

WHITE PAPER DA VERTIV

Lições experimentais de um ciclo Rankine orgânico aplicado para recuperação de calor residual em um ambiente de data center

Este white paper contém os principais pontos de uma dissertação intitulada Power Usage Effectiveness Improvement of High-Performance Computing by use of Organic Rankine Cycle Waste Heat Recovery (Eficácia no Uso de Energia Melhorada em Computação de Alta Performance através do uso do Ciclo Ranking Orgânico para Recuperação de Calor Residual), por Russ Tipton

Autores:

Russell Tipton Gregory Kremer Muhammad Ali

Resumo

O Ciclo Rankine Orgânico (ORC) é um dos métodos preferidos para recuperar energia mecânica de calor residual de baixa qualidade. Um sistema de ORC replicando um rack de servidores de alta performance de computação de 30 kW e refrigeração líquida em uma aplicação de data center foi projetado, fabricado e testado para capturar o calor residual do servidor e converter uma porção em eletricidade enquanto transferindo o calor para o ar ambiente. O fluido de trabalho está em conformidade com os requisitos contemporâneos para saúde, segurança e meio ambiente (SSMA) e é uma mistura zeotrópica para melhorar a eficácia da troca de calor. A eficácia do uso da energia (PUE) a carga plena é de 1,02 comparada com a faixa de 1,6 a 2,2 em data centers de pequeno porte.[1] Implicações e limitações práticas para os componentes do sistema de ORC são avaliados.

Introdução

Um trabalho similar foi realizado em uma escala laboratorial^[2]. Em contrapartida este estudo:

- Utilizou um fluido de trabalho não tóxico com baixo GWP que melhorou a aceitação pela SSMA.
- Contabilizou as perdas parasitas da transferência térmica da fonte de calor e para o dissipador de calor.
- Assegurou-se de que os componentes do ORC tivessem aceite de confiabilidade para aplicação em data centers.
- Descobriu um limite diferencial mínimo entre a fonte de calor e o dissipador de calor para proporcionar uma operação estável do expansor scroll.

A crescente demanda por computação e um impulso em direção à sustentabilidade incentiva os esforços para recuperar e reutilizar o calor residual dos data centers. Um ORC pode ser usado para converter uma porção do calor residual recuperado dos data centers em sua trajetória para o ambiente externo^[3]. Com o calor residual de baixa qualidade, é importante minimizar as perdas de temperatura ao longo da trajetória de transferência térmica. Este estudo se concentra no calor residual capturado em servidores refrigerados a líquido com uma temperatura de saída de 58°C. Um rack totalmente ocupado produziria até 40 kW de calor residual^[4]. A cidade de Ashburn, no estado da Virgínia, EUA, é um hub de data centers^[5]. A temperatura ambiente externa em Ashburn varia entre -14°C a 35°C, com uma média de 14°C^[6]. O clima de Ashburn é temperado, típico dos centros populacionais onde dados são consumidos e em grande proximidade com grandes consumidores de informação – Washington, DC; Baltimore, MD e Filadélfia, PA. O ambiente da construção precisa estar em conformidade com os requisitos contemporâneos de SSMA. O desafio se torna avaliar a viabilidade de um sistema de recuperação de calor residual (WHR) ORC para refrigerar equipamentos de computação de alta performance (HPC) dados os requisitos de SSMA, a janela de operação dos equipamentos de HPC e as condições ambientais no site do data center.

Materiais e Métodos

O ponto de design para um sistema WHR ORC torna-se ~40 kW, T_H = 58 °C, e T_L = 14 °C. A faixa de temperatura do dissipador de calor é de -14 °C≤T_L≤35 °C. Requisitos específicos de SSMA são o potencial de destruição da camada de ozônio (ODP) = 0^[7], potencial de aquecimento global (GWP) <650, e padrão de segurança ASHRAE A1 ou A2L –não tóxico e não (ou pouco) inflamáve^[8].

Definição do Problema

Um diagrama temperatura-entropia de um ORC é mostrado na Fig. 1. Um ORC ideal consiste de:

(a) compressão isentrópica do líquido, estados 1 a 2s;

(b) aquecimento isobárico para o líquido saturado seguido pela evaporação isotérmica isobárica, estados 2s a 3;

(c) expansão isentrópica do vapor, estados 3 a 4s; e

(d) dessuperaquecimento isobárico seguido por condensação isotérmica, isobárica, estados 4s a 1

Como equipamentos e processos reais precisam ser usados, os pontos 2 e 4 resultam de uma compressão e expansão não isentrópica, respectivamente. Um esquema de alto nível de um sistema ORC é mostrado na Fig. 2. Transferência térmica e relações termodinâmicas podem ser derivadas destes valores.

Para o fluxo constante do fluido de trabalho de ORC, a primeira lei da termodinâmica, como um balanço macroscópico da energia, estados^[9]:

$$\dot{Q}$$
- \dot{W} = $\dot{m}(\Delta h + \Delta k_P + \Delta k_E)$ (1)

Trabalho consumido pela bomba:

$$\dot{W}_{p} = \dot{m}(h_{2} - h_{1}) = \dot{m}(h_{2s} - h_{1})/\eta_{p}$$
 (2)

Adição de calor residual ao fluido de trabalho no evaporador:

$$\dot{Q}_{ev} = \dot{m}(h_3 - h_2)$$
 (3)

Trabalho gerado pelo expansor:

$$\dot{W}_{ex}=\dot{m}(h_3-h_4)=\dot{m}(h_3-h_{4s})\eta_{ex}$$
 (4)

Calor rejeitado no condensador:

$$\dot{Q}_{c} = \dot{m}(h_{4} - h_{1})$$
 (5)

As equações da taxa de destruição de exergia são^[10]:

$$I_{p}=T_{0}\dot{m}(s_{2}-s_{1}) \qquad (6)$$

$$I_{ev}=T_{0}\dot{m}[(s_{3}-s_{2})-(h_{3}-h_{2})/T_{H}] \qquad (7)$$

$$I_{ex}=T_{0}\dot{m}(s_{4}-s_{3}) \qquad (8)$$

$$I_{c}=T_{0}\dot{m}[(s_{1}-s_{4})-(h_{1}-h_{4})/T_{L}] \qquad (9)$$

$$I_{tot}=I_{p}+I_{ev}+I_{ex}+I_{c}=$$

$$=T_{0}\dot{m}[-(h_{3}-h_{2})/T_{H}-(h_{1}-h_{4})/T_{L}] \qquad (10)$$

Os principais componentes do ORC a serem selecionados para o aparato de teste são:

- Fluido de trabalho
- Evaporador
- Condensador

- Fonte de calor
- Expansor

- Bomba de líquido
- Dissipador térmico

Fluido de Trabalho

O fluido de trabalho é selecionado para propriedades ótimas termodinâmicas e de transporte, estando ao mesmo tempo em conformidade com os requisitos contemporâneos de SSMA. A Tabela 1 lista as propriedades do fluido de trabalho para uma performance ótima do ORC^[11-13]. Um conjunto ideal de candidatos, mostrado na Tabela 2, foi determinando examinando-se os existentes na indústria de aquecimento, ventilação, condicionamento de ar e refrigeração (HVACR) em sua tentativa de estar em conformidade com os requisitos de SSMA. A fonte de calor é um fluxo de água morna e o dissipador térmico é um fluxo de ar ambiente, e ambos passarão por mudanças de temperatura durante o fluxo do calor. Misturas zeotrópicas mostram mudanças de temperatura durante o fluxo do calor dos processos de evaporação e condensação. O REFPROP versão 10^[14] é usado para determinar as propriedades termodinâmicas para essa análise. O fluido de trabalho do ORC resultante é uma mistura zeotrópica de R1233zd(E) e R1234ze(E) 20% para 80% por massa. Suas propriedades incluem uma eficiência de Carnot prevista de 50%, saída de potência nominal mais alta, ODP=0, GWP=5, e ASHRAE A2L.

Termodinâmica	ORC ICT		Funcional	ORC ICT
Baixo calor específico do líquido	Sim	-	Estabilidade química na temperatura máxima de operação	Sim
Alto calor latente	Sim		no ciclo	
Isentrópico ou fluidos secos	Sim		Não corrosivo e compatível com os materiais e óleo lubrificante do sistema	Sim
Baixos volumes específicos	Sim		Baixo potencial de destruição da camada de ozônio (ODP)	0
Pressões moderadas nos trocadores de calor	Sim		BBaixo potencial de aquecimento global (GWP)	<500
Ponto de congelamento abaixo da temperatura de operação mais baixa no ciclo	Sim		Pequena vida útil atmosférica (ALT)	Sim
	0.		Baixa Toxicidade	ASHRAE A
Ponto de ebulição normal abaixo da temperatura mais baixa de operação no ciclo	Sim		Flamabilidade baixa, se não for zero	ASHRAE 1 o 2L

Tabela 1. Propriedades de trabalho do fluido correspondente à aplicação ORC ICT

Fluido de Trabalho	Nome no REFPROP
R1234yf	R1234yf
R1234ze(E)	R1234ze(E)
R1233zd(E)	R1233zd(E)
R450A Molar	R134a/R1234ze; 0.447/0.553
R513A Molar	R1234yf/R134a; 0.533/0.467

Tabela 2. Candidatos a fluido de trabalho para analisar termodinamicamente e seu nome no REFPROP

Fonte de Calor

Para a fonte de calor, foram selecionados diversos aquecedores elétricos por imersão, bombas de água, filtros e tanques de expansão com saída total de potência de 45 kW usando-se uma fonte elétrica de 480-3-60. Um variac é usado para controlar a saída do calor residual.

Expansor

Para um ponto de design de 40 kW com 58C TH, 14C TL, e fluidos de trabalhos R1233zd(E) / R1234ze(E) com 20% / 80% por massa, a taxa de vazão mássica requerida é de 0,203 kg/s, com proporção da pressão, entrada para saída, de 2,27. A razão volumétrica resultante, entrada para saída, e a taxa de vazão volumétrica da entrada são 2,36 e 0,00474 m³/s respectivamente. É usada uma diferença de temperatura de 5K entre TL e a temperatura de condensação e entre TH e a temperatura de evaporação. Um expansor scroll semi-hermético Air Squared E22H038B-L-SH tem até 85% de eficiência volumétrica, razão volumétrica de 3,25, deslocamento de 73 cm³/rev e velocidade máxima de 2600 rpm, o que proporciona uma taxa de vazão volumétrica de entrada de 0,00316 m³/seg. Expansores scroll não estão disponíveis com uma grande variedade de capacidades. O deslocamento do expansor Air Squared selecionado tem a projeção de transportar um fluxo de calor residual de ~30kW.

Evaporador

Um trocador de calor com placa brasadas é normalmente usado para aplicações de evaporador de água e refrigerante. Utilizando a rotina de dimensionamento do Handbook ASHRAE Fundamentals^{[16}], foi selecionado um evaporador SWEP B250ASHx80/monofásico.

Condensador

Embora trocadores de calor de microcanal com superfície aletada sejam os preferidos para condensação, a flexibilidade do circuito para o aparato de teste foi melhor alcançada usando-se um trocador de calor de tubo aletado tradicional. Gráficos de desempenho EVAP-COND^[17] e da Serpentina Bohn^[18] foram usados para dimensionar e fazer o circuito de uma serpentina de oito filas com 1,07m de comprimento por 1,32 m de largura e tubos de diâmetro de 3/8" (9,52mm) sobre espaçamento escalonado de 1" (25,4mm) e aletas corrugadas com espessura de 0,006" (0,15mm). Um motor eletronicamente comutado com hélices do ventilador eficientes aerodinamicamente Zeihl-Abegg FN080-ZIK.GL.V7P3 foi usado^[19] para fornecer um fluxo de ar de ~0.33 m3/s.

Bomba de Líquido

O desempenho necessário para a bomba de líquido para uma carga de calor de 30 kW é de 0,152 kg/s a uma altura manométrica (head da bomba) de 0,460 MPa. Uma MTH HP31 é uma bomba de turbina regenerativa que possui essa capacidade de pressão/fluxo e é projetada para bombear líquidos voláteis^[20]. O ORC opera com líquido entrando na bomba próximo à saturação e requer uma operação que não tenha cavitação. Foi feita uma avalição da HP31 para determinar a sucção positiva líquida necessária pela HP31 com o fluido de trabalho selecionado. Foi também avaliado o desempenho da HP31 com o fluido de trabalho selecionado. A Tabela 3 e a Figura 3 mostram os resultados desta avaliação. A coluna de líquido de 2,1m e subrefrigeração de 3K tornou-se uma restrição do design do aparato de teste, onde a saída de líquido do condensador deve estar ≥2.1 m acima da entrada da bomba e o condensador é dimensionado para fornecer subrefrigeração de 3K.

Velocidade da Bomba	Fluido de Trabalho	Taxa de Vazão Mássica	NPSHr	NPSHa	NPSHa coluna de líquido	NPSHa	Subcool subrefrigeração
Hz		kg/s	m	m	М	m	к
60	R1234ze(E) /	0.19	5.7	6.3	2.1	4.2	3.3
55	R1233zd(E) 80 /	0.18	5.3	5.8	2.1	3.7	2.9
50	20 mass	0.16	5.4	5.9	2.1	3.8	3

Tabela 3. NPSHr e subrefrigeração necessários

Figura 3. Desempenho do MTH HP31, R1233zd(E); R1234ze(E)|.2;.8 massa ~60Hz

Dissipador Térmico

6

Para o dissipador térmico, o condensador e a bomba de líquido serão colocados em uma câmara ambiental que pode fornecer controle de temperatura constante enquanto remove o calor de ≤30kW da condensação mais o calor do motor do ventilador do condensador.

Aparato de teste e instrumentação

A Figura 4 mostra a configuração do aparato de teste. A bomba de líquido é a parte mais baixa e a distância vertical até a saída do condensador é de 2,1 m acima da entrada da bomba de líquido. Uma válvula de retenção impede o fluxo reverso durante o ciclo desligado. Um acumulador evita que grandes quantidades de líquido entrem no expansor. Em vez disso, o óleo líquido e qualquer fluido de trabalho não evaporado são alimentados como uma névoa que não danificará o conjunto scroll. O evaporador foi configurado para requerer 25% de sua área para remover a subrefrigeração da entrada do fluxo de líquido. Assim, o evaporador é posicionado com a saída de líquido do condensador e a linha inferior de 25% do evaporador em alinhamento horizontal. Para eliminar a migração de líquido fora do ciclo para um ponto frio, o calor com baixa densidade de potência é adicionado ao acumulador, ao invólucro do expansor e ao riser de vapor na entrada do condensador.

A Figura 5 mostra um diagrama de tubulação e de instrumentação (P&ID). PTs são transdutores de pressão com classificação laboratorial de 4-20 mA. TEs são RTDs (termoresistências) de platina de 100Ω. Os PTs e TEs são colocados em cada ponto de estado (ou ponto de operação) no ORC. TCs são termopares do tipo T amarrados na parte externa da tubulação. VAW são a medida de tensão, corrente e potência para cada componente elétrico. FWF é a medida de vazão mássica de efeito Coriolis para o fluido de trabalho do ORC. FWTR é a medida de vazão volumétrica eletromagnético para a água da fonte de calor. TQ e RPM são o torque e a velocidade do expansor. A Tabela 4 é uma listagem das medições para o aparato de teste do ORC.

Cada instrumento é calibrado anualmente por um laboratório de testes certificado com ISO 17025 – Requisitos gerais para a competência de laboratórios de teste e calibração. Os PTs, TEs e TCs são calibrados por comparação com os padrões ISO 17025 de pressão e temperatura calibrados com precisão ≥4X a desejada para as medições. Os fatores de correção são aplicados automaticamente no sistema de controle de testes baseado em LabVIEW. As precisões das medições estão listadas na Tabela 5. Elas serão aplicadas na análise de incerteza para validar os resultados dos testes

Figura 4. Esquema do Aparato de WHR ORC ICT

Figura 5. P&ID do aparato de teste do ORC

Etiqueta	Medição	Etiqueta	Medição	Etiqueta	Medição
TC901	T4cnd-inTC (°F)	FWTR	H2O Flowrate (GPM)		HT SRC (Watts)
TC902	T1cnd-outTC (°F)	PT901	P4cnd -in (PSIG)		HT SRC (VAR)
TC903	T1liq-pmp-inTC (°F)	PT902	P1cnd -out (PSIG)		HT SRC (VA)
TC904	T2liq-pmp-outTC (°F)	PT903	P1liq-pmp-in (PSIG)		HT SRC Volts A
TC905	T2evap-inTC (°F)	PT904	P2liq-pmp-out (PSIG)		HT SRC Volts B
TC906	T3evap-outTC (°F)	PT905	P2evap-in (PSIG)	VAW4	HT SRC Volts C
TC907	T3exp-inTC (°F)	PT906	P3evap-out (PSIG)		HT SRC Amps A
TC908	T4exp-outTC (°F)	PT907	P3exp-in (PSIG)		HT SRC Amps B
TC909	TLiq-outcirc1 (°F)	PT908	P4exp -out (PSIG)		HT SRC Amps C
TC910	TLiq-outcirc2 (°F)	PT909	dPwater-pmp (PSID)		HT SRC Power Factor
TC911	TLiq-outcirc3 (°F)	PT910	Pwater-pmp-in (PSIG)		HT SRC Frequency (Hz)
TC912	TLiq-outcirc4 (°F)	PT911	Pbaro (inHg)		WTR PMP (Watts)
TC913	TLiq-outcirc5 (°F)	AO 2	Liquid Pump VFD (0-10V)		WTR PMP (VAR)
TC914	TLiq-outcirc6 (°F)		ORC Fluid Mass Flow (lb/min)		WTR PMP (VA)
TC915	TLiq-outcirc7 (°F)	FWF	ORC Fluid Temp (F)		WTR PMP Volts A
TC916	TLiq-outcirc8 (°F)		ORC Fluid Density (lb/ft3)		WTR PMP Volts B
TC917	TLiq-outcirc9 (°F)		LIQ PMP VFD (Watts)	VAW5	WTR PMP Volts C
TC918	TLiq-outcirc10 (°F)		LIQ PMP VFD (VAR)		WTR PMP Amps A
TC919	TLiq-outcirc11 (°F)		LIQ PMP VFD (VA)		WTR PMP Amps B
TC920	TLiq-outcirc12 (°F)		LIQ PMP VFD Volts A		WTR PMP Amps C
TC921	TLiq-outcirc13 (°F)		LIQ PMP VFD Volts B		WTR PMP Power Factor
TC922	Accum-L NoCal (°F)	VAW1	LIQ PMP VFD Volts C		WTR PMP Frequency (Hz)
TC923	Accum-R NoCal (°F)		LIQ PMP VFD Amps A		EXP GEN 2 (Watts)
TC924	EXP-HSG-L NoCal (°F)		LIQ PMP VFD Amps B		EXP GEN 2 (VAR)
TC925	EXP-HSG-R NoCal (°F)		LIQ PMP VFD Amps C		EXP GEN 2 (VA)
TC926	CND-RB R2-R3 NoCal (°F)		LIQ PMP VFD Power Factor		EXP GEN 2 Volts A
TC927	CND-RB R3-R4 NoCal (°F)		LIQ PMP VFD Frequency (Hz)		EXP GEN 2 Volts B
TC928	CND-RB R4-R5 NoCal (°F)		EXP GEN (Watts)	VAW6	EXP GEN 2 Volts C
TC929	CND-RB R5-R6 NoCal (°F)		EXP GEN (VAR)		EXP GEN 2 Amps A
TC930	CND-RB R6-R7 NoCal (°F)		EXP GEN (VA)		EXP GEN 2 Amps B
TE901	T4exp-cnd-RTD (°F)		EXP GEN Volts A		EXP GEN 2 Amps C
TE902	T1cnd-liq-pmp-RTD (°F)		EXP GEN Volts B		EXP GEN 2 Power Factor
TE903	T2Liq-pmp-evap-RTD (°F)	VAW2	EXP GEN Volts C		EXP GEN 2 Frequency (Hz)
TE904	T3evap-exp-RTD (°F)		EXP GEN Amps A		LIQ PMP (Watts)
TE905	Twater-inRTD (°F)		EXP GEN Amps B		LIQ PMP (VAR)
TE906	Twater-outRTD (°F)		EXP GEN Amps C		LIQ PMP (VA)
TE907	Tcnd-air-in-A (°F)		EXP GEN Power Factor		LIQ PMP Volts A
TE908	Tcnd-air-in-B (°F)		EXP GEN Frequency (Hz)		LIQ PMP Volts B
TE909	Tcnd-air-in-C (°F)		COND FAN (Watts)	VAW7	LIQ PMP Volts C
TE910	Tcnd-air-in-D (°F)		COND FAN (VAR)		LIQ PMP Amps A
TE911	Tcnd-air-out-A (°F)		COND FAN (VA)		LIQ PMP Amps B
TE912	Tcnd-air-out-B (°F)		COND FAN Volts A		LIQ PMP Amps C
TE913	Tcnd-air-out-C (°F)		COND FAN Volts B		LIQ PMP Power Factor
TE914	Tcnd-air-out-D (°F)	VAW3	COND FAN Volts C		LIQ PMP Frequency (Hz)
TE915	Tfan-out-A (°F)		COND FAN Amps A	TO1	TQ513 excitation (VDC)
TE916	Tfan-out-B (°F)		COND FAN Amps B		TQ513 signal (mVDC)
TE917	Tfan-out-C (°F)		COND FAN Amps C	RPM1	Expander speed (RPM)
TE918	Tfan-out-D (°F)		COND FAN Power Factor		
TE919	Lqd Rsr (°F)		COND FAN Frequency (Hz)		

Medição	Instrumento	Precisão	Obj	etivo
Tensão (V)		±0.25%		
Corrente (A)	Vekegewe WT220 / PD200	±0.25%	ventilador do condensador, aquecedor	Balanços energéticos
Potência (kW)	TOROGAWA WIZSO / PRSOO	±0.3%	(servidor simulado), gerador magnético	
Frequência (Hz)		±0.1%	permanente	Velocidade Rotacional
	Termopar tipo T	±0.15K	Acoplado a tubulação	Temp.de entrada/saída para cada componente
Temperatura (K)	RTD de platina 100 Ω	±0.1K	Ponto do estado ORC, entrada/saída de água Entrada/saída do ar do condensador	Entrada EOS para propriedades ter- modinâmicas, balanço energético, TH, TL
Pressão (MPa)	Transdutore Piezoresistivos	±1%	Pontos do estado ORC	
Taxa de vazão mássica (kg/s)	MicroMotion Coriolis	±0.5%	Taxa de vazão do fluido de trabalho ORC	Balanço energético
Taxa de vazão volumétrica (Ipm)	Siemens Mag-flow	±0.5%	Taxa de vazão da água	Balanço energético

Tabela 5. . Precisão dos instrumentos de medição do sistema de ORC

Resultados e Discussão

Matriz de testes

A matriz de testes executados com o aparato ORC, incluindo condições operacionais, entrada de calor residual, saída do expansor, entrada da bomba de líquido e saída líquida são mostrados na Tabela 6. As condições foram TH ~58°C e ~63°C com TL ~14°C e ~8°C com carga variando de 8 kW a 30 kW (incrementos de aproximadamente 25%). Para temp. ambiente mais alta, até que a potência de entrada fosse >75%, a potência da bomba de líquido excedeu a saída do expansor. Para temp. ambiente mais baixa, a saída do expansor excedeu a entrada da bomba de líquido >50% da carga.

Arquivo de Teste	т _н (°С)	T _L (°C)	Q (kW)	Ŵ _{ex} (kW)	Ŵ _p (kW)	Ŵ _n (kW)
Tst 151 8-4kW 4-5VDC	58.1	13.4	8.42	0.015	0.134	-0.119
Tst 151 17-9kW 6-5VDC	57.1	15	17.89	0.25	0.272	-0.022
Tst 151 24-2kW 8-5VDC	58.7	15.4	24.3	0.952	0.495	0.456
Tst 152 8-5kW 4-3VDC	63.2	13.8	8.55	0.049	0.124	-0.075
Tst 152 16-9kW 6-5VDC	63	15	17.08	0.153	0.27	-0.117
Tst 152 24-9kW 8-5VDC	63.1	15.4	24.84	0.778	0.5	0.278
Tst 152 26-7kW 8-8VDC	59.6	14.4	26.34	1.268	0.523	0.745
Tst 152 31-4kW 10-0VDC	63.1	16	31.39	1.614	0.714	0.899
Tst 153 16-7kW 6-3VDC	59.2	8.2	16.54	0.28	0.264	0.017
Tst 153 17-3kW 6-5VDC	64.6	10.4	17.4	0.379	0.27	0.11
Tst 153 23-0kW 8-0VDC	58.6	7.6	23.08	0.892	0.442	0.45
Tst 153 26-0kW 8.5-0VDC	64.4	8.6	26.02	1.138	0.505	0.633
Tst 154 8-5kW 4-4VDC	63.4	13.7	8.43	0.061	0.128	-0.067
Tst 154 16-8kW 6-4VDC	63.4	15.1	16.93	0.166	0.258	-0.092
Tst 154 24-8kW 8-5VDC	63.6	15.6	25.01	0.778	0.496	0.282
Tst 154 30-0kW 9-5VDC	63.6	16	30.02	1.353	0.64	0.713

Tabela 6. Matriz de testes de WHR ORC executados

Performance do ORC

Após aplicar as fórmulas termodinâmicas aos dados, as métricas de eficiência do ORC e a eficácia da mistura zeotrópica são avaliadas. A Tabela 7 mostra esses resultados. Paralelamente à saída do expansor, ao % de carga e à entrada da bomba de líquido, a eficiência da bomba de líquido varia de 3% a 10% e a eficiência do expansor varia de 6% a 64%. A perda de eficiência fora da condição é grande tanto para a bomba de líquido quanto para o expansor. A razão entre a pressão de entrada e a saída do expansor e a vazão volumétrica também foram calculadas e apresentadas. A maior eficiência do expansor está relacionada à proporção de volume do expansor que se aproxima da proporção do volume físico do E22H038B-L-SH. Um gráfico de temperatura – entropia dos processos do ORC com as temperaturas de entrada e saída da água da fonte de calor e do ar do dissipador de calor sobrepostos demonstra que a temperatura diferencial de design foi bem-sucedida. Isso é mostrado na Fig. 6.

A linha azul escura, na parte superior dos diagramas, é a água fornecendo calor para evaporar o refrigerante.

A linha laranja é o fluido de trabalho do ORC desde a entrada da bomba até a saída do evaporador (estado 1 a 3). As porções com inclinação acentuada são de uma fase – subrefrigeradas a líquido saturado à esquerda e vapor saturado a vapor superaquecido à direita. A seção central é a mudança de fase de líquido para vapor. A mistura do fluido de trabalho do ORC é zeotrópica (a evaporação produz um deslizamento de temperatura). As inclinações do deslizamento da temperatura e da água correspondem, confirmando a correspondência da seleção da mistura e taxa de vazão de água.

A linha cinza é o fluido de trabalho que flui através do expansor (estado 3 a 4). Se o expansor tivesse 100% de eficiência isentrópica, a inclinação dessa linha seria vertical. Como visto na Tabela 7, a eficiência máxima do expansor ocorre nas condições de design de TH ~60°C, TL ~15°C e **Q ~30kW**, confirmando a seleção. Entretanto, a eficiência do expansor cai drasticamente em condições fora do design. As desconexões entre a saída do evaporador e a entrada do expansor são devidas à perda de pressão e temperatura da linha.

A linha amarela é o fluido de trabalho que flui através do condensador (estado 4 para 1). A seção de inclinação íngreme à direita é a remoção do superaquecimento do fluido de trabalho que sai do expansor. O fluido de trabalho selecionado demonstrou uma característica isentrópica ou seca de sua curva T-s de vapor saturado. Na condição de design, o superaquecimento que sai do expansor é mínimo devido à maior eficiência do expansor e esta característica seca. A descontinuidade entre a saída do expansor e a entrada do condensador são devidas à perda de pressão e calor.

A linha azul clara é a temperatura do ar do condensador conforme o fluido de trabalho do ORC é superaquecido, condensado e subrefrigerado (estado 4 para 1). Na condição de design, o deslizamento da temperatura de mudança da fase de condensação é quase paralelo ao aumento de temperatura do ar.

Arquivo de Teste	η_{th}	η _c	% _{Carnot} (%)	η _p	η _{ex}	π	
151 58.1 (°C)/ 13.4 (°C)/ 8.4kW	-0.01	0.14	-10	0.03	0.06	1.49	1.52
151 57.1 (°C)/ 15.0 (°C)/ 17.9kW	0	0.13	0	0.06	0.28	1.78	1.84
151 58.7 (°C)/ 15.4 (°C)/ 24.3kW	0.02	0.13	14	0.08	0.54	2.1	2.18
152 63.2 (°C)/ 13.8 (°C)/ 8.6kW	-0.01	0.15	-6	0.03	0.19	1.45	1.48
152 63.2 (°C)/ 15.0 (°C)/ 17.1kW	-0.01	0.14	-12	0.06	0.17	1.8	1.86
152 63.1 (°C)/ 15.4 (°C)/ 24.8kW	0.01	0.14	8	0.08	0.44	2.11	2.19
152 59.6 (°C)/ 14.4 (°C)/ 26.3kW	0.03	0.14	21	0.09	0.64	2.18	2.24
152 63.1 (°C)/ 16.0 (°C)/ 31.4kW	0.03	0.14	20	0.1	0.64	2.23	2.32
153 59.2 (°C)/ 8.2 (°C)/ 16.5kW	0	0.15	0	0.06	0.28	2.03	2.09
153 64.6 (°C)/ 10.4 (°C)/ 17.4kW	0.01	0.16	4	0.06	0.38	1.98	2.02
153 58.6 (°C)/ 7.6 (°C)/ 23.1kW	0.02	0.15	13	0.08	0.48	2.41	2.48
153 64.4 (°C)/ 8.6 (°C)/ 26.0kW	0.02	0.17	15	0.08	0.54	2.46	2.53
154 63.4 (°C)/ 13.7 (°C)/ 8.4kW	-0.01	0.15	-5	0.03	0.23	1.48	1.5
154 63.4 (°C)/ 15.1 (°C)/ 16.9kW	-0.01	0.14	-4	0.06	0.19	1.78	1.84
154 63.6 (°C)/ 15.6 (°C)/ 25.0kW	0.01	0.14	8	0.09	0.44	2.11	2.2
154 63.6 (°C)/ 16.0 (°C)/ 30.0kW	0.02	0.14	17	0.1	0.58	2.2	2.3

R1234ze(E) / R1233zd(E) / 20 curva T-S de massa com as temperaturas da água e do ar correspondentes

Entropia do fluido de trabalho do ORC (kJ/(kg K))

Figura 6. Diagrama T-S para Tst 154 30-0 kW 9-5 VCC

Análise da destruição de exergia

Uma análise da taxa de destruição de exergia ajuda salientar as áreas de menor eficiência. Como mostrado na Tabela 8, a maior taxa de destruição de exergia está no evaporador, seguida de perto pelo expansor, condensador e um pouco distante, a bomba. O evaporador primeiro precisa remover a subfrigeração antes da mudança de fase ao longo do deslizamento de temperatura. O alto calor específico do líquido e a média relativamente grande do diferencial de temperatura durante a dessubfrigeração contribuem significativamente para a destruição da exergia do evaporador. O baixo calor específico do vapor contribui para a menor perda de exergia no condensador. A taxa de destruição de exergia do expansor é diretamente proporcional ao produto da taxa de vazão mássica e o aumento de entropia através do expansor com a taxa vazão mássica dominando. As taxas de destruição de exergia da bomba líquida seguem o padrão do expansor.

Teste	İ _p (kW)	İ _{ev} (kW)	İ _{ex} (kW)	İ _c (kW)	İ _{tot} (kW)
151 58.1 (°C)/ 13.4 (°C)/ 8.4kW	0.089	0.604	0.263	0.18	1.136
151 57.1 (°C)/ 15.0 (°C)/ 17.9kW	0.19	0.828	0.624	0.396	2.038
151 58.7 (°C)/ 15.4 (°C)/ 24.3kW	0.368	0.853	0.77	0.654	2.646
152 63.2 (°C)/ 13.8 (°C)/ 8.6kW	0.081	0.69	0.211	0.192	1.173
152 63.2 (°C)/ 15.0 (°C)/ 17.1kW	0.205	1.015	0.688	0.432	2.34
152 63.1 (°C)/ 15.4 (°C)/ 24.8kW	0.372	1.064	0.902	0.707	3.046
152 59.6 (°C)/ 14.4 (°C)/ 26.3kW	0.397	0.935	0.683	0.749	2.765
152 63.1 (°C)/ 16.0 (°C)/ 31.4kW	0.522	1.074	0.824	1.027	3.447
153 59.2 (°C)/ 8.2 (°C)/ 16.5kW	0.206	1.019	0.691	0.426	2.342
153 64.6 (°C)/ 10.4 (°C)/ 17.4kW	0.217	1.183	0.614	0.457	2.471
153 58.6 (°C)/ 7.6 (°C)/ 23.1kW	0.352	1.086	0.907	0.669	3.014
153 64.4 (°C)/ 8.6 (°C)/ 26.0kW	0.39	1.397	0.919	0.812	3.518
154 63.4 (°C)/ 13.7 (°C)/ 8.4kW	0.103	0.675	0.209	0.19	1.178
154 63.4 (°C)/ 15.1 (°C)/ 16.9kW	0.194	1.027	0.648	0.433	2.302
154 63.6 (°C)/ 15.6 (°C)/ 25.0kW	0.37	1.1	0.926	0.74	3.136
154 63.6 (°C)/ 16.0 (°C)/ 30.0kW	0.467	1.101	0.896	0.975	3.439

Tabela 8. Taxa de destruição da exergia para os componentes do sistema ORC

Métricas do Sistema de WHR

Transportar calor do equipamento de computação para o evaporador requer energia para uma bomba de água. Transportar o calor não recuperado do condensador para a atmosfera requer energia para um ventilador do condensador. Bombear um líquido requer uma quantidade relativamente pequena de energia enquanto bombear um gás ou ar, requer quantidades relativamente grandes de energia. A Tabela 9 apresenta as métricas de performance da energia para o sistema de WHR. Embora o ORC produza um trabalho mecânico líquido positivo com e acima de 50% da carga, o sistema de WHR, quando a energia parasita do ventilador do condensador é incluída, é um consumidor de energia mesmo nas melhores condições de operação. A potência do ventilador do condensador supera a potência líquida do sistema ORC sozinho. Uma mudança para serpentinas de microcanais do condensador pode reduzir a perda de pressão de ar no condensador e possivelmente mudar as condições de operação de design para ter uma saída de potência líquida.

Teste	Ŵ _n (kW)	Ŵ _{cnd fan} (kW)	Ŵ _{wtr pmp} (kW)	WHR _{net pwr} (kW)
151 58.1 (°C)/ 13.4 (°C)/ 8.4kW	-0.119	1.31	0.05	-1.48
151 57.1 (°C)/ 15.0 (°C)/ 17.9kW	-0.022	1.3	0.05	-1.37
151 58.7 (°C)/ 15.4 (°C)/ 24.3kW	0.456	1.29	0.05	-0.88
152 63.2 (°C)/ 13.8 (°C)/ 8.6kW	-0.075	1.29	0.05	-1.42
152 63.2 (°C)/ 15.0 (°C)/ 17.1kW	-0.117	1.27	0.05	-1.44
152 63.1 (°C)/ 15.4 (°C)/ 24.8kW	0.278	1.26	0.05	-1.03
152 59.6 (°C)/ 14.4 (°C)/ 26.3kW	0.745	1.27	0.05	-0.58
152 63.1 (°C)/ 16.0 (°C)/ 31.4kW	0.899	1.25	0.05	-0.4
153 59.2 (°C)/ 8.2 (°C)/ 16.5kW	0.017	1.3	0.05	-1.33
153 64.6 (°C)/ 10.4 (°C)/ 17.4kW	0.11	1.3	0.05	-1.24
153 58.6 (°C)/ 7.6 (°C)/ 23.1kW	0.45	1.3	0.05	-0.9
153 64.4 (°C)/ 8.6 (°C)/ 26.0kW	0.633	1.29	0.05	-0.71
154 63.4 (°C)/ 13.7 (°C)/ 8.4kW	-0.067	1.3	0.05	-1.42
154 63.4 (°C)/ 15.1 (°C)/ 16.9kW	-0.092	1.28	0.05	-1.42
154 63.6 (°C)/ 15.6 (°C)/ 25.0kW	0.282	1.27	0.05	-1.04
154 63.6 (°C)/ 16.0 (°C)/ 30.0kW	0.713	1.26	0.05	-0.6

Tabela 9. Métricas do Sistema de WHR

Verificação, validação e quantificação das incertezas

O esforço experimental para testar a hipótese de viabilidade do WHR ORC requer um processo de verificação e validação. A análise de incertezas dos testes é usada para validar objetivamente a qualidade dos dados medidos. Um balanço energético dos fluxos de calor e de trabalho do ORC é usado para verificar as medições do sistema.

O processo de determinação das incertezas dos testes segue a norma ASME PTC 19.1-2013 Test Uncertainty (Incerteza do Teste). Os fluxos de calor e trabalho do ORC são valores calculados com base em fórmulas definidas no modelo termodinâmico. A Seção 7 Incertezas de um Resultado e as fórmulas listadas são aplicadas^[21].

Cada um dos testes é um teste independente com uma série de leituras ao longo do tempo de um sistema de estado quase estacionário. Cada resultado, R, é representado como:

$$\mathsf{R=f}(\overline{\mathsf{X}}_{1}, \overline{\mathsf{X}}_{2}, \dots, \overline{\mathsf{X}}_{i}) \tag{11}$$

onde há parâmetros i impactando R. Cada parâmetro tem um valor médio com Ni medições de X_i,

$\overline{X}_{i} = 1/N_{i}\Sigma(j=1)(N_{i})X_{(ij)} \qquad (12)$

Como a relação entre o resultado e seus parâmetros não pode ser diferenciada, a sensibilidade, θ_i , taxa de variação do resultado com a alteração de um parâmetro, é determinada numericamente,

$$\theta_i = \Delta R / (\Delta \overline{X}_i)$$
 (13)

A incerteza expandida, $U_{(R,95)}$, com aproximadamente 95% de confiança é expressada

$$U_{(R.95)}=2u_{R}$$
 (14)

Onde

 $u_{R}=[(b_{R})^{2}+(s_{R})^{2}]^{1/2}$ (15)

A incerteza padrão sistemática, b_R, é devida a erros de medição que são constantes durante o teste.

 $b_{R} = [\sum (i=1)^{I} (\theta_{i} \ b_{\overline{X}} \ i)^{2}]^{1/2}$ (16)

Esses erros de medição são minimizados através do design do teste e aplicação dos instrumentos.

A incerteza randômica padrão, s_R, se aproximará de zero à medida que o número de amostras aumentar. Os testes do sistema ORC registraram uma amostra por segundo durante trinta minutos resultando em 1800 amostras, >>30 que é definido como um tamanho grande de amostra.

$s_{R} = [\sum (i=1)^{n} I(\theta_{i} s_{\overline{X}} i)^{2}]^{1/2}$ (17)

Incertezas randômicas padrão individuais estão relacionadas ao desvio padrão da amostra

$$s_{\overline{X}} = s_X / \sqrt{N}$$
 (18)

Onde o desvio padrão da amostra, s $_X$, é

$s_X \sqrt{(\sum(j=1)^N (X_j - \overline{X})^2/(N-1))}$ (19)

As equações para as quais as incertezas dos testes são estimadas incluem fluxo de calor do evaporador, saída de trabalho do expansor, fluxo de calor do condensador e a saída de trabalho da bomba de líquido.

As fórmulas de incerteza de teste são aplicadas a cada um dos testes relacionados na Tabela 6. A precisão dos instrumentos relacionadas na Tabela 5 são usadas como a perturbação, $\Delta \overline{X}_i$ para calcular θ_i .

Os resultados das incertezas e do balanço energético na Tabela 10 mostram:

- As incertezas de teste expandidas do cálculo do fluxo de energia, com base nas propriedades medidas, tanto para o evaporador quanto para o condensador, são de aproximadamente 1% do fluxo de energia calculado em cada teste.
- Para o expansor, as incertezas de teste expandidas do cálculo do fluxo de energia, com base nas propriedades medidas, são ~10% do fluxo de energia calculado quando a saída do expansor não se aproxima de zero.
- Para a bomba de líquido, as incertezas de teste expandidas são de ~40% do fluxo de energia calculado. As diferenças relativamente pequenas da temperatura na bomba de líquido conduzem a essa grande incerteza de teste
- Teoricamente, a soma dos fluxos de energia através do ORC fechado é zero. Os valores de teste são <1% da entrada de energia através do evaporador em cada caso.
- Esses resultados verificam e validam o sistema de medição e os resultados medidos.

Teste	Q _{ev}	U _{R,95}	₩ _{ex}	U _{R,95}	Q _c	U _{R,95}	Ŵ _p	U _{R,95}	∑ Ė _{ORC}
	kW	kW	kW	kW	kW	kW	kW	kW	kW
151 58.1(°C)/ 13.4(°C)/ 8.4kW	8.21	0.09	0.02	0.01	8.29	0.09	0.05	0.02	-0.05
151 57.1(°C)/ 15.0(°C)/ 17.9kW	17.1	0.18	0.25	0.03	17	0.18	0.12	0.05	-0.1
151 58.7(°C)/ 15.4(°C)/ 24.3kW	25.3	0.26	0.95	0.06	24.8	0.26	0.23	0.07	-0.2
152 63.2(°C)/ 13.8(°C)/ 8.6kW	8.11	0.08	0.05	0.01	8.15	0.08	0.05	0.02	-0.04
152 63.2(°C)/ 15.0(°C)/ 17.1kW	16.7	0.17	0.15	0.03	16.8	0.17	0.13	0.04	-0.11
152 63.1(°C)/ 15.4(°C)/ 24.8kW	25.2	0.26	0.78	0.05	24.8	0.25	0.23	0.07	-0.21
152 59.6(°C)/ 14.4(°C)/ 26.3kW	27.3	0.29	1.27	0.06	26.5	0.28	0.25	0.07	-0.22
152 63.1(°C)/ 16.0(°C)/ 31.4kW	33.1	0.34	1.61	0.08	32.1	0.33	0.33	0.09	-0.3
153 59.2(°C)/ 8.2(°C)/ 16.5kW	16	0.16	0.28	0.03	16	0.16	0.12	0.04	-0.11
153 64.6(°C)/ 10.4(°C)/ 17.4kW	16.8	0.17	0.38	0.03	16.7	0.17	0.13	0.04	-12
153 58.6(°C)/ 7.6(°C)/ 23.1kW	23.4	0.24	0.89	0.04	22.8	0.23	0.21	0.06	-0.19
153 64.4(°C)/ 8.6(°C)/ 26.0kW	26.1	0.27	1.14	0.05	25.4	0.26	0.24	0.07	-0.21
154 63.4(°C)/ 13.7(°C)/ 8.4kW	8	0.08	0.06	0.01	8.1	0.08	0.06	0.02	-0.06
154 63.4(°C)/ 15.1(°C)/ 16.9kW	16.5	0.17	0.17	0.03	16.5	0.17	0.12	0.04	-0.11
154 63.6(°C)/ 15.6(°C)/ 25.0kW	25.6	0.26	0.78	0.06	25.2	0.26	0.23	0.07	-0.21
154 63.6(°C)/ 16.0(°C)/ 30.0kW	31.3	0.32	1.35	0.08	30.5	0.31	0.3	0.09	-0.27

Tabela 10. Incertezas, validação e verificação dos testes do ORC

Operação com um diferencial de temperatura baixo

A série de testes $T_H=58$ °C, $T_L=27$ °C foram limitadas para $\dot{Q} \le 8.8$ kW. Acima de 8,8kW, a altura manométrica da bomba foi perdida, indicando que a capacidade máxima prática do condensador foi atingida. Com a perda da coluna de líquido na entrada da bomba, a vazão do fluido de trabalho do ORC é interrompida e a capacidade de transportar o calor residual é perdida. Isso é falha do sistema. Uma revisão da seleção do condensador, bomba de líquido, evaporador e expansor auxiliou na identificação dos problemas. Um diagrama de pressão/ entalpia é útil para visualizar a aplicação do ORC. A Figura 7 mostra em amarelo as linhas do condensador para temperaturas externas médias e elevadas, em azul as linhas da bomba de líquido resultante, em laranja as linhas do evaporador e em cinza as linhas do expansor.El menor calor de condensación del fluido de aplicación a la temperatura elevada requiere un aumento del caudal másico para un flujo térmico determinado. El aumento del caudal másico del 11 % tuvo un efecto insignificante en el rendimiento del condensador.

- O menor calor de condensação para o fluido de trabalho na temperatura elevada requer um aumento da taxa vazão mássica para um dado fluxo de calor. O aumento de 11% na taxa vazão mássica teve um impacto insignificante no desempenho do condensador.
- O aumento necessário da altura manométrica da bomba diminuiu 38%. A bomba é acionada por um VFD (inversor de frequência variável), permitindo uma operação bemsucedida com queda da altura manométrica e com a vazão aumentada.
- A subrefrigeração da entrada do evaporador foi reduzida de 35 K para 21 K, enquanto a taxa vazão mássica aumentou 11% para a temperatura externa elevada. A repetição da seleção do evaporador nessas novas condições mostrou que a capacidade excedente do evaporador aumentou.

Figura 7. Gráfico pressão x entalpia: R1233zd(E)/R1234ze(E) (20/80)

• O expansor experimentou uma redução na pressão e na taxa de vazão volumétrica de 2,27 para 1,41 e 2,36 para 1,44, respectivamente, e merece uma investigação mais detalhada.

A análise do expansor scroll revela as seguintes relações. A primeira é uma saída relativa da taxa de vazão mássica para uma determinada geometria do scroll com pressões de entrada e saída variáveis. A segunda proporciona a taxa de pressão crítica acima da qual existem condições de vazão instáveis na porta de entrada do expansor. γ é a taxa de calor específico, Cp/Cv. ψ é um fator de correção da vazão. Assim como é a área da porta de entrada do expanso ^[22].

$\dot{m}/(\psi A_s) = \sqrt{(2p_h \rho_h)} \sqrt{(\gamma/(\gamma-1) [(p_l/p_h)^{2/\gamma} - (p_l/p_h)^{(\gamma+1)/\gamma}])}$ (20)

$(p_l/p_h)_{crit} = (2/(\gamma+1))^{\gamma/(\gamma-1)}$ (21)

A Tabela 11 ilustra que o expansor Air Squared é adequado para condições operacionais em que a temperatura ambiente, T_L, esteja entre -2°C e 14°C, a fonte de calor, TH, seja de 58°C e a carga de calor residual seja de 30 kW. Além disso, os indicadores da taxa vazão mássica são relativamente constantes em toda a faixa de temperatura ambiente. Entretanto, a incapacidade determinada experimentalmente para operar a 22°C ou acima é confirmada pela condição instável da vazão conforme indicado por (p_I/p_h)_{real} ≥ (p_I/p_h)_{crit}. Uma verificação rápida foi feita para os fluidos de trabalho puros R1234ze(E) e R1233zd(E), onde ambos exibiram taxas de pressão crítica similares.

A taxa da pressão crítica é uma função da taxa de calor específico que é dada para um fluído de trabalho. O pressuposto é que o Δ T for mínimo para o expansor de ORC funcionar evitando a condição instável do fluxo é de ~40 K. Assim, o sistema do WHR ORC ICT não pode funcionar se T_H<T_{amb} max+40. Para Ashburn, VA, isso corresponde a T_H≥84°C. T_{case}≥94°C está implícito.

	-2C_Amb 58C água 80-20	14C_Amb 58C água 80-20	22C_Amb 58C água 80-20	30C_Amb 58C água 80-20	Air Squared E22H038B-L-SH	Unidade
T _{Hágua} K	331.2	331.2	331.2	331.2		(К)
T _{Lamb} C	271.2	287.2	295.2	303.2		(K)
Ϋ́ ₃	0.00323	0.00356	0.00375	0.00395	0.00316	(m³/s)
Ϋ́ _{ratio}	4.06	2.36	1.84	1.44	3.25	(-)
$\pi = P_3/P_4$	3.91	2.27	1.78	1.41		(-)
Pl/Ph	0.256	0.44	0.563	0.71		(-)
Ph = P3	0.8218	0.8218	0.8218	0.8218		(MPa)
PI = P4	0.2102	0.3615	0.4627	0.5838		(MPa)
Th = T3	327	327	327	327		(K)
TI = T4	297.5	307.7	312.9	318.2		(K)
$\Upsilon = Cp/Cv_3$	1.197	1.197	1.197	1.197		(-)
$\Upsilon = Cp/Cv_4$	1.117	1.133	1.145	1.161		(-)
P4/P3crit 3	0.565	0.565	0.565	0.565		(-)
P4/P3crit 4	0.581	0.578	0.575	0.572		(-)
ρ3	42.79	42.79	42.79	42.79		(kg/m³)
m_{dot} / (ψA_s) $_3$	3	3.7	3.8	3.6		(kg/s/m ²)
displacement					73	cm ³ /rev
max speed					2600	rpm

Tabela 11. Taxa de vazão mássica relativa e taxa da pressão crítica do expansor do WHR de ORC ICT

Conclusões

A Figura 8 mostra o fluxo de energia do sistema de WHR ORC para os pontos de teste, onde TH 63°C / TL 15°C são retirados das Tabelas 6 e 9. Observações:

- Q_{in} é muito maior do que W_{exp} como previsto por Carnot
- W_{pmp} é uma porção importante de W_{exp}, indicando que a eficiência da bomba precisa melhorias.
- W_{net} do ORC é positiva acima de 50% de carga.
- A perda parasita do ventilador do condensador é bastante grande – movimentar ar para criar convecção forçada usa muita energia.
- O sistema de WRH de ORC é um consumidor de energia.
- Um par de pontos ~16kW Q_{in} e um par de pontos ~25kW Q_{in} foram rodados em dias separados demonstrando que, uma vez que setpoints iguais sejam atingidos, a performance do ORC se repete.

Figura 8. El flujo de energía del sistema para TH 63°C / TL 15°C

Ao operar em T_H~58°C, T_L~14°C, C e quase com carga total, o ORC pode converter ~2% do calor residual em energia mecânica. Embora isso possa parecer insignificante, os melhores data centers consomem cerca de 20% da carga de TI para transportar o calor residual para o exterior. O ORC fornece essa refrigeração com um rendimento líquido de energia mecânica, criando uma melhoria significativa na PUE do data center. A bomba de líquido da turbina regenerativa consome aproximadamente 50% da saída de energia do expansor. Quando a carga parasita para transportar o calor residual para o ar ambiente é considerada, o ORC como um sistema de WHR é um consumidor de energia.

Dito isto, em uma aplicação de data center, o sistema de WHR é o sistema de refrigeração que deve operar continuamente conforme a carga varia de 0% a 100% e a temperatura ambiente varia de acordo com as condições climáticas predominantes previstas com base em um século de registros. Os limites instáveis de fluxo na entrada do expansor no sistema ORC em questão caem bem nas altas temperaturas da primavera, verão e outono esperadas em Ashburn, VA. Assim, o uso do WHR de ORC como único meio de refrigeração do data center é descartado.

Recomendações

O problema mais crítico descoberto durante este teste do WHR ORC é a ocorrência de limites instáveis da vazão na entrada do expansor na primavera, no verão e no outono, com altas temperaturas esperadas dos locais do data center. Várias opções podem ser investigadas para resolver esse problema:

- Incorporar um bypass no expansor para que o sistema funcione como um termossifão assistido por bomba de duas fases quando a temperatura externa ficar acima do limite da condição de instabilidade da vazão na entrada.
- Usar o WHR ORC como refrigeração complementar que reduza o consumo de energia do sistema de refrigeração primário do data center quando a temperatura externa ficar igual ou abaixo do limite da condição de instabilidade da vazão na entrada do expansor.
- Melhorar as características térmicas da CPU para aumentar o TH evitando o limite da condição de instabilidade da vazão na entrada com temperaturas externas máximas.

Diversos itens podem melhorar a eficácia do sistema de WHR ORC.

- Melhorar a eficiência em condições fora dos padrões de design do expansor.
- Melhorar a eficiência da bomba regenerativa de turbina para as condições padrão de design e para as condições fora do padrão de design.
- Reduzir a resistência do fluxo de ar do trocador de calor do condensador, reduzindo assim a potência para acionar o(s) ventilador(es).

Reconhecimento

Lorenz Hofmann, PhD, o supervisor do autor, apoiou e incentivou entusiasticamente esta pesquisa. Dr. Kremer e Dr. Ali, da Universidade de Ohio, orientaram a pesquisa.

Financiamento

Vertiv, a empregadora do autor, forneceu os equipamentos para o aparato de testes, uso de instrumentação e uso da instalação de testes.

Nomenclatura

1, 2, 3, 4	Subscrito, pontos de estado, número em	h	Subscrito, alto	ρ	Densidade, kg/m³
	series	HVACR	Aquecimento, ventilação, ar-condicionado	R	Resultado
2s, 4s	Subscrito, pontos isentrópicos de estado		e refrigeração	RTD	Detector de temperatura de resistência
As	Área de entrada do expansor, m²	i	Taxa de destruição da exergia, kW	S	Entropía, kJ/(kg K)
ASHRA	E American Society of Heating,	Δk_P	Taxa de destruição da exergia, kW	S	Desvio padrão da amostra
	Refrigerating, and Air Conditioning Engineers	ΔkE	Variação da energia cinética, kJ/kg Subscrito, baixo	^s R	Incerteza randômica padrão de um
^b R	Padrão sistemático de incertezas de um resultado	l ṁ	Taxa de vazão mássica, kg/s	т	Temperatura, °C, K
•	Subscrito, condensador	Ψ	Fator de correção da vazão	TE	Sensor de temperatura, 100 Ω platina
C	Calor específico a pressão constante	N	Número	TC	Sensor de temperatura, tipo Termopar T
Θρ	kJ/(kg K)	Ω	Resistência elétrica, ohm	T _{case}	Temperatura de Caixa da CPU
Cv	Calor específico a volume constante,	ODP	Potencial de Destruicão da Camada	т _Н	Temperatura da fonte de calor, °C, K
	kJ/(kg K)		de Ozônio	т _L	Temperatura do dissipador térmico, °C, K
CPU	Unidade Central de Processamento	ORC	Ciclo Rankine Orgânico	T ₀	Temperatura de referência, 273.15K
Δh	Variação da entalpia, kJ/kg	0	Consideration	tot	Subscrito, total
η	Eficiência	θ		u _R	Incerteza do resultado
EH&S	Saúde, Segurança e Meio Ambiente	р	Subscrito, bomba		Incerteza expandida com 95% de
ev	Subscrito, evaporador	P&ID	Diagrama de instrumentação e	(11,50)	confiança
ex	Subscrito, expansor		Eficácia no uso da energia	WHR	Recuperação do calor residual
GWP	Potencial de aquecimento global	DT		Ŵ	Taxa de trabalho, kW
γ	Taxa de calor específico	Ċ.	Fluxo de calor, kW	X	Média
h	Entalpia, kJ/kg				

Referências

[1] Shehabi, A., et al., United States data center energy usage report LBNL-1005775. Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2016.

[2] Araya, S., et al., Study of a Lab-Scale Organic Rankine Cycle for the Ultra-Low-Temperature Waste Heat Recovery Associated With Data Centers. Journal of Electronic Packaging, 2021. 143(2): p. 021001.

[3] Ebrahimi, K., G.F. Jones, and A.S. Fleischer, A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 2014. 31: p. 622-638.

[4] Lenovo ThinkSystem SD650 Direct Water Cooled Server. Product Guide, 2019.[5] Banister, J. Why Ashburn Has Emerged as a National Hub for Data Centers. BISNOW, 2017.

[6] ASHRAE, F., Chapter 14 Climatic Design Conditions. 2017: ASHRAE.

[7] ASHRAE, Refrigerants, in ASHRAE Fundamentals Handbook 2017. 2017, ASHRAE: Atlanta, GA.

[8] Rajendran, R. New Refrigerant Alternatives Available Today. E360 Outlook, 2017. 3, 15-16.

[9] Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Macroscopic Balances for Non-isothermal Systems, in Transport Phenomena Revised Second Edition. 2007, John Wiley & Sons, Inc: New York. p. 454-486.

[10] Wang, E., et al., Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy, 2011. 36(5): p. 3406-3418.

[11] Chen, H., D.Y. Goswami, and E.K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews, 2010. 14(9): p. 3059-3067.

[12] Tchanche, B.F., et al., Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering, 2009. 29(11-12): p. 2468-2476.

[13] McLinden, M.O., et al., A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants. International Journal of Refrigeration, 2014. 38: p. 80-92.

[14] Lemmon, E.W., et al. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10. 2010.

[15] Air-Squared E22H038B-L-SH. 2018.

[16] ASHRAE, Heat Transfer, in 2017 ASHRAE Handbook Fundamentals. 2017, ASHRAE: Atlanta, GA. p. 4.24-4.25.

[17] Domanski, P.A. and D.A. Yashar, EVAP-COND" NIST (2018). 2018.

[18] Heatcraft, Bohn Coil Performance Charts, in Heatcraft Refrigeration Products

LLC. 1988, Heatcraft Refrigeration Products LLC: Stone Mountain, GA. [19] Ziehl-Abegg, Ziehl-Abegg Axial Fans Main Catalog. 2016, Ziehl-Abegg.

[20] Pumps, M., Bulletin HP31, M. Pumps, Editor. 2016; Plano, IL. p. 2.

[21] ASME, Test Uncertainty. Vol. PTC 19.1-2013. 2013, New York: ASME.

[22] Peng, B., B. Zhu, and V. Lemort, Theoretical and experimental analysis of scroll expander. 2016.

Vertiv.com | Vertiv Headquarters, 505 N Cleveland Ave, Westerville, OH 43082, USA

© 2023 Vertiv Group Corp. Todos los derechos reservados. Vertiv[™] y el logo de Vertiv son marcas o marcas registradas de Vertiv Group Corp. Todos los demás nombres y logos a los que se hace referencia son nombres comerciales, marcas, o marcas registradas de sus dueños respectivos. Aunque se tomaron todas las precauciones para asegurar que esta literatura esté completa y exacta, Vertiv Group Corp. no asume ninguna responsabilidad y renuncia a cualquier demanda por daños como resultado del uso de esta información o de cualquier error u omisión. Las específicaciones, los reembolsos y otras ofertas promocionales están sujetas a cambio a la entera discreción de Vertiv y mediante notificación.