: CUSTOMER INPUT 2	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S277	Event Enabled	Disabled Enabled	Enabled	Customer Input 3
	Event: CUSTOMER INPUT 3	MESSAGE WARNING ALARM	ALARM	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S278	Event Enabled	Disabled Enabled	Enabled	Customer Input 4
	Event: CUSTOMER INPUT 4	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S279	Event Enabled	Disabled Enabled	Enabled	Call service.
	Event: CALL SERVICE	MESSAGE WARNING ALARM	ALARM	
S280	Event Delay Time (sec)	10 - 9999 sec	10 sec	High temperature.
3200	Event Enabled	Disabled Enabled	Enabled	nigir temperature.
	Event: HIGH TEMPERATURE	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S281	Event Enabled	Disabled Enabled	Disabled	Loss of air blower 1.
	Event: LOSS OF AIR BLOWER 1	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	Reheat lockout.
S282	Event Enabled	Disabled Enabled	Enabled	
	Event: REHEAT LOCKOUT	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S283	Event Enabled	Disabled Enabled	Enabled	Humidifier lockout.
	Event: HUMIDIFIER LOCKOUT	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S284	Event Enabled	Disabled Enabled	Enabled	FC lockout.
	Event: FC LOCKOUT	MESSAGE WARNING ALARM	WARNING	
S285	Compressor Lockout Option	0 - ALL 1 - 1(A) 2 - 2(A) 3 - 1B 4 - 2B 5 - 1A + 2A 6 - 1B + 2B 7 - 1A + 1B 8 - 2A + 2B	O(ALL)	Compressor(s) lockout.
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
	Event Enabed	Disabled Enabled	Enabled	
	Event: COMPRESSOR (S) LOCKOUT	MESSAGE WARNING ALARM	WARNING	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
S27B	Edit Cust Input 1	(20 digits) 0-9 A-Z a-z &*/.+:@\	CUSTOMER INPUT 1	Edit Customer Input 1 text.
S27C	Edit Cust Input 2	(20 digits) 0-9 A-Z a-z &*/.+:@\	CUSTOMER INPUT 2	Edit Customer Input 2 text.
S27D	Edit Cust Input 3	(20 digits) 0-9 A-Z a-z &*/.+:@\	CUSTOMER INPUT 3	Edit Customer Input 3 text.
S27E	Edit Cust Input 4	(20 digits) 0-9 A-Z a-z &*/.+:@\	CUSTOMER INPUT 4	Edit Customer Input 4 text.
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S288	Event Enabled	Disabled Enabled	Enabled	Compressor 1 short cycle.
	Event: COMP 1 SHORT CYCLE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S289	Event Enabled	Disabled Enabled	Enabled	Compressor 2 short cycle.
	Event: COMP 2 SHORT CYCLE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S290	Event Enabled	Disabled Enabled	Enabled	Emergency power.
	Event: EMERGENCY POWER	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S291	Event Enabled	Disabled Enabled	Enabled	Condenser 1 failure.
	Event: CONDENSER 1 FAILURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S292	Event Enabled	Disabled Enabled	Enabled	Condenser 2 failure.
	Event: CONDENSER 2 FAILURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	15 sec	
S293	Event Enabled	Disabled Enabled	Enabled	EC fan fault.
	Event: EC FAN FAULT	MESSAGE WARNING ALARM	ALARM	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S294	Event Enabled	Disabled Enabled	Enabled	High supply temperature.
	Event: HI SUPPLY TEMPERATURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S295	Event Enabled	Disabled Enabled	Enabled	Low supply temperature.
	Event: LO SUPPLY TEMPERATURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S296	Event Enabled	Disabled Enabled	Enabled	Reduced eco airflow.
	Event: REDUCED ECO AIRFLOW	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S297	Event Enabled	Disabled Enabled	Enabled	Eco high temperature override.
	Event: ECO HI TEMP OVERRIDE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	Temperature control sensor fail.
S298	Event Enabled	Disabled Enabled	Enabled	
	Event: TEMP CTRL SENSOR FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A2	Event Enabled	Disabled Enabled	Enabled	High dew point
	Event: HIGH DEW POINT	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A3	Event Enabled	Disabled Enabled	Enabled	Low dew point
	Event: LOW DEW POINT	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A4	Event Enabled	Disabled Enabled	Enabled	High dew point Sensor A.
	Event: HI DEW POINT SENSOR A	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A5	Event Enabled	Disabled Enabled	Enabled	Low dew point Sensor A.
	Event: LOW DEW POINT SENSOR A	MESSAGE WARNING ALARM	WARNING	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A6	Event Enabled	Disabled Enabled	Enabled	High remote sensor.
	-	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	
S2A7	Event Enabled	Disabled Enabled	Enabled	Low remote sensor.
	-	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S2A8	Event Enabled	Disabled Enabled	Enabled	Power A failure.
	Event: POWER 'A' FAILURE	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S2A9	Event Enabled	Disabled Enabled	Enabled	Power B failure.
	Event: POWER 'B' FAILURE	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	Airflow sensor failure.
S2B1	Event Enabled	Disabled Enabled	Enabled	
	Event: AIRFLOW SENSOR FAIL	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	30 sec	Humidity control sensor failure.
S2B2	Event Enabled	Disabled Enabled	Enabled	
	Event: HUM CTRL SENSOR FAILURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	
S2B6	Event Enabled	Disabled Enabled	Disabled	Low static pressure.
	Event: LOW STATIC PRESSURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	
S2B7	Event Enabled	Disabled Enabled	Disabled	High static pressure.
	Event: HIGH STATIC PRESSURE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	150 sec	
S2B8	Event Enabled	Disabled Enabled	Disabled	Static pressure 1 out of tange.
	Event: STATPR 1 OUT OF RANGE	MESSAGE WARNING ALARM	WARNING	procedure i out of tango.

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	10 - 9999 sec	150 sec	
S2B9	Event Enabled	Disabled Enabled	Disabled	Static pressure 2 out of range.
	Event: STATPR 2 OUT OF RANGE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	150 sec	
S2C1	Event Enabled	Disabled Enabled	Disabled	Static pressure 3 out of range.
	Event: STATPR 3 OUT OF RANGE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	150 sec	
S2C2	Event Enabled	Disabled Enabled	Disabled	Static pressure 4 out of range.
	Event: STATPR 4 OUT OF RANGE	MESSAGE WARNING ALARM	WARNING	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	Static pressure 1 sensor failure.
S2C3	Event Enabled	Disabled Enabled	Disabled	
	Event: STAT PR 1 SENS FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	Static pressure 2 sensor failure.
S2C4	Event Enabled	Disabled Enabled	Disabled	
	Event: STAT PR 2 SENS FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	
S2C5	Event Enabled	Disabled Enabled	Disabled	Static pressure 3 sensor failure.
	Event: STAT PRES 3 SENS FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	120 sec	
S2C6	Event Enabled	Disabled Enabled	Disabled	Static pressure 4 sensor failure.
	Event: STAT PRES 4 SENS FAIL	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S2D1	Event Enabled	Disabled Enabled	Enabled	Compressor 1A overload.
	Event: COMP 1A OVERLOAD	MESSAGE WARNING ALARM	ALARM	
	Event Delay Time (sec)	10 - 9999 sec	10 sec	
S2D2	Event Enabled	Disabled Enabled	Enabled	Compressor 1B overload.
	Event: COMP 1B OVERLOAD	MESSAGE WARNING ALARM	ALARM	

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D3	Event Enabled	Disabled Enabled	Enabled	Compressor 2A overload.	
	Event: COMP 2A OVERLOAD	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D4	Event Enabled	Disabled Enabled	Enabled	Compressor 2B overload.	
	Event: COMP 2B OVERLOAD	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D5	Event Enabled	Disabled Enabled	Enabled	Compressor 1A high temperature.	
	Event: COMP 1A HIGH TEMP	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D6	Event Enabled	Disabled Enabled	Enabled	Compressor 1B high temperature.	
	Event: COMP 1B HIGH TEMP	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D7	Event Enabled Disabled Enabled Er		Enabled	Compressor 2A high temperature.	
	Event: COMP 2A HIGH TEMP	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec	Compressor 2B high temperature.	
S2D8	Event Enabled	Disabled Enabled	Enabled		
	Event: COMP 2B HIGH TEMP	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2D9	Event Enabled	Disabled Enabled	Enabled	Compressor 1A short cycle.	
	Event: COMP 1A SHORT CYCLE	MESSAGE WARNING ALARM	WARNING		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2E1	Event Enabled	Disabled Enabled	Enabled	Compressor 1B short cycle.	
	Event: COMP 1B SHORT CYCLE	MESSAGE WARNING ALARM	WARNING		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2E2	Event Enabled	Disabled Enabled	Enabled	Compressor 2A short cycle.	
	Event: COMP 2A SHORT CYCLE	MESSAGE WARNING ALARM	WARNING		

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
S2E5	Event Delay Time (sec)	10 - 9999 sec	10 sec		
	Event Enabled	Disabled Enabled	Enabled	Compressor 2B short cycle.	
	Event: COMP 2B SHORT CYCLE	I MESSAGE WARNING ALARM I WARN			
	Event Delay Time (sec) 10 - 9999 sec		60 sec		
S2E6	Event Enabled Disabled Enabled E		Enabled	GCB ambient temperature	
	Event: GCD AMBIENT TEMP DIFF	nt: GCD AMBIENT TEMP MESSAGE WARNING ALARM WARNING			
	-	-	-		
S2E7	Event Enabled	Disabled Enabled	Enabled	C1 freeze protection.	
	Event: C1 FREEZE PROTECTION	MESSAGE WARNING ALARM	ALARM		
	-	-	-		
S2E8	Event Enabled	Disabled Enabled	Enabled	C2 freeze protection.	
	Event: C2 FREEZE PROTECTION	MESSAGE WARNING ALARM	ALARM		
	Event Delay Time (sec) 10 - 9999 sec 10 sec		10 sec	Damper failure.	
S2E9	Event Enabled Disabled Enabled E		Enabled		
	Event: DAMPER FAILURE	MESSAGE WARNING ALARM	ALARM		
			-		
SF2F	Event Enabled	Disabled Enabled	Enabled	BMS disconnected.	
	Event: BMS DISCONNECTED MESSAGE WARNING ALARM		WARNING		
	Phase Loss MB01 shuts unit down	0 - No 1 - Yes	1(Yes)		
S2F9	Event Delay Time (sec)	10 - 9999 sec	10 sec	Power 1 phase loss.	
	Event Enabled	Disabled Enabled	Enabled		
	Event: POWER 1 PHASE LOSS	MESSAGE WARNING ALARM	ALARM		
S2G1	Phase Loss MB02 shuts unit down	0 - No 1 - Yes	1(Yes)		
	Event Delay Time (sec) 10 - 9999 sec		10 sec	Power 2 phase loss.	
	Event Enabled Disabled Enabled		Enabled		
	Event: POWER 2 PHASE LOSS				
S2G2	Phase Loss MB03 shuts unit down	0 - No 1 - Yes	1(Yes)	Power 3 phase loss.	
	Event Delay Time (sec)	10 - 9999 sec	10 sec		

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
	Event Enabled	Disabled Enabled	Enabled		
	Event: POWER 3 PHASE LOSS	MESSAGE WARNING ALARM	ALARM		
	Phase Loss MB04 shuts unit down	0 - No 1 - Yes	1(Yes)		
S2G3	Event Delay Time (sec) 10 - 9999 sec		10 sec	Power 4 phase loss.	
	Event Enabled Disabled Enabled		Enabled		
	Event: POWER 4 PHASE LOSS	MESSAGE WARNING ALARM	ALARM		
	Phase Loss MB05 shuts unit down	0 - No 1 - Yes	1(Yes)		
	Event Delay Time (sec)	10 - 9999 sec	10 sec		
S2G4	Event Enabled	Disabled Enabled	Enabled	Power 5 phase loss.	
	Event: POWER 5 PHASE LOSS	MESSAGE WARNING ALARM	ALRM		
	Phase Loss MB06 shuts unit down	0 - No 1 - Yes	1(Yes)		
S2G5	Event Delay Time (sec) 10 - 9999 sec		10 sec	Power 6 phase loss.	
	Event Enabled	Disabled Enabled	Enabled		
	Event: POWER 6 PHASE LOSS MESSAGE WARNING ALARM A		ALARM		
	Event Delay Time (sec)	10 - 9999 sec	60 sec		
S2G6	Event Enabled	Disabled Enabled	Enabled	Flow sensor fail C1.	
	Event: FLOW SENSOR FAIL C1	MESSAGE WARNING ALARM	WARNING		
	Event Delay Time (sec)	10 - 9999 sec	60 sec		
S2G7	Event Enabled	Disabled Enabled	Enabled	Flow sensor fail C2.	
	Event: FLOW SENSOR FAIL C2	MESSAGE WARNING ALARM	WARNING		
	Event Delay Time (sec)	10 - 9999 sec	60 sec		
S2G8	Event Enabled	Disabled Enabled	Enabled	TSA sensor fail.	
	Event: TSA SENSOR FAIL	MESSAGE WARNING ALARM	ALARM		
617	Event Delay Time (sec)	1-9999 sec	10 sec		
	Event Enabled DisabledEnabled		Enabled	XDU pump inverter fail 1.	
	Event: PUMP INVERTER FAIL 1 MESSAGEWARNINGALARM A		ALARM		
	Event Delay Time (sec)	1-9999 sec	10 sec		
618	Event Enabled	DisabledEnabled	Enabled	XDU pump inverter fail 2.	
	Event: PUMP INVERTER FAIL 2	MESSAGEWARNINGALARM	ALARM		

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description	
619	Event Delay Time (sec)	1-9999 sec	10 sec		
	Event Enabled	DisabledEnabled	Enabled	XDU pump flow fail 1.	
	Event: PUMP FLOW FAIL 1	MESSAGEWARNINGALARM	ALARM		
	Event Delay Time (sec)	1-9999 sec	10 sec		
620	Event Enabled DisabledEnabled		Enabled	XDU Pump flow fail 2.	
	Event: PUMP FLOW FAIL 2 MESSAGEWARNINGALARM AL		ALARM		
	Event Delay Time (sec)	1-9999 sec	10 sec		
621	Event Enabled	DisabledEnabled	Enabled	XDU fluid flow check filter.	
	Event: CHECK WATER SYSTEM	MESSAGEWARNINGALARM	WARNING		
	Event Delay Time (sec)	1-9999 sec	10 sec		
622	Event Enabled	DisabledEnabled	Enabled	The current XDU supply fluid temperature is above the threshold.	
	Event: HIGH SUPPLY WATER TEMP	MESSAGEWARNINGALARM	WARNING		
	Event Delay Time (sec)	1-9999 sec	10 sec		
623	Event Enabled	ent Enabled DisabledEnabled		The current XDU return fluid temperature is above the threshold.	
	Event: HIGH RETURN WATER TEMP	WARNING			
	Event Delay Time (sec) 1 - 9999 sec		10 sec		
624	Event Enabled	DisabledEnabled	Enabled	XDU Pump operation with no	
	Event: PUMP OPERATION WITH NO FLOW	MESSAGEWARNINGALARM	ALARM	flow.	
	Event Delay Time (sec)	1-9999 sec	10 sec		
625	Event Enabled	DisabledEnabled	Enabled	XDU supply fluid sensor failure.	
	Event: SUPPLY FLUID SENSOR FAILURE MESSAGEWARNINGALARM		ALARM		
626	Event Delay Time (sec)	1-9999 sec	10 sec		
	Event: RETURN FLUID		Enabled	XDU return fluid sensor failure.	
			ALARM		
	Event Delay Time (sec)	1-9999 sec	10 sec	XDU fluid flow sensor failure.	
627	Event Enabled	DisabledEnabled	Enabled		
	Event: FLOW SENSOR FAILURE	MESSAGEWARNINGALARM	ALARM		

Table B.4 Service Menu Alarm Settings by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
	Event Delay Time (sec)	1-9999 sec	-	
628	Event Enabled DisabledEnabled			Current working hours of fluid pump 1 are above the threshold.
	Event: PUMP 1 HOURS EXCEEDED	MESSAGEWARNINGALARM	pump rare above the uneshold.	
	Event Delay Time (sec)	1-9999 sec	-	
629	Event Enabled	DisabledEnabled	Enabled	Current working hours of fluid pump 2 are above the threshold.
	Event: PUMP 2 HOURS EXCEEDED	MESSAGEWARNINGALARM	WARNING	

B.4 Line IDs for Cascade Operation Parameters

Table B.5 Service Menu Cascade Parameters by Line ID

Line ID	Parameter Name	Range	Default Setting	Description	
S515	Cascade Units	No Yes Cool/Heat Cooling Fan PI Fan Speed	No	User may select the method to which the next standby unit will stage ON. No: Disabled Yes: Enabled via TW Mode 1 Cool/Heat: Enabled via TW Mode 1 Cooling: Enabled via TW Mode 1 Fan Pl: Enabled via TW Mode 3 Fan Speed: Enabled via TW Mode 3	
S516	Cascaded Units Delay	0 - 30 min	10 min	Once a standby unit receives an ON command from the Master (U2U 1), the amount of time that must surpass prior to the standby unit staging ON	
S517	Cascaded Units Quick Start	0 - 30 min	2 min	This control delay time is used (shorter time than S516) after the Master (U2U 1) has restarted after a power cycle. The timer changes back to using S516 when the time of	
	Cascaded Units QS Delay	15 - 1800 sec	120 sec	power cycle is equal to S517 min/sec. NOTE: This setting is not required. If set to a value of 0, then S517 Cascade Units Quick Start is disabled.	
S518	Cascaded Units Control Delay	0 - 30 min	5 min	Once a standby unit has been cascaded on, the amount of time that must surpass before the normal unit control is used.	
S519	Cascaded Units OFF Delay	0 - 360 min	0 min	This timer starts to count down once a cascaded on system has received an off request from the master; the cascaded unit will stop after this timer and S520 have elapsed.	
S520	Cascaded Units Min Run	2 - 360 min	30 min	The minimum on time the cascaded system will run before staging off, once energized.	
S521	Start Next Unit at SYS Fan Speed	50 - 100%	100%	When the System (network) fan speed operates at or above S521, S516 timer is started. Once S516 has elapsed, the next single unit will energized. NOTE: Fan speed must be at or continuously above the value set in S521. The timer restarts any time the fan speed falls below the value set in S521.	

Table B.5 Service Menu Cascade Parameters by Line ID (continued)

Line ID	Parameter Name	Range	Default Setting	Description
S522	Max. Intermediate System Speed	50 - 100%	100%	Defines the value to which the System (network) fan speed may increase to when not all units in the network are in operation
S523	Stop Next Unit at SYS Fan Speed	20 - 70%	70%	when the current system (network) fan speed operates at or below S523, two timers must elapse before the cascaded on unit turns off; S519 and S520.
S524	Cascaded Units OFF Master Delay	0 - 360 min	1 min	In the event of the Virtual Master taking control; the new Master unit shall control the staging off of currently operating units for the amount of time set in S524. After S524 time has elapsed, S519 value is used.

Connect with Vertiv on Social Media

- https://www.facebook.com/vertiv/
- https://www.instagram.com/vertiv/
- https://www.linkedin.com/company/vertiv/
- https://www.x.com/Vertiv/

Vertiv.com | Vertiv Headquarters, 505 N. Cleveland Ave., Westerville, OH, 43082, USA

© 2025 Vertiv Group Corp. All rights reserved. Vertiv™ and the Vertiv logo are trademarks or registered trademarks of Vertiv Group Corp. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness here, Vertiv Group Corp. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions.