

Vertiv[™] Liebert[®] AF4 ANN powered Active Harmonic Filters

About Vertiv

Vertiv brings together hardware, software, analytics, and ongoing services to ensure its customers' vital applications run continuously, perform optimally and grow with their business needs. Vertiv solves the most important challenges faced by today's data centers, communication networks, and commercial and industrial facilities with a portfolio of power, cooling, and IT infrastructure solutions and services that extends from the cloud to the edge of the network. Headquartered in Columbus, Ohio, USA, Vertiv employs around 20,000 people and does business in more than 130 countries. For more information, and for the latest news and content from Vertiv, visit <u>Vertiv.com</u>.

Vertiv.com

OUR PURPOSE

We believe there is a better way to meet the world's accelerating demand for data - one driven by passion and innovation.

Importance of Power Quality

Power quality is related to the quality of power being supplied and/or consumed. It must be maintained during the following conditions:

- The State Electricity Board (EB) or Utility provides a sinusoidal voltage at the rated magnitude and rated frequency to its consumers.
- Consumers draw sinusoidal current that is in phase with the input supply voltage.

EB can assure power quality from its side only when its consumers do meet certain power quality standards (such as IEEE 519-1992 and/or IEEE 519-2014). Recently, several EBs across the globe have started imposing strict regulations on the quality of current, a customer can draw from the supply lines to maintain a healthy power distribution system.

Harmonic and Reactive Currents

The power electronic devices (such as variable frequency drives-VFDs, phase-controlled rectifiers, choppers, battery chargers, etc.) and other major electrical loads in the industries draw current that has three main components:

- Active current at rated frequency
- Reactive current at rated frequency
- Harmonic currents at higher frequencies (commonly at multiples of rated fundamental frequency).

Among these three parts, the active current is responsible for the actual work done in the factory/plant, while the remaining two parts are just circulating between EB and load, and do not contribute to any useful work. These two non-active currents, however, have a significant impact on the other connected loads and distribution system.

- Reactive current is responsible for the poor plant power factors and attracts penalties from EB.
- Harmonic currents cause adverse effects on other loads in a plant and EB voltage quality.

Vertiv[™] Liebert[®] AF4

Vertiv proudly introduces its first product line-up "Vertiv™ Liebert® AF4" an Active Harmonic Filter (AHF) to cater to the present industrial needs. Vertiv™ Liebert® AF4 is a high-speed Insulated-Gate Bipolar Transistor (IGBT) based device that is connected in parallel to the plant and performs the following [regardless of the loading condition]:

- Cancels the load generated current harmonics.
- Maintains unity power factor operation.
- Ensures balanced three-phase source currents.
- Compensates neutral current (only with 3P4W version).

Operating Principle

- Vertiv[™] Liebert[®] AF4 identifies the downstream load current composition (such as active, reactive, harmonics, and unbalanced components) using an intelligent artificial neural network (ANN) based control technique and cancels the unwanted components at the load end through precise control of IGBTs.
- Based on the selective harmonic compensation, Liebert® AF4 computes the magnitude of individual harmonic, fundamental reactive, and unbalanced currents that are to be compensated.
- As long as the compensation requirements are within the rating of Liebert AF4 capacity, it compensates all the unwanted current components, in case the requirement is higher than its rated capacity, compensation current is dynamically limited to i-Sine AHF capacity using inbuilt real-time current limiting algorithm.
- Thanks to our closed-loop adaptive ANN control philosophy, Liebert AF4 dynamically compensates the unwanted components of load current even when the load changes frequently.

Adaptive Display with Multidimensional Insights

Harmonics tab is designed for real-time analysis of individual harmonics present in the load as well as source current waveforms

It allows the user to prioritize the harmonic order to be compensated by the AF4

User has the flexibility to select and visualize the parameters which are to be monitored

VERT	ory	Harm. Sel Hist	Settings	Meter	Phasor	Harmonics	illoscope	Osci	Home	
View Selection		Neutral (%)	hase (%)	B-P	Phase (%)	e (%) Y-	R-Phase	nic	Harmo	
O Graph View		0.0	28.6	8	24.	27.9		•	THD	
Table View		100.0	100.0	0	100.	100.0			1	
Unit		0.0	0.0	0	0.	0.0			2	
Percentage Absolute	1	0.0	0.0	o	0.	0.0			3	
O Absolute		0.0	0.0	0	0.	0.0			4	
Quantity O Voltage		0.0	24.5	3	21.	23.9			5	
O Source Current		0.0	0.0	0	0.	0.0			6	
Load Current			0.0	14.7	8	12.	14.4	14.4		7
		0.0	0.0	0	0.	0.0	0.0		8	
		0.0	0.0 0.0		0.	0.0			9	
		0.0			0.	0.0			10	
		0.0	0.0	0	0.	0.0			11	
		0.0	0.0	0	0.	0.0			12	
	*			4						

Meter tab shows various electrical parameters of R, Y, and B phase

Home	Oscilloscope	Harmonics	Phasor	Meter	Settings	Harm. S	iel History	🚱 VE	RTI
Parameter			R-phase Y-phase		ase	B-phase	Neutral / 3-ph		
Phase V	oltage (V)			230.5	•	230.9	230.9	0.0	
Line Vol	tage (V)			400.0		400.0	400.0	-	
Source (Source Current (A)			184.5	184.8		184.3	0.0	
AHF Cur	rent (A)			77.4		100.0	100.0	0.0	
Load Current (A)				199.9		223.4		0.0	
Source /	Active Power (kV	V)		42.6	5	42.7	42.6	127.8	
Load Active Power (kW)				42.6	5	46.3 38.5		127.8	
Fund. Se	ource Reactive P	ower (kVAR)		-0.1	L	0.0	0.0	0.0	
Fund. Load Reactive Power (kVAR)				12.8	1	19.2 19.		51.1	
Source Apparent Power (kVA)				42.6	42.7		42.6	127.8	
Load Apparent Power (kVA)			46.2	51.6		45.1	142.9		
True Source Reactive Power (kVAR)			0.1	0.1		0.0	0.1		
True Load Reactive Power (kVAR)			17.8	22.8		22.8	63.9		

Key Features and Benefits

Technical Specifications

Model		Vertiv™ Liebert® AF4									
Ratings (A)		30 A	60 A	100 A	150 A	200 A	300 A	400 A			
Dimension (W x D x H) mm	3P3W	560 x 540 x 750 mm	600 x 640 x 1000 mm	600 x 640 x 1000 mm	700 x 750 x 1325 mm	700 x 750 x 1425 mm	1150 x 750 x 1500 mm	1150 x 750 x 1500 mm			
Weight		85 kg	120 kg	138 kg	210 kg	240 kg	410 kg	460 kg			
Dimension (W x D x H) mm	3P4W	560 x 540 x 775 mm	600 x 640 x 1000 mm	700 x 750 x 1325 mm	700 x 750 x 1425 mm	700 x 750 x 1650 mm	-	-			
Weight		95 kg	132 kg	190 kg	244 kg	260 kg	-	-			
Plant Input Conditions											
System Voltage (RMS)				3	50-460 V						
Fundamental Frequency (Hz)					50 ± 5%						
System Configuration			3P3	3W and 3P4W (Si	ingle-phase opti	on available)					
Product Specification											
Power Semiconductor Devices					IGBTs						
Peak Compensating Current			2.2 time l	RMS Value (No n	eed of over sizin	ng with VFD loads	s)				
Harmonic Compensation Range		All odd harmonics up to 51st order									
Selective Harmonic Compensation		From 0% to	o 100% for all 51	Harmonics (No l	imit on the num	per of harmonics	selection at a tin	ne)			
Reactive Power Compensation		Any power factor (inductive to capacitive). Full dynamic control.									
Harmonic Attenuation Factor		More than 97% at rated load									
Load Current Balancing					Yes						
Cooling		Forced Air Cooling									
Cable Entry					Bottom						
Mounting				Flo	or Mounting						
Ingress Protection Level					IP20						
Control System											
Controller Type				Dię	gital control						
Control Method		В	ased on Adaptiv	e Artificial Neura	l Networks (ANN	N) (Ultra-fast cor	mputation)				
Dynamic Response Time				100 N	licro-seconds/						
User Interface											
HMI Display Type				7-inch Capaciti	ve Touchscreen	Display					
Remote Monitoring		MODBUS/Through Instaview software on USB port									
Additional Details											
Operating Temperature Range			0 °C to 50 °C	C (No derating r	equired in the er	ntire operating ra	nge)				
Active Power Loss		Less than 3%									
Parallel Operation					Yes						
Short-circuit protection					Yes						
Color					RAL7021						
Noise Level					<65 dB						

*Conditions apply *Specifications are subject to change without any further notification.

Vertiv.com

© 2023 Vertiv Group Corp. All rights reserved. Vertiv[™] and the Vertiv logo are trademarks or registered trademarks of Vertiv Group Corp. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness here. Vertiv Group Corp. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions.