

VertivTM Liebert[®] APS

Installer/User Guide 5 kVA to 20 kVA Modular UPS The information contained in this document is subject to change without notice and may not be suitable for all applications. While every precaution has been taken to ensure the accuracy and completeness of this document, Vertiv assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Refer to other local practices or building codes as applicable for the correct methods, tools, and materials to be used in performing procedures not specifically described in this document.

The products covered by this instruction manual are manufactured and/or sold by Vertiv. This document is the property of Vertiv and contains confidential and proprietary information owned by Vertiv. Any copying, use or disclosure of it without the written permission of Vertiv is strictly prohibited.

Names of companies and products are trademarks or registered trademarks of the respective companies. Any questions regarding usage of trademark names should be directed to the original manufacturer.

Technical Support Site

If you encounter any installation or operational issues with your product, check the pertinent section of this manual to see if the issue can be resolved by following outlined procedures.

Visit https://www.vertiv.com/en-us/support/ for additional assistance.

TABLE OF CONTENTS

1 Important Safety Precautions	1
2 Product Introduction	5
21 System Description	5
2.2 Features	
2.3 Major Components	
2.3.1 UPS Frame	
2.3.2 User-Interface Module	
2.3.3 System-Control Module and System-Monitor Module	12
2.3.4 Power Module	13
2.3.5 Battery Module	13
2.3.6 Charger Module	14
2.3.7 External Battery Cabinet (EBC)	15
2.4 Operating Principle	
2.5 Operating Modes	16
2.5.1 Normal Mode	16
2.5.2 Backup Mode	16
2.5.3 Auto Restart Mode	
2.5.4 Bypass Mode	17
3 Installation	
3.1 Unpacking Inspection	
3.2 Installation Environment	19
3.3 Installation Tools	19
3.3.1 Installation Site Considerations and Clearances	
3.4 Removing the UPS from the Pallet	
3.5 Installing the UPS	21
3.5.1 Tower Installation	21
3.5.2 Rack Installation	23
3.6 Installing Modules	
3.6.1 Installing Power, Battery and Charger Modules	
3.6.2 Installing System-Control and System-Monitor Modules	
3.7 Cable Connections	
3.7.1 Connecting Cables on a Transformer-free UPS	
3.7.2 Connecting Cables on a Transformer-Based UPS	
3.7.3 Connecting Cables on a Transformer-free UPS with Dual Inverter Frames	
3.8 Connecting an External Battery Cabinet	
3.9 Connecting Integrated Power Output Distribution (POD)	
3.10 Commissioning/Startup Procedures	
3.10.1 Checks before Commissioning/Start-up	
3.10.2 Commissioning/Start-up with AC Power Available (Normal-mode Operation)	

3.10.3 Commissioning/Startup without AC Power Available (Battery-mode Operation) 4 Communication	
4.1 Liebert IntelliSlot Ports	
4.1.1 Liebert IntelliSlot Unity Cards	
4.1.2 Liebert IntelliSlot Dry-contact Card (IS-RELAY)	
4.1.3 Liebert IntelliSlot EBC Card	
4.2 Dry-contact Ports	
4.2.1 Battery-mode Dry Contact	
4.2.2 Low Battery Dry Contact	51
4.2.3 Any Mode Shut Down	
4.2.4 Battery Mode Shut Down	
4.3 REPO (Remote Emergency Power Off)	
4.4 Long-run-time (LRT) Battery-temperature-probe Terminals	52
4.5 USB Port	
4.6 LCD Port	53
5 Operation and Display Panel	55
51 Mimic LEDs	
5.2 Audible Alarms	56
5.2.1 Control Buttons	57
5.3 LCD Screen and Menu Buttons	
5.3.1 Start-up Screen	
5.3.2 Main Screen	
5.3.3 Default Screen/Screen Saver	64
5.3.4 Screen Views	65
5.3.5 Entering a Password to Edit Settings	67
5.3.6 Editing Parameter Settings	67
5.3.7 Prompt Window	67
6 Troubleshooting	71
6.1 Active Alarms	71
6.2 Module Troubleshooting	74
6.3 Module Replacement	75
6.3.1 Removing Power, Battery and Charger Modules	75
6.3.2 Removing System-Control and System-Monitor Modules	
6.3.3 Replacing the User Interface Module	78
7 Maintenance	79
7.1 Proper Care	
7.2 Scheduled Maintenance	
7.3 Cleaning Fan Filters	79
7.3.1 Accessing the Top Filter	79
7.3.2 Accessing the Bezel Filter	80
7.3.3 Accessing the Bottom Fan Filter	81

8 Specifications	83
8.1 Estimated Battery Run Times: Model-number Digits 1-3 = AS1 or ASA	
8.2 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS2 or ASB	
8.3 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS3 or ASC	
8.4 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS4 or ASD	
8.5 Estimated Battery Run Times: Model-number Digits 1-3 = AS5 or ASE	
8.6 Estimated Battery Run Times: Model-number Digits 1-3 = AS6 or ASF	

Vertiv™Liebert® APS Installer/User Guide

1 Important Safety Precautions

Save These Instructions

This manual contains important safety instructions. Read all safety, installation and operating instructions before operating the Vertiv[™] Liebert[®] APS modular UPS system. Adhere to all warnings on the unit and in this manual. Follow all operating and user instructions. Individuals must fully understand this equipment to install and operate it.

The Liebert® APS is designed for commercial/industrial use only. It is not intended for use with lifesupport or other designated critical devices. Maximum load must not exceed that shown on the rating label. Install and operate the unit only in a clean indoor environment, free of conductive contaminants, moisture, flammable liquids, gases and corrosive substances. The Liebert® APS contains no user-serviceable parts. Refer all faults to your local dealer, local Vertiv[™] representative or Vertiv[™] Technical Support.

The Liebert® APS UPS system is designed for use on a properly earthed (grounded) "TN" electrical supply. The system must be installed by qualified personnel. A qualified electrician must review and approve customer supplied wiring, circuit breakers, and intended loads and verify correct input, output, and earth connections to ensure compliance with the technical standards and local electrical codes of practice.

WARNING! Risk of electric shock. Can cause equipment damage, injury and death. A battery can present a risk of electrical shock and high short-circuit current.

The following precautions must be observed before replacing the battery pack:

- Wear rubber gloves and boots
- Remove rings, watches and other metal objects.
- Use tools with insulated handles.
- Do not lay tools or other metal objects on the batteries.
- If the battery kit is damaged in any way or shows signs of leakage, contact your local Vertiv representative immediately.
- Do not dispose of batteries in a fire. The batteries may explode.
- Handle, transport and recycle batteries in accordance with local regulations.

The Liebert[®] APS is designed and manufactured to ensure personal safety, but improper use can result in electrical shock or fire. To ensure safety, observe the following precautions:

- Turn Off and unplug the Liebert® APS before cleaning it.
- Clean the unit with a dry cloth. Do not use liquid or aerosol cleaners.
- Never block or insert any objects into the ventilation holes or other openings of the Liebert® APS.
- Do not place the Liebert® APS power cord where it might be damaged.

This UPS contains no user-serviceable parts except for the user-replaceable module assemblies. The UPS On/Off push button does not electrically isolate internal parts.

All service and maintenance operations must be performed by properly trained and qualified personnel. Under no circumstances should unqualified or unauthorized personnel attempt to gain access to the internal portions of the Liebert[®] APS.

ELECTROMAGNETIC COMPATIBILITY—The Liebert® APS complies with the limits of Category C2, pursuant to IEC/EN/AS 62040-2, and for a Class A digital device, pursuant to Part 15 of FCC rules. Operation is subject to the following conditions:

- The output cables must be no longer than 10 m (32 ft).
- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation. Operating this device in a residential area is likely to cause harmful interference that users must correct at their own expense.

The Liebert[®] APS complies with the requirements of EMC Directive 2004/108/EC and the published technical standards. Continued compliance requires installation in accordance with these instructions and use of accessories approved by Vertiv.

Operate the unit in an indoor environment only in an ambient temperature range of 0-40°C (32-104°F). Install it in a clean environment, free from moisture, flammable liquids, gases and corrosive substances.

Do not continue to use the Liebert[®] APS if the front panel indications are not in accordance with these operating instructions or the performance alters in use. Refer all faults to your Vertiv representative or Technical Support.

Servicing of batteries must be performed or supervised by properly-trained and qualified personnel knowledgeable of batteries and the required precautions. Keep unauthorized personnel away from the batteries. Proper disposal of batteries is required. Refer to your local laws and regulations for disposal requirements.

Never block or insert any object into the ventilation holes or other openings.

DO NOT CONNECT equipment that could overload the UPS or demand DC current from the Liebert[®] APS, for example: electric drills, vacuum cleaners, laser printers, hair dryers or any appliance using half-wave rectification.

Storing magnetic media on top of the Liebert® APS may result in data loss or corruption.

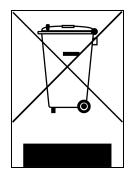
Turn Off and isolate the Liebert® APS before cleaning it. Use only a soft cloth, never liquid or aerosol cleaners.

Information for the Protection of the Environment

UPS SERVICING—This unit makes use of components dangerous for the environment (electronic cards, electronic components). The components removed must be taken to specialized collection and disposal centers.

NOTICE TO EUROPEAN UNION CUSTOMERS: DISPOSAL OF OLD APPLIANCES—This product has been supplied from an environmentally aware manufacturer that complies with the Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/CE.

The symbol at right is placed on this product to encourage recycling wherever possible. Recycle this product through a recycling facility at the end of its service life. Do not dispose of this product as unsorted municipal waste. Follow local municipal waste ordinances for proper disposal provisions to reduce the environmental impact of waste electrical and electronic equipment (WEEE).


For information regarding the disposing of this equipment, visit www.vertiv.com or contact Vertiv technical support. Refer to the inside front cover of this manual for contact information.

For information regarding the scrapping of this equipment, please browse <u>https://www.vertiv.com/en-emea/</u> or call our worldwide technical support.

- Toll Free: 00 80011554499
- Toll Number Based in Italy: +39 0298250222

Table 1.1 Glossary of Symbols

Symbol	Description	Symbol	Description
£	Risk of electrical shock		Recycle
	Indicates caution followed by important instructions		Equipment grounding conductor
\rightarrow	AC input	4	Bonded to ground
\leftrightarrow	AC output	i	Requests the user to consult the manual
	Indicates the unit contains a valve-regulated lead acid battery		DC voltage
	Toggle between On and Off	(\mathbf{I})	Stand-by

This page intentionally left blank

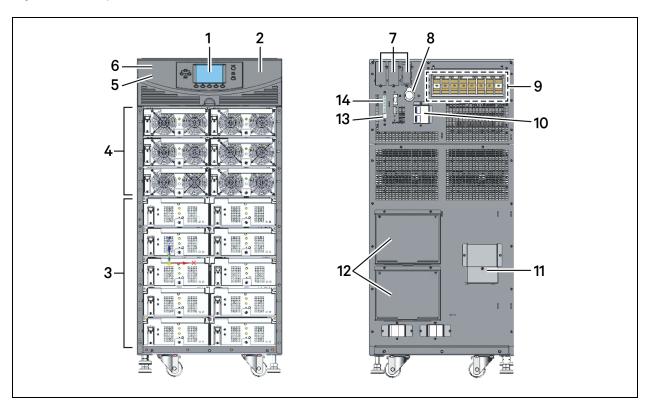
2 Product Introduction

To ensure proper installation and operation of this unit, please read this manual thoroughly.

The installation must be completed by trained professionals and follow all local codes. General operation of the units can be conducted without any specialized training.

2.1 System Description

The Liebert® APS power system is a modular UPS that provides high reliability. It is intended for use with workstations, servers, networks, telecoms and other sensitive electronic equipment. It provides continuous, high-quality AC power to your equipment, protecting it from any power disturbance due to blackouts, brownouts, surges or noise interference.


The Liebert® APS UPS is an easily adaptable UPS system. By installing additional power or battery modules, you can expand your current system capacity, extend your back-up runtime, or provide redundancy. The user interface lets you configure the operation according to application requirements. It also informs you of the status of the UPS and keeps a log of events.

The Liebert® APS series UPS contains both transformer-free and transformer-based UPS frames. The use of the transformer-free or transformer-based frames depends on the specific application requirements. The appearance of the different frames is shown in 16-bay transformer-free UPS on the next page through 16-bay transformer-based UPS on page 9.

UPS Model Number Digits 1-3	Frame Type	Frame Rating
AS1 or ASA or AS5 or ASE	10 Bay Transformer-free	15 kVA redundant
AS2 or ASB or AS6 or ASF	16 Bay Transformer-free	20 kVA redundant
AS3 or ASC	12 Bay Transformer-based	15 kVA redundant
AS4 or ASD	16 Bay Transformer-based	20 kVA redundant

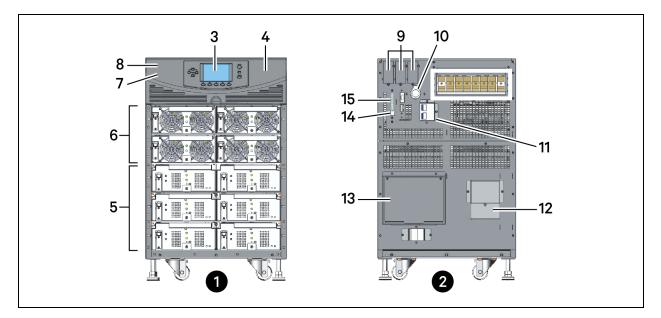

Table 2.1 Frame designation

Figure 2.1 16-bay transformer-free UPS

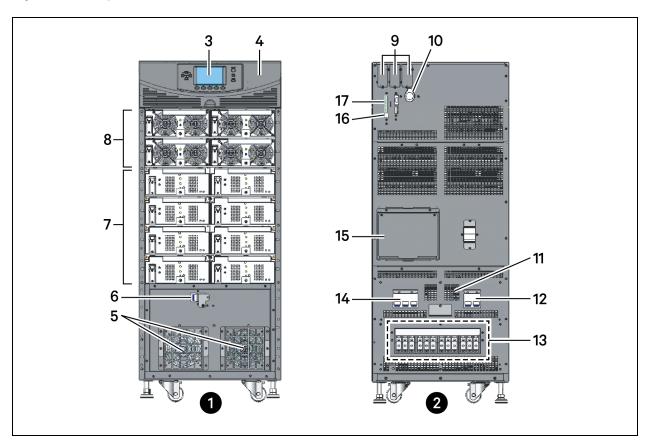

ltem	Description	ltem	Description
1	User-interface module	8	System-enable switch
2	System-control module (under cover)	9	Power input and output terminals
3	Bays for battery modules	10	Output breaker
4	Bays for power, charger, or battery modules	11	External-batter-cabinet connector
5	Input breaker (under cover)	12	POD ports
6	Manual bypass breaker (under cover)	13	USB port
7	Liebert IntelliSlot ports	14	Dry contacts and REPO connections

Figure 2.2 10-bay transformer-free UPS

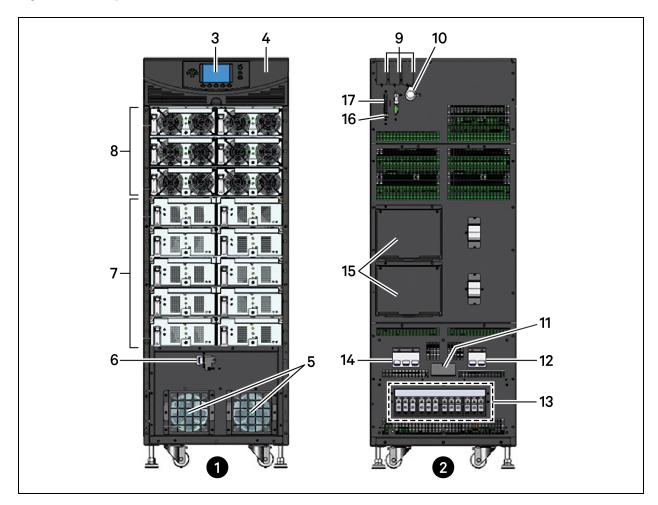

ltem	Description	ltem	Description
1	Front view with bezels removed	9	Liebert IntelliSlot ports
2	Rear view	10	System-enable switch
3	User-interface module	11	Output breaker
4	System-control module (under cover)	12	External-batter-cabinet connector
5	Bays for battery modules	13	POD ports
6	Bays for power, charger, or battery modules	14	USB port
7	Input breaker (under cover)	15	Dry contacts and REPO connections
8	Manual bypass breaker (under cover)		

Figure 2.3 12-bay transformer-based UPS

ltem	Description	ltem	Description
1	Front view with bezels removed	10	System-enable switch
2	Rear view	11	External-batter-cabinet connector
3	User-interface module	12	Input breaker
4	System-control module (under cover)	13	Power input and output terminals
5	Fans	14	Output breaker
6	Manual bypass breaker	15	POD ports
7	Bays for battery modules	16	USB port
8	Bays for power, charger, or battery modules	17	Dry contacts and REPO connections
9	LiebertIntelliSlot ports		

Figure 2.4 16-bay transformer-based UPS

ltem	Description	ltem	Description
1	Front view with bezels removed	10	System-enable switch
2	Rear view	11	External-batter-cabinet connector
3	User-interface module	12	Input breaker
4	System-control module (under cover)	13	Power input and output terminals
5	Fans	14	Output breaker
6	Manual bypass breaker	15	POD ports
7	Bays for battery modules	16	USB port
8	Bays for power, charger, or battery modules	17	Dry contacts and REPO connections
9	Liebert IntelliSlot ports		

2.2 Features

- Flexible extension of capacity, up to 15 or 20 kVA modular power, depending upon frame rating
- N + 1 redundancy, improving availability
- Modular design, modules hot-swappable by user
- Intelligent battery management
- External large batteries can be connected
- Internal automatic and manual bypass
- Transformer-based UPS frames provide output isolation transformer
- Optional 10-A battery charger module
- Continuous system monitoring
- User-friendly interface with audible alarms and event logs
- Supporting hot-pluggable and online update
- Compatible with backup generators

Standard Components

- UPS frame
- User-interface module for comprehensive user indications and programmable controls
- System-control modules and system-monitor module for system monitoring and communications
- Power modules for power conditioning
- Battery modules for back-up power
- Charger module option for charging batteries and long run-time applications
- External battery cabinet prolongs system run time

Communications

- Dry contacts
- Liebert IntelliSlot communication ports
- USB port

2.3 Major Components

This section provides a general description of each component and its functions. Please review this section carefully, as it will give you a better understanding of how the UPS operates.

2.3.1 UPS Frame

All UPS components are located in the Liebert® APS frame. The front of the UPS consists of a series of plastic bezels. Grasp the bezels from the sides and pull straight out to remove the bezel and reveal the battery/power-module bays. The standard-model frame provides cooling fans and a manual-bypass breaker on the top. The transformer-model frame provides a manual-bypass breaker on its bottom and fans on both top and bottom. The user-interface module is located above the power/battery-module bays for easy access, operation and for viewing UPS operating information. On the lower-right of the user-interface module bays. The UPS frames are shown in Example UPS frames with bezels removed below.

NOTE: In the figure, the power module and battery module are extended for illustration purposes only. Extending more than one module at a time could cause the unit to tip over.

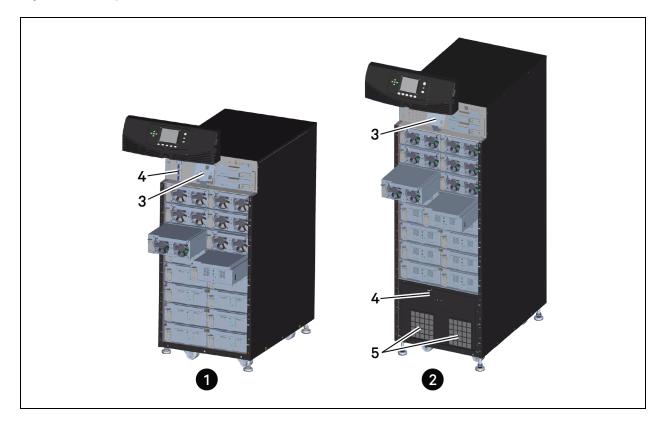


Figure 2.5 Example UPS frames with bezels removed

item	Description	ltem	Description
1	16-bay, transformer-free UPS	4	Manual bypass breaker
2	16-bay, transformer-based UPS	5	Fans
3	Fan, behind display bracket		

2.3.2 User-Interface Module

The user-interface module, shown in User-interface module below, is the primary source of communication between the UPS and the user. The user interface module lets you:

- View the UPS status
- Configure the system
- Review the event log
- Silence the audible alarm

Refer to Operation and Display Panel on page 55 for details on operating the user interface module.

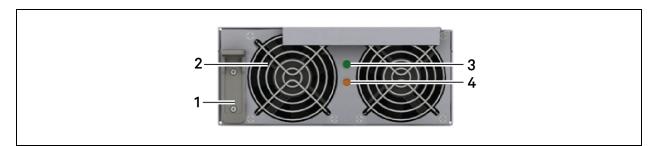
Figure 2.6 User-interface module

2.3.3 System-Control Module and System-Monitor Module

The system-control module and the system-monitor module are the communication backbone of the UPS. They gather input from all modules and process the data to control system operation and monitor the condition of each module. Except for the silkscreen, the appearance of the system-control module and the system-monitor module appear as shown in Example of system-control and system-monitor module on the facing page.

Under normal operation, the green status LED blinks and the yellow fault LED is Off. For any other condition, refer to Troubleshooting on page 71.

Figure 2.7 Example of system-control and system-monitor module


ltem	Description	ltem	Description
1	Status LED (green)	4	Securing hole
2	Fault LED (yellow)	5	Locking lever
3	Handle		

2.3.4 Power Module

Each power module, shown in Power module below, is an independent 5-kVA unit, consisting of a power-factor-corrected rectifier, battery charger, and inverter with associated monitoring and control circuitry. The modules are connected in parallel for greater capacity and/or redundancy.

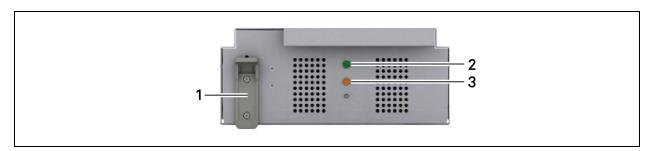
The power modules may be added or replaced on-line with no interruption or danger to the connected equipment or user.

Figure 2.8 Power module

item	Description	ltem	Description
1	Locking Lever	3	Status LED (green)
2	Fan	4	Fault LED (yellow)

2.3.5 Battery Module

When AC utility fails, the battery module supplies power to the load. Each battery module contains 6 individual 12-V, valve-regulated lead-acid (VRLA) battery blocks. Two battery modules are connected in series to form a battery string.

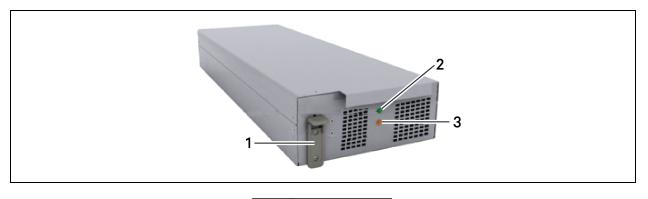

Each battery module, shown in Battery module below ,has monitoring and controls that isolate the battery module in the event of a battery failure. The battery strings are connected in parallel to provide back-up time and/or redundancy.

NOTE: Two battery modules must be installed in the same row to make a complete battery string.

The battery modules may be added or replaced on-line with no interruption or danger to the connected equipment if the UPS is not operating on battery.

Under normal operation, the green status LED blinks continuously and the yellow fault LED is Off. For any other condition, refer to Troubleshooting on page 71.

Figure 2.9 Battery module


ltem	Description			
1	Locking Lever			
2	Status LED (green)			
3	Fault LED (yellow)			

2.3.6 Charger Module

In AC mains mode, the charger module, shown in Charger module on the facing page, charges the system battery modules or external battery cabinet. Each charger module is rated to deliver 10-A charging current. The charger module has an independent control function and maintains real-time communication with the system and the battery modules to ensure stable charging and fault protection.

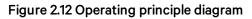
The charger module may be added or replaced on-line with no interruption or danger to the user, connected battery system or connected equipment.

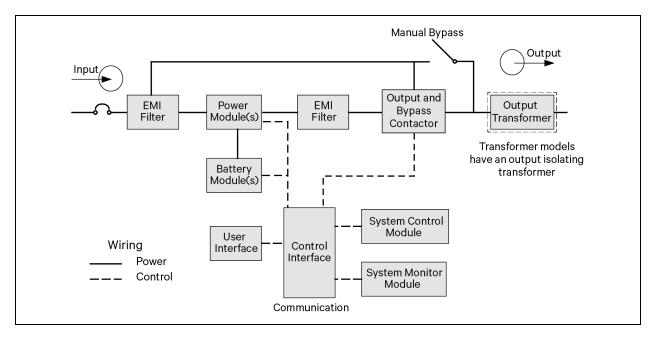
Figure 2.10 Charger module

ltem	Description		
1	Locking Lever		
2	Status LED (green)		
3	Fault LED (yellow)		

2.3.7 External Battery Cabinet (EBC)

The external battery cabinet, shown in External battery cabinet below, is divided into 9 rows: the upper 7 rows are used for the intelligent battery modules, and the lower 2 rows are used for overcurrent protection for each battery cabinet. For normal operation, 2 battery modules must be inserted in the same row of the frame to create a complete string. The battery module strings work in parallel to provide longer back-up time for the UPS. The Liebert® APS can be configured with up to 4 external battery cabinets.


Figure 2.11 External battery cabinet



2.4 Operating Principle

The operating principle of the Liebert® APS UPS is shown in Operating principle diagram below .

The UPS is composed of AC input, EMI filter, power module(s), battery module(s), user interface, control interface, system control module, output and bypass contactor, manual bypass, output transformer (certain frames only) and AC output.

2.5 Operating Modes

The Liebert® APS is a true online double-conversion system, with the following operating modes:

- Normal Mode
- Backup Mode
- Auto Restart Mode
- Bypass Mode

2.5.1 Normal Mode

The power-module rectifiers derive power from a utility AC source and supply regulated DC power to the inverter. The module's inverter regenerates precise AC power to supply the connected equipment. The battery charger is in the power module and maintains a float-charge on the batteries of the UPS. The optional charger module can also charge the batteries to maintain a quicker recharge time for long back-up time applications.

2.5.2 Backup Mode

When AC utility fails, the connected equipment is supplied power by the inverter, which obtains energy from the battery modules. The output power will not be interrupted during the failure or restoration of the AC utility/mains source.

2.5.3 Auto Restart Mode

After a power outage and complete battery discharge, and once AC utility is restored, the UPS automatically restarts and resumes supplying power to connected equipment. This feature is enabled at the factory, but can be disabled by you. You can also program two auto-restart delay settings from the LCD:

- Battery capacity level (%)
- Countdown timer

2.5.4 Bypass Mode

The bypass provides an alternate path for power to the connected equipment and operates as follows:

- Automatic: In the event of an internal fault or the inverter overload capacity be exceeded, the UPS performs an automatic transfer of the connected equipment from the inverter to the bypass source.
- Manual: If the UPS needs taken out of service for limited maintenance or repair, manual activation of the bypass causes an immediate transfer of the equipment from the inverter to the bypass source.

This page intentionally left blank

3 Installation

3.1 Unpacking Inspection

Upon receipt, unpack the Liebert® APS and conduct the following checks:

- Inspect the unit for shipping damage. If any shipping damage is founded, report it to the carrier.
- Check against the delivery list to verify that the types of the accessories are complete and correct. If there is any discrepancy, contact the carrier and your Vertiv representative immediately.

3.2 Installation Environment

NOTE: Operating the UPS in temperatures above 77°F (25°) will reduce battery life.

The environment must be free of conductive contaminants and excessive moisture (water and condensation), flammable vapors, chemical fumes, corrosive gases and liquids.

3.3 Installation Tools

The following tools are required to properly set up your UPS:

- Pallet jack
- 17-mm (11/16-in.) wrench or socket
- 13-mm (1/2-in.) wrench or socket
- 10-mm wrench or socket
- #1 and #3 Phillips-head screwdrivers
- Torque wrench

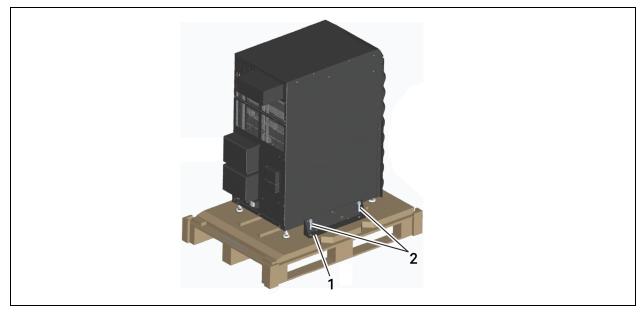
3.3.1 Installation Site Considerations and Clearances

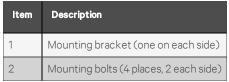
Consider the weight and size of the Liebert[®] APS when deciding where to install the unit. Verify that the floor can support the weight of a fully-loaded unit, with any accessories and external cabinets.

The UPS is air-cooled by internal fans. Air is drawn into the front of the UPS and exhausted through ventilation grilles in the back. Verify that the UPS will be in a well-ventilated area with at least 6-in. (153-mm) clearance behind for ventilation and at least 39-in. (1-m) clearance in front for service and to meet local and national building codes.

3.4 Removing the UPS from the Pallet

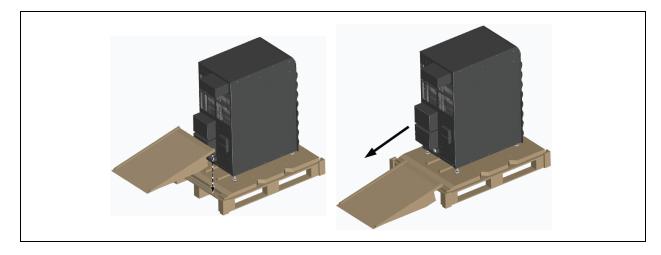
The unit frame is bolted to the shipping pallet for safety during shipping. We recommend keeping the unit bolted to the pallet and using a pallet jack to transport the unit to the installation location.


NOTE: The UPS is very heavy. At least two people should unload it from the pallet.


To unload the UPS:

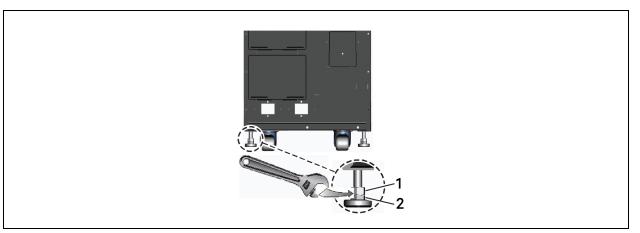
1. Move the UPS to its installation location and remove the package paper.

- 2. Use a 17-mm (11/16-in.) wrench, to remove the 4 mounting bolts from the pallet brackets, see Remove the mounting brackets below .
- 3. Remove the mounting brackets from the UPS with a 10mm wrench or socket or a #3 Phillips screwdriver.


Figure 3.1 Remove the mounting brackets

- 4. Raise the 4 leveling feet to provide clearance between the pallet and the UPS frame.
- 5. Connect the ramp to the UPS pallet as shown in Connect the ramp and roll UPS off the pallet below , and roll the UPS slowly down the ramp until it is on a level surface.

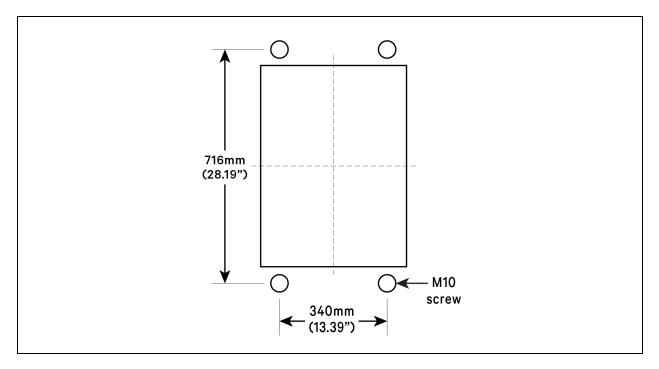
Figure 3.2 Connect the ramp and roll UPS off the pallet


3.5 Installing the UPS

The Liebert[®] APS may be installed as a tower or in a rack, depending on available space and use considerations. Determine the type of installation and follow the appropriate instructions. See Tower Installation below or Rack Installation on page 23.

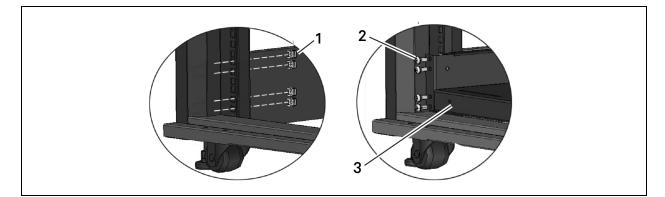
3.5.1 Tower Installation

- 1. With the UPS in the installation location, adjust the leveling feet to secure its position, as shown in Adjust the leveling feet below .
 - a. Use an open end wrench to turn the lower nut to raise or lower the leveling foot.
 - b. After the unit is level, tighten the upper nut against the frame to prevent the height from changing.


Figure 3.3 Adjust the leveling feet

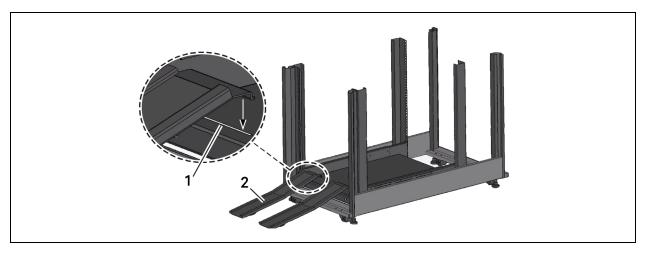
ltem	Description		
1	Upper nut		
2	Lower nut		

- 2. For added stability or earthquake-resistant installations, the shipping brackets can be used to secure the unit to the floor.
 - a. Refering to Dimension-location of drilled holes for stationary mounting below, drill 10.3-mm (13/32-in.) holes in the floor to accommodate the mounting bolts removed from the pallet.
 - b. Use the mounting screws to install the mounting brackets on the front and rear of the UPS (the brackets were removed from the sides of the unit when removing it from the pallet, see Remove the mounting brackets on page 20).
 - c. Secure the mounting brackets to the floor with the mounting bolts in the drilled holes. For greater stability, use a higher-grade bolt.


Figure 3.4 Dimension-location of drilled holes for stationary mounting

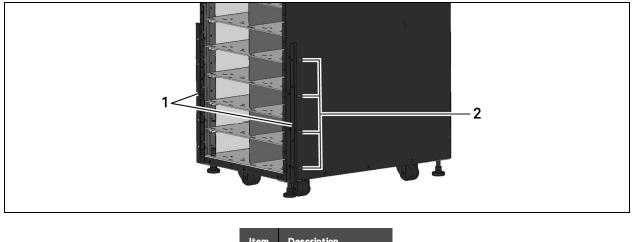
3.5.2 Rack Installation

- 1. Install the cage nuts on the corresponding positions in the rack, see Install cage nuts and tray below .
 - a. Install cage nuts in the 2 lower square holes of 1U space and in the 2 upper square holes of 2U space on all 4 rack posts. These cage nuts secure the optional shelf that will support the weight of the Liebert[®] APS.
 - b. Install a cage nut in the middle square hole of 4U, 6U, 10U, 12U spaces, respectively in all 4 posts. These cage nuts help secure the UPS in the rack.
- 2. Install the rack-mount shelf on the corresponding position between 1U space and 2U space on the bottom of the rack, as shown in Install cage nuts and tray below.


Figure 3.5 Install cage nuts and tray

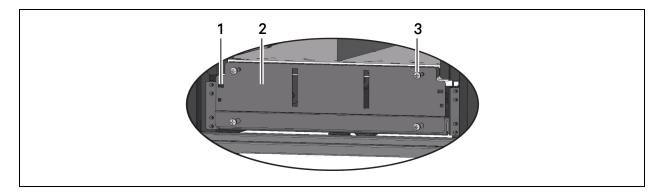
ltem	Description
1	Cage nut
2	Screw (16 places)
3	Tray

3. Install the guide rails (ramp) in the mounting slot at the front of the tray, as shown in Install the guide rails below .


Figure 3.6 Install the guide rails

4. Unscrew the 10 screws, 5 each side, on the front of the side panels of the UPS frame, and use the screws to attach the brackets to each side of the UPS frame, as shown in Install the brackets below .

Figure 3.7 Install the brackets


5. Push the Liebert® APS frame slowly, up the guide rails into the enclosure from the front. The rear of the UPS goes into the rack first when installing through the front of the rack.

6. Using 8 panel screws, 4 in each bracket, secure the UPS frame to the rack posts.

NOTE: You may need to adjust the leveling feet to align the holes.

- 7. Use 4 screws to install the metal plate (accessory in the rack-mount kit) on the corresponding position on the lower-front part of the UPS frame as shown in Metal plate and Square holes for bezel below .
- 8. Insert the plastic bezel into the square holes of the metal plate, see Metal plate and Square holes for bezel below.

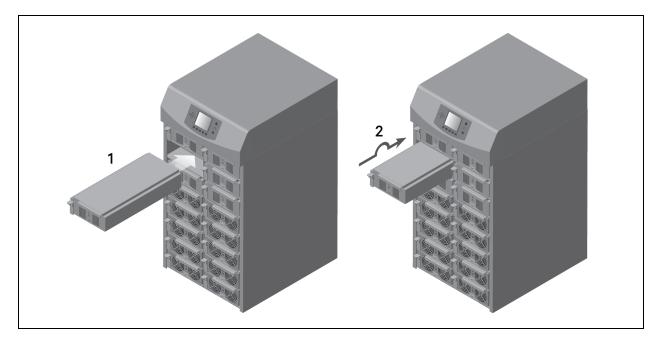
Figure 3.8 Metal plate and Square holes for bezel

ltem	Description
1	Square hole (4 places)
2	Metal plate
3	Screw (4 places)

3.6 Installing Modules

The Liebert[®] APS ships configured from the factory (modules pre-populated) and tested as a system to your requirements. If you removed any modules to facilitate installation, refer to the following steps to re-insert them properly.

3.6.1 Installing Power, Battery and Charger Modules

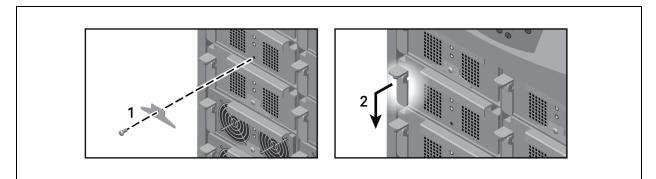

1. With the plastic bezel removed, lift module to appropriate bay, resting end of module on bay shelf.

NOTE: Do not rest the module on any plastic bezels. It could damage the bezel.

NOTE: Two battery modules must be installed in the same row to complete the battery string.

- 2. Refering to Inserting power, battery and charger modules below, slowly push the module until about 1/3 of the module is in the bay.
- 3. Lift the module up, then continue pushing until about 5 cm (2 in.) of the module remains outside the bay, then push it firmly and smoothly to insure that it is fully inserted.

Figure 3.9 Inserting power, battery and charger modules


ltem	Description
1	Push in slowly about 1/3 of the module.
2	Lift and push smoothly and firmly until fully inserted.

4. Pull out the lock lever slightly, and press the lever down slightly, see Lock lever and module-securing bracket on the facing page.

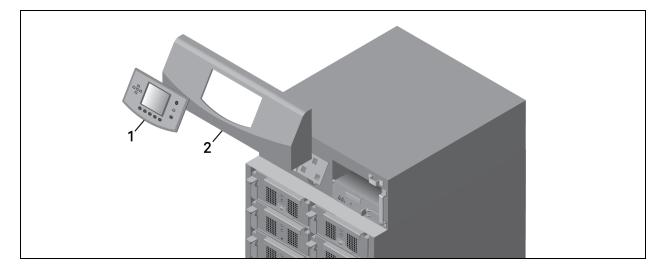
NOTE: If the lever does not press down smoothly, remove and reinstall the module.

- 5. Use a #2 Phillips screwdriver to install the module-securing bracket as shown in Lock lever and module-securing bracket below.
- 6. Replace the plastic bezels.

Figure 3.10 Lock lever and module-securing bracket

ltem	Description
1	Install module-securing bracket.
2	Pull out and down to secure lock lever.

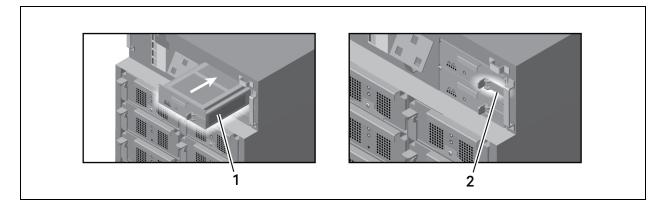
3.6.2 Installing System-Control and System-Monitor Modules


NOTICE

Risk of unintended shutdown. Can cause equipment damage.

Do not remove both the control and the monitor modules at the same time. Removing both the control module and monitor module at the same time will cause the UPS to shut down and remove power from the load. Replace these modules one at a time.

1. Remove the display bezel and the user interface (LCD) module from the frame, as shown in Remove display bezel and user-interface module below, then lay the user-interface module on top of the UPS.


Figure 3.11 Remove display bezel and user-interface module

ltem	Description			
1	User-interface module			
2	Display bezel			

- 2. Push the module in slowly until about 1 cm (1/2 in) of the module remains outside the bay, as shown in Insert the module and engage the lock lever below, then press it firmly and smoothly to ensure that it is fully inserted.
- 3. Pull out the lock lever slightly, then press the lever to the right into the bracket.

Figure 3.12 Insert the module and engage the lock lever

- 4. Use a #2 Phillips screwdriver to install the screws into the holes on each end of the inserted module.
- 5. Replace the user-interface module and display bezel.

3.7 Cable Connections

WARNING! Risk of electric shock. Can cause injury or death. Disconnect local and remote power supplies before working within. Read this section thoroughly before attempting to install wiring to this unit. Ensure that all the UPS input sources are disconnected off before attempting to install wiring to this unit. This UPS cables should be connected by a properly trained and qualified electrician.

Refer to the unit model number in Cable connection method reference on the next page to determine the instructions to use for installation.

UPS Model # Digits 1-3	Frame Type	Manual Section		
AS1 or ASA	10 Bay Transformer-free	Connecting Cables on a Transformer-free UPS below		
AS2 or ASB	16 Bay Transformer-free	Connecting Cables on a Transformer-free UPS below		
AS3 or ASC	12 Bay Transformer- based	Connecting Cables on a Transformer-Based UPS on page 34		
AS4 or ASD	16 Bay Transformer- based	Connecting Cables on a Transformer-Based UPS on page 34		
AS5 or ASE	10 Bay Transformer-free	Connecting Cables on a Transformer-free UPS with Dual Inverter Frames on page 39		
AS6 or ASF	16 Bay Transformer-free	Connecting Cables on a Transformer-free UPS with Dual Inverter Frames on page 39		

Table 3.1 Cable connection method reference

3.7.1 Connecting Cables on a Transformer-free UPS

A junction box is factory-installed on each model of the Liebert APS to ease cable connection.

Select the appropriate input cables according to Input cable selection list—60Hz below and Input cable selection list—50Hz on the facing page based on the UPS rating and mains frequency; however, it is recommended that you size the over current protection and wiring for the frame rating to easily allow upgrades to the UPS system.

Table 3.2 Input cable selection list—60Hz

Maximum	Input voltage - 200VAC		Input voltage - 208VAC		Input voltage - 240VAC	
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker
5kVA	27A	50A	26A	50A	23A	50A
10kVA	53A	63A	51A	63A	45A	63A
15kVA	80A	100A	77A	100A	67A	100A
20kVA	106A	125A	102A	125A	90A	125A

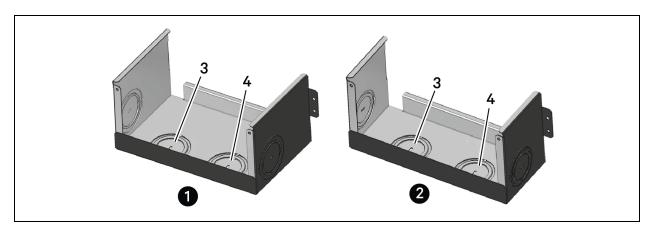
The power input and output terminals accept a maximum cable cross-sectional area of 35 mm² (2 AWG); the minimum cable cross-sectional area is 16 mm² (6 AWG); the rated torque is 4.52 Nm (40 in-lb).

Use of 90°C copper wire is recommended

Maximum	Input Voltage - 220VAC Maximum		Input Voltage -	Input Voltage - 230VAC		Input Voltage - 240VAC	
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	
5kVA	25A	50A	24A	50A	23A	50A	
10kVA	49A	63A	47A	63A	45A	63A	
15kVA	73A	100A	70A	100A	67A	100A	
20kVA	97A	125A	93A	125A	90A	125A	
The power inp	The power input and output terminals accept a maximum cable cross-sectional area of 35 mm ² (2 AWG); the minimum cable cross-						

Table 3.3 Input cable selection list—50Hz

sectional area is 16 mm 2 (6 AWG); the rated torque is 4.52 Nm (40 in-lb).


90°C copper wire recommended

To connect the cable:

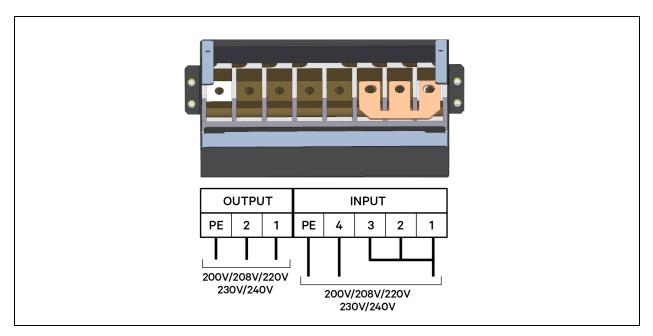
NOTE: Input and output cables must be run in separate conduit before cable connection. If your input power grid is L-L line voltage, the input N of the power input and output terminals will connect live wire, so the output N of the power input and output terminals is also live wire.

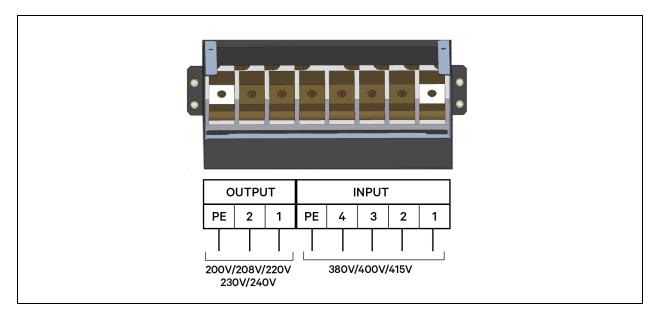
1. Remove the knockouts at the junction box, see Knockouts in Units without Transformer below, and pull the cables through them, leaving some slack for installation.

Figure 3.13 Knockouts in Units without Transformer

item	Description	ltem	Description
1	16-bay, no transformer	3	Output-cable knockout
2	10-bay, no transformer	4	Input-cable knockout

- 2. Connect the cables to the corresponding terminal of the power input and output terminals.
- 3. Using a 13-mm (1/2-in.) torque wrench, tighten the screws to 4.52 Nm (40 in-lb).
- 4. Respectively, secure the conduit of the input/output cables through the cable bridges on the rear panel of the UPS, see Secure cables on cable bridges below.


Figure 3.14 Secure cables on cable bridges



The connection methods for single-phase and the 3-phase input modes are shown in Connection in single-phase input on the facing page and Connection in 3-phase input on the facing page, respectively. Installation of the factory-provided copper bar is essential in the single-phase input mode. The copper busbar is in the accessory bag included with the UPS.

Figure 3.15 Connection in single-phase input

Figure 3.16 Connection in 3-phase input

System	System Nominal		Input Terminal Block				Output Terminal Block		
Voltage	Frequency	1	2	3	4	PE		2	PE
200	60	L1*	L1*	L1*	L2	GND	L1	L2	GND
208	60	L1*	L1*	L1*	L2	GND	L1	L2	GND
220	60	L1*	L1*	L1*	L2	GND	L1	L2	GND
230	60	L1*	L1*	L1*	L2	GND	L1	L2	GND
240	60	L1*	L1*	L1*	L2	GND	L1	L2	GND
200	50	L*	L*	L*	Ν	PE	L	Ν	PE
220	50	L*	L*	L*	N	PE	L	Ν	PE
230	50	L*	L*	L*	Ν	PE	L	Ν	PE
240	50	L*	L*	L*	N	PE	L	Ν	PE
380	50	L1	L2	L3	N	PE	L	Ν	PE
400	50	L1	L2	L3	N	PE	L	Ν	PE
415	50	L1	L2	L3	Ν	PE	L	Ν	PE
* This connectio	n requires the factory-provi	ded three-	position bus	sbar to coni	nect the thi	ree termina	l block posi	tions.	

Table 3.4 Key to Connection in single-phase input on the previous page and Connection in 3-phase input on the previous page UPS wiring

3.7.2 Connecting Cables on a Transformer-Based UPS

NOTE: After the output transformer is installed, if the start-up is on bypass, the UPS has a 6-cycle inrush current that is up to 20 times the rated output current. This must be taken into account when selecting the input-overload protection device at the AC-input supply-distribution point.

To avoid random tripping on startup, we recommend that the AC-input supply be protected with a circuit breaker capable of withstanding this initial inrush (the MCB is derated according to the D curve or TYPE 4).

This UPS is fitted with EMI filters. Earth leakage current is less than 40 mA. Transient and steady-state earth leakage currents may occur when starting the UPS. This should be taken into account when selecting transient RCCB or RCCD (leakage-current devices of the UPS and load).

The MCB of the AC power supply connected to the UPS input must bear this warning:

"Disconnect the connection with UPS before maintaining this circuit"

The warning is required because the UPS has no auto-feeding protection device.

The UPS grounding should be in accordance with local regulations.

A junction box is factory-installed on all models of the Liebert® APS to ease cable connection.

Select the appropriate input cables according to Input cable selection for transformer-based frames (60 Hz) below and Input cable selection for transformer-based frames (50 Hz) below based upon the UPS rating and mains frequency. Vertiv recommends sizing the frame's overcurrent protection and wiring to permit easier UPS system upgrades.

Maximum	Input Voltage - 200VAC		Input Voltage - 208VAC		Input Voltage - 240VAC		
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	
5kVA	27A	50A	26A	50A	23A	50A	
10kVA	53A	63A	51A	63A	45A	63A	
15kVA	80A	100A	77A	100A	67A	100A	
20kVA	106A	125A	102A	125A	90A	125A	

Table 3.5 Input cable selection for transformer-based frames (60 Hz)

The power input and output terminals accept a maximum cable cross-sectional area of 70 mm² (2/0 AWG); the minimum cable cross-sectional area is 16 mm² (6 AWG). The rated torque is 12.43 Nm (110 in-lb).

90°C copper wire recommended.

Table 3.6 Input cable selection for transformer-based frames (50 Hz)

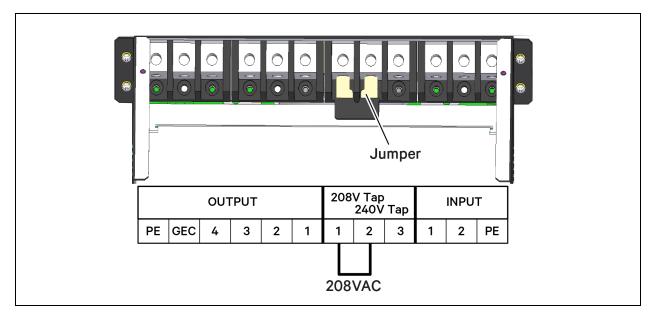
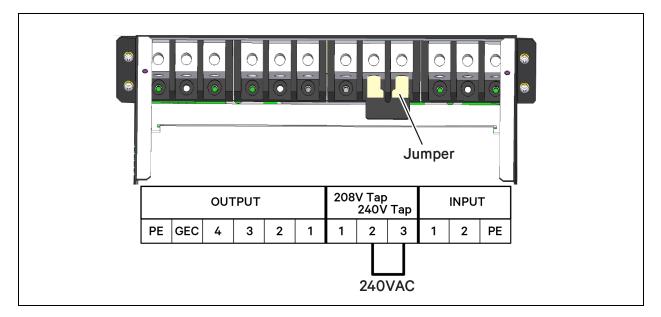
Maximum	Input Voltage - 220VAC		Input Vo	bltage - 230VAC	Input Voltage - 240VAC		
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	
5kVA	25A	50A	24A	50A	23A	50A	
10kVA	49A	63A	47A	63A	45A	63A	
15kVA	73A	100A	70A	100A	67A	100A	
20kVA	97A	125A	93A	125A	90A	125A	

The power input and output terminals accept a maximum cable cross-sectional area of is 70 mm² (2/0 AWG); the minimum cable cross-sectional area is 16 mm² (6 AWG). The rated torque is 12.43 Nm (110 in-lb).

90°C copper wire recommended.

Configuring the Bypass Voltage

The UPS bypass voltage is factory-set to 208 V (the jumper copper bar is installed). If you have a utility supply of 200 V/220 V/230 V/240 V, you must change the bypass-voltage jumper to ensure correct output voltages when in bypass mode. The bypass voltage jumper settings are shown in Setting bypass voltage jumper (default: 208VAC) on the next page and Setting bypass voltage jumper (200/220/230/240VAC) on the next page . Refer to Key to Connection method on the previous page UPS output wiring on page 39 for the proper setting according to the AC mains voltage configuration.

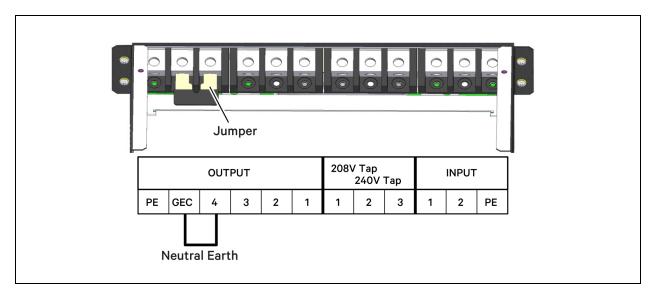
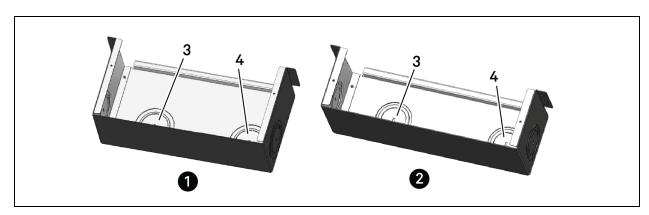

Figure 3.17 Setting bypass voltage jumper (default: 208VAC)

Figure 3.18 Setting bypass voltage jumper (200/220/230/240VAC)

Configuring the Neutral/Earth Jumper

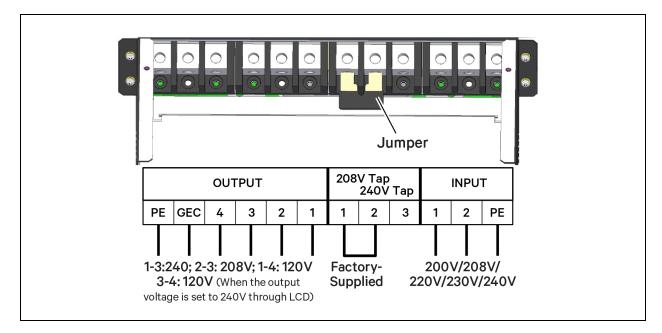
The UPS contains an isolation transformer that generates a neutral conductor for the connected load. The UPS is a separately-derived source and contains a neutral/earth jumper. You may need to remove a factory-installed neutral/earth-jumper copper bar to comply with local codes and regulations.


Figure 3.19 Configuring the neutral/earth jumper

Connecting the Cables

NOTE: Input and output cables must be run in separate conduit before cable connection.

1. Remove the knockouts at the junction box, see Knockouts in units without a transformer below and pull the cables through them, leaving some slack for installation.


Figure 3.20 Knockouts in units without a transformer

ltem	Description	ltem	Description
1	16-bay, with transformer	3	Output-cable knockout
2	12-bay, with transformer	4	Input-cable knockout

- 2. Connect the cable to the corresponding terminal of the power input and output terminals as shown in Connection method below.
- 3. Using a torque wrench, tighten the screws to 12.43 Nm (110 in-lb).

Figure 3.21 Connection method

Refer to Input cable selection for transformer-based frames (50 Hz) on page 35 for configuring the output cable. For standard voltages, make the connections shown in Key to Connection method on the previous page UPS output wiring on the facing page .

System Voltage	System Nominal Frequency	Input	Termina	l Block
System voltage	cystem terminal requercy	1	2	PE
200	60	L1	L2	GND
208	60	L1	L2	GND
220	60	L1	L2	GND
230	60	L1	L2	GND
240	60	L1	L2	GND
200	50	L	Ν	PE
220	50	L	Ν	PE
230	50	L	Ν	PE
240	50	L	Ν	PE

Table 3.7 Key to Connection method above UPS input wiring

Output Set Output Voltage by		Bypass Vol	tage Jumper	Output Voltage (Between Terminals)				
Voltage	LCD	208V TAP (1-2)	240V TAP (2-3)	1-4	3-4	2-3	1-3	
200/100	200	_	ОК	100	100	173 (Do Not Use)	200	
220/110	220	_	ОК	110	110	190 (Do Not Use)	220	
230/115	230	_	ОК	115	115	199 (Do Not Use)	230	
220/127	220	ОК	_	127	127	220	254 (Do Not Use)	
240/120	240	_	ОК	120	120	208	240	
208/120	208	ОК	—	120	120	208	240	

Table 3.8 Key to Connection method on the previous page UPS output wiring

When wiring to single-phase panels, connect to output terminals 1, 3, 4 and PE (GND) only.

Maximum load capacity of the output winding below shows the maximum load capacity of the output winding of the transformer-based UPS.

Table 3.9 Maximum load capacity of the output winding

UPS Model	Maximum O	Maximum Output Capacity, kVA (Between Terminals)						
	1-4	3-4	2-3	1-3				
16-bay Transformer-based UPS	10	10	20	20				
10-bay Transformer-based UPS	7.5	7.5	15	15				

3.7.3 Connecting Cables on a Transformer-free UPS with Dual Inverter Frames

A junction box is factory-installed on all models of the Liebert® APS to ease cable connection.

Select the appropriate input cables according to Input cable selection for Transformer-free Dual Inverter frames(50/60 Hz) on the next page and Input cable selection for Transformer-free Dual Inverter frames (50/60 Hz) on the next page based on the UPS rating and mains frequency. We recommend sizing the overcurrent protection and wiring for the frame rating to easily upgrade the UPS system.

Maximum	Input Voltage – 200/100VAC		Input Voltage – 208/120VAC		Input Voltage – 240/120VAC	
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker
5kVA	23A	50A	21A	50A	21A	50A
10kVA	46A	63A	42A	63A	42A	63A
15kVA	68A	100A	62A	100A	62A	100A
20kVA	91A	125A	83A	125A	83A	125A

Table 3.10 Input cable selection for Transformer-free Dual Inverter frames(50/60 Hz)

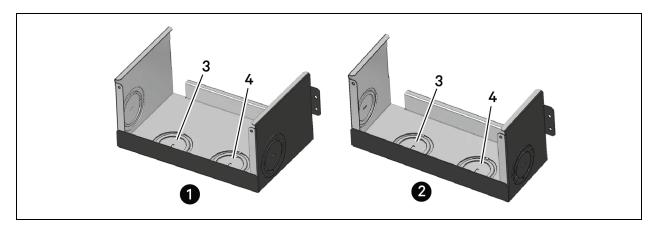
The power input and output terminals accept a maximum cable cross-sectional area of 35 mm² (2 AWG); the minimum cable cross-sectional area is 16 mm² (6 AWG); and the rated torque is 4.52 Nm (40 in-lb).

90°C copper wire is recommended.

Table 3.11 Input cable selection for Transformer-free Dual Inverter frames (50/60 Hz)

Maximum	Input Voltage – 220/110VAC		Input Volt	age – 230/115VAC	Input Voltage – 220/127VAC		
System Rated Load	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	Maximum Current in UPS Mode	Recommended Input Protection Circuit Breaker	
5kVA	21A	50A	20A	50A	20A	50A	
10kVA	41A	63A	39A	63A	39A	63A	
15kVA	62A	100A	59A	100A	59A	100A	
20kVA	82A	125A	78A	125A	78A	125A	

The power input and output terminals accept a maximum cable cross-sectional area of 35 mm² (2 AWG); the minimum cable cross-sectional area is 16 mm² (6 AWG); and the rated torque is 4.52 Nm (40 in-lb).

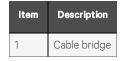

90°C copper wire is recommended.

To connect the cable:

NOTE: Input and output cables must be run in separate conduit before cable connection.

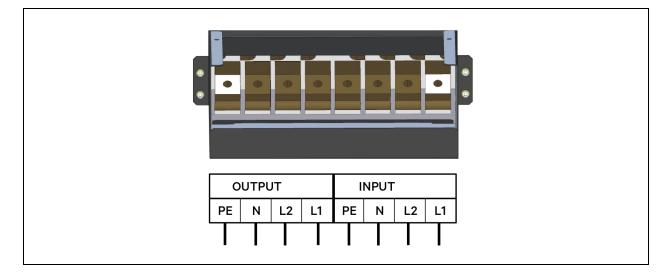
1. Remove the knockouts at the junction box, see Knockouts in Units without Transformer below, and pull the cables through them, leaving some slack for installation.

Figure 3.22 Knockouts in Units without Transformer



item	Description	ltem	Description
1	16-bay, no transformer	3	Output-cable knockout
2	10-bay, no transformer	4	Input-cable knockout

- 2. Connect the cables to the corresponding terminal of the power input and output terminals.
- 3. Using a 13-mm (1/2-in.) torque wrench, tighten the screws to 4.52 Nm (40 in-lb).
- 4. Respectively, secure the conduit of the input/output cables through the cable bridges on the rear panel of the UPS, see Secure cables on cable bridges below.


Figure 3.23 Secure cables on cable bridges

The connection methods for single-phase and the 3-phase input modes are shown in Connecting Cables on a Transformer-free UPS with Dual Inverter Frames on page 39 and Connecting Cables on a Transformer-free UPS with Dual Inverter Frames on page 39, respectively. Installation of the factory-provided copper bar is essential in the single-phase input mode. The copper busbar is in the accessory bag included with the UPS.

Figure 3.24 Wiring connections

3.8 Connecting an External Battery Cabinet

Up to 4 external battery cabinets may be connected to the Liebert® APS to provide longer battery run times.

The external battery cabinet (EBC) requires the optional EBC cable kit to connect to the UPS. The optional cable kits contain the power and communication cables required to operate and monitor the battery modules. The standard cable-kit lengths are 3.2 ft, 9.8 ft and 16.4 ft (1 m, 3 m, and 5 m) to accommodate varying site requirements.

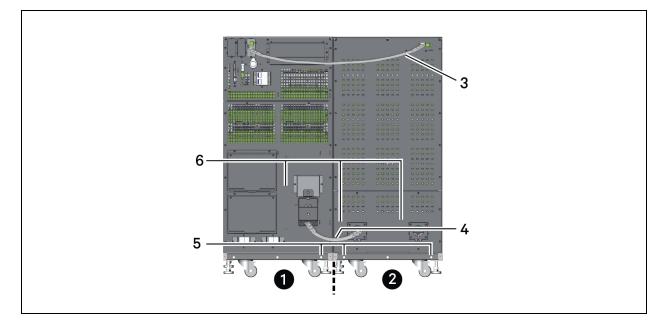
To connect an external battery cabinet:

- 1. Locate the DC circuit breaker on the front bottom of the EBC frame behind the bottom two bezels, and verify that the circuit breaker is open.
- 2. Attach the EBC cable ground wire to either the ground-wire connection points labeled "5" or "6" in Connecting external battery cabinet to a transformer-free UPS on the facing page or Connecting external battery cabinet (transformer-based UPS) on page 44 (Depending on whether or not the UPS has a transformer).
 - Choose the connection point with the easiest access and that applies the least amount of stress to the ground wire after the DC connector is installed.
 - Connect one ground wire to the UPS and the other to the EBC.

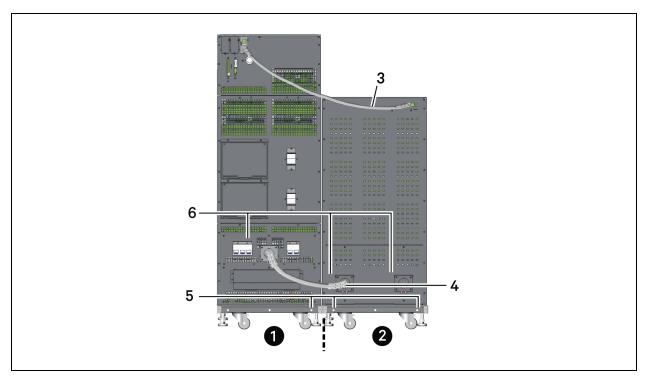
IMPORTANT! Do not continue with installation until the ground wires are firmly installed.

3. After the frame grounds are properly bonded together, connect one end of the battery power connector to the external battery connector on the rear of the UPS frame as shown in Connecting external battery cabinet to a transformer-free UPS on the facing page or Connecting external battery cabinet (transformer-based UPS) on page 44, depending on your system.

- 4. Connect the other end to the closest corresponding port on the rear of the EBC frame.
- 5. Install and tighten the grounding screw on the battery cable assembly, on both the UPS and EBC ends.


This screw also secures the cable assembly to the frames to prevent accidental disconnection.

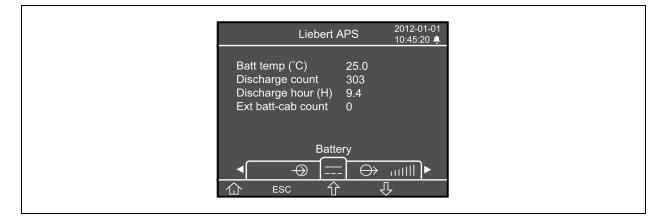
- 6. For new systems that included an EBC, the EBC communication card should already be installed in the UPS frame (IntelliSlot Port #3, typically).
 - If it is not installed, obtain the EBC communication card and insert it into any open IntelliSlot port (preferably Port #3).
 - Connect the provided EBC communication cable to the UPS and EBC as shown in Connecting external battery cabinet to a transformer-free UPS below or Connecting external battery cabinet (transformer-based UPS) on the next page, depending on your system.
- 7. Check the EBC DIP-switch settings on the top rear of each EBC frame, and verify that they are set correctly according to EBC DIP switch settings on page 45.


7. Close the EBC DC circuit breaker and replace the bezels back onto the EBC.

WARNING! Risk of hazardous voltage between UPS frames. Can cause damage to equipment, injury and death. Failure to open the EBC DC circuit breaker before connecting or disconnecting the battery cable between the UPS and EBC frames can result in hazardous voltages being present between the frames.

Figure 3.25 Connecting external battery cabinet to a transformer-free UPS

ltem	Description	ltem	Description
1	Liebert Liebert® APS	4	Battery cable
2	Battery cabinet	5	Ground-wire connection points
3	Communication cable	6	Ground-wire connection points


item	Description	ltem	Description
1	Liebert Liebert® APS	3	Communication cable
2	Battery cabinet	4	Battery cable

8. After connecting the external battery cabinet, use the user interface to determine the number of external battery cabinets, see If the number displayed is not consistent with the actual number of installed external battery cabinets: below.

If the number displayed is not consistent with the actual number of installed external battery cabinets:

- Make sure that each external battery cabinet contains two battery modules installed on the same row and the locking levers on both are in the locked position.
- Make sure that the Liebert IntelliSlot EBC card is installed properly and the communication cables are fully inserted in the connectors.
- Make sure that the DIP-switch setting of each battery cabinet is correct using EBC DIP switch settings below.

Figure 3.27 Battery screen

Table 3.12 EBC DIP switch settings

External Battery	DIP Switch Setting		
Cabinet Number	1	2	
EBC #1	Down	Down	
EBC #2	UP	Down	
EBC #3	Down	UP	
EBC #4	UP	UP	
On the DIP switch: Down is On and Up is Off.			

3.9 Connecting Integrated Power Output Distribution (POD)

The rear panel of the Liebert[®] APS let you add integrated distribution outlets (PODs) as an option for direct, AC-power connection of equipment to the UPS. PODs let you install and change distribution, if necessary, as equipment changes and while the UPS is still providing power.

To add or change the optional PODs:

- 1. Locate the POD breaker near the POD port, and make sure that it is in the Off position.
- 2. Using a Phillips-head screwdriver, remove the two screws at the top of the POD cover plate and retain for later reattachment.
- 3. Remove the POD cover plate to expose the POD connectors.
- 4. Insert the bottom of the POD into the slot provided, and then connect the POD connectors.

NOTE: The connector should connect only one way, matching the color of the pins.

NOTE: Distribution PODs PD2-101, PD2-102, PD2-103, PD2-104, PD2-105, PD2-106 and PD2-107 should not be used if the UPS output voltage is set to 220/127 V.

NOTE: When connecting distribution POD's to an AS3 or AS4 frame, the L-L output receptacles connect to the 240-V taps of the output transformer, not to the 208-V tap. Verify receptacle voltage and load ratings before energizing the load.

- 5. Secure the POD by using the two screws removed in step Using a Phillips-head screwdriver, remove the two screws at the top of the POD cover plate and retain for later reattachment. above .
- 6. Repeat steps Locate the POD breaker near the POD port, and make sure that it is in the Off position. above through Secure the POD by using the two screws removed in step Using a Phillips-head screwdriver, remove the two screws at the top of the POD cover plate and retain for later reattachment. above . above to install a second POD on the UPS, only the 16-bay frame has two POD ports.
- 7. Connect the equipment to the appropriate outlets.
- 8. Close the POD breaker(s) to connect AC power to the outlets.
- 9. After commissioning the UPS, power-on the connected equipment per the manufacturer's instructions. See Commissioning/Startup Procedures below.

3.10 Commissioning/Startup Procedures

The Liebert APS can be commissioned with or without AC power being connected.

3.10.1 Checks before Commissioning/Start-up

- 1. Verify that the AC-power connections are wired properly and that all connections are tight.
- 2. If using external battery cabinets or 3-party battery systems, verify that the DC-power and communication cables are connected properly and that all connections are tight.
- 3. Measure and record the AC-input voltage and frequency. These are required to properly configure the output voltage of the Liebert® APS system.
- 4. If any modules were removed from the Liebert® APS during installation, verify that all modules are fully-inserted and that the module locking levers are in the locked position.

- 5. For Remote Emergency Power Off (REPO) circuit:
 - If connecting the UPS to a REPO circuit, see REPO (Remote Emergency Power Off) on page 51 for the connection details and instructions.
 - If a REPO circuit is required or used, the factory-installed jumper must be removed from the terminal-block Pins 9-10 as described in Dry-contact Ports on page 50.
- 6. Verify that the internal bypass breaker in the UPS is in the open position with the guard in place and secure.

3.10.2 Commissioning/Start-up with AC Power Available (Normal-mode Operation)

- 1. Verify that the up-stream mains AC breaker is closed.
- 2. Locate the UPS Enable switch on the rear of the unit protected by a clear plastic cover, and turn it On.
- 3. Locate the UPS input breaker on the front of transformer-free frame systems and on the rear of transformer-based frame systems, and turn it off. The initial system checks begin and power begins charging the battery.
- 4. Press the ON/OFF button on the LCD panel.
- 5. When asked to confirm, press Enter (F5 button) to turn On the UPS.
- 6. Close the UPS output breaker on the rear of the unit.
- 7. If supplying power to an external distribution panel, close all breakers to provide power to the equipment. If using the integral distribution PODs on the UPS or MBC, make sure that the individual POD breakers are closed.

3.10.3 Commissioning/Startup without AC Power Available (Batterymode Operation)

NOTE: Starting the UPS system without AC power will discharge the batteries. If AC-mains power is not restored before the batteries discharge, the USP will shutdown and power will be lost to the connected equipment. If the UPS reaches the battery EOD level and shuts down, AC-mains power must be present to restart the UPS system.

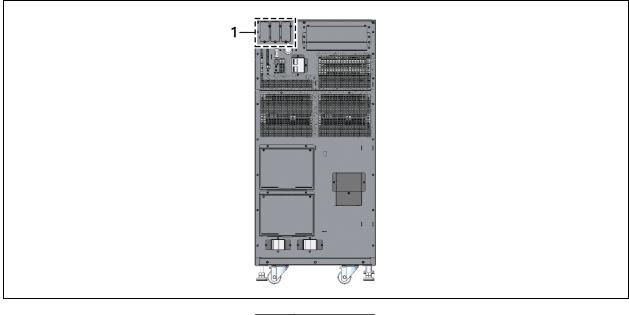
- 1. Verify that the up-stream mains AC breaker is closed.
- 2. Locate the UPS Enable switch on the rear of the unit protected by a clear plastic cover, and turn it On.
- 3. Locate the "Battery Start" push button on either of the two control modules, then press and hold this button for 5 seconds.

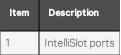
The initial system checks begin, and output power is automatically enabled.

- 4. Press the On/Off button on the LCD panel.
- 5. When asked to confirm, press Enter (F5 button) to turn On the UPS.
- 6. Close the output breaker on the rear of the unit.

- 7. If supplying power to an external distribution panel, close all breakers to provide power to the equipment. If using the integral distribution PODs on the UPS or MBC, make sure that the individual POD breakers are closed.
- 8. We recommend closing the UPS input breaker that is on the front of transformer-free frame systems and on the rear of transformer-based frame systems. If AC mains becomes available, the UPS will revert to AC power mode and begin recharging the battery.

4 Communication


The rear panel of the Liebert® APS includes the following communication ports:


- Liebert IntelliSlot™ port—3
- Dry-contact port—1
- REPO (Remote Emergency Power Off)—1
- Long Run Time (LRT) Battery-temperature Probe Terminal—1
- USB port—1

4.1 Liebert IntelliSlot Ports

The 3 IntelliSlot communication ports (see Liebert IntelliSlot communication port location below) are for communication options. The IntelliSlot ports and the USB port may be used at the same time.

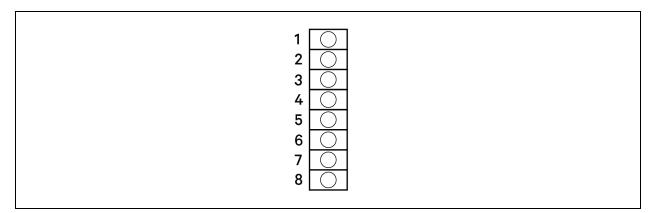
Figure 4.1 Liebert IntelliSlot communication port location

4.1.1 Liebert IntelliSlot Unity Cards

- IS-UNITY-LIFE is standard in every Liebert® APS. It is used for communication between the Liebert® APS and Vertiv™ Trellis® NMS and LIFE Services.
- IS-UNITY-DP: is optional in place of the standard card if communication to two third-party platforms is required. Third-party platforms include SNMP and 485 (Modbus/Bacnet) protocols. When used, this card also provides communication between the Liebert[®] APS and Vertiv[™] Trellis NMS and LIFE Services. All communication protocols are active simultaneously.

4.1.2 Liebert IntelliSlot Dry-contact Card (IS-RELAY)

The IS-RELAY card provides dry-contact alarm information, including: On Battery, On Bypass, Low Battery, Summary Alarm, UPS Fault and On UPS signals to a remote monitoring system. The card also acceps input signals to shut down the UPS during any mode of operation.


4.1.3 Liebert IntelliSlot EBC Card

The EBC card monitors and manages the intelligent battery modules in external, matching battery cabinets.

4.2 Dry-contact Ports

16-bay transformer-free UPS on page 6 shows the location of the dry-contact ports.

Figure 4.2 Pin layout of the dry contacts

Table 4.1 Pin definition for dry-contact port

Position	Name Description		
1	Battery Mode	Output dry contact of battery mode operation	
2	Battery Mode	Output dry contact of battery mode operation	
3	Low Battery	Output dry contact of low battery operation	
4	Low Battery	Output dry contact of low battery operation	
5	Any Mode Shut Down	lode Shut Down Input dry contact of any mode shut down	
6	GND	Any mode shutdown GND	
7	Battery Mode Shut Down	Input dry contact of battery mode shut down	
8	GND	Battery mode shutdown GND	

4.2.1 Battery-mode Dry Contact

Pins 1 and 2: Output dry contact, normally open. The dry contact is closed when the UPS is operating on battery. The maximum voltage and current are 24 VDC and 0.3 A, respectively.

4.2.2 Low Battery Dry Contact

Pins 3 and 4: Output dry contact, normally open. When the UPS is operating on battery, the dry contact is closed upon battery low-voltage alarm. The maximum voltage and current are 24 VDC and 0.3 A, respectively.

4.2.3 Any Mode Shut Down

Pins 5 and 6: Input dry contact, normally open. After the external dry contact is closed (shorted), the UPS output will be shut down during any mode of operation (mains, battery, bypass).

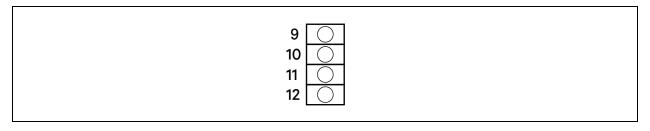
4.2.4 Battery Mode Shut Down

Pins 7 and 8: Input dry contact, normally open. After the external dry contact is closed (shorted), the UPS output will be shut down only during battery mode operation.

NOTE: The default for the any-mode and battery-mode Shutdown features is "disabled." Using this function requires setting Remote Comms shutdown to "Enabled" in the Settings on the LCD user interface. You can also use the user-interface Settings to set the delay time for the UPS shutdown after the dry contact is closed. Enabling the feature on the LCD enables both shutdown methods.

4.3 REPO (Remote Emergency Power Off)

WARNING! Risk of electrical shock. Can cause property damage, injury and death. Operating the REPO circuit WILL NOT trip the manual bypass breaker. If the REPO must shut off UPS output under all circumstances, you must tie the REPO into the breaker that feeds the UPS source. Otherwise, voltage may be present on the output connections if the unit is in manual bypass.


NOTICE

Risk of improper installation. Can cause unintended UPS shutdown and loss of power to the load.

Run signal cables separately from power cables. Running cables in the same conduit can cause signal noise, possibly causing the system to shut down.

The Liebert® APS is equipped with a REPO connection. Only the SELV (Safety Extra Low Voltage) circuit can be connected to the REPO terminal block. REPO switch connections on the next page shows the schematic diagram of REPO switch connections.

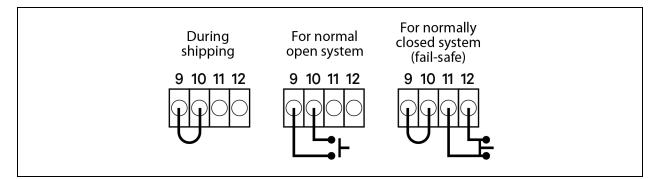
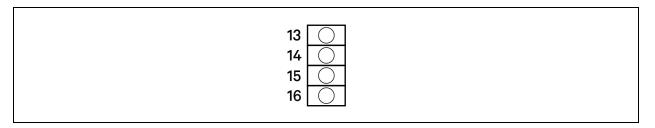

Figure 4.3 REPO connector pin layout

Table 4.2 Pin definition of the REPO dry contact

Position	Name	Description
9	REPO +12V	REPO power, 12VDC 100mA
10	REPO Coil - NO	REPO normally-open nodes, shorting pins 9 and 10, REPO is triggered
11	REPO Coil - NC	REPO normally-closed nodes (fail-safe), shorting pins 9, 10, 11, 12, and opening pins 11 and 12, REPO is triggered
12	GND	GND

Figure 4.4 REPO switch connections



NOTE: A jumper is factory-installed between Pins 9 and 10 to disable the Main Control Switch, which prevents the UPS from being started accidentally during shipment and installation. This jumper must be removed before the unit can be started. If the installation does not require connection to a REPO system, the factory-installed jumper must be removed.

4.4 Long-run-time (LRT) Battery-temperature-probe Terminals

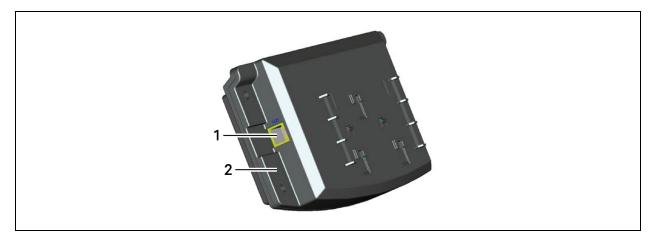
The Liebert® APS contains a temperature-compensated battery-charging system. To use this feature with external LRT battery systems, connect Pins 13-16 of the contact terminal strip to a temperature sensor.

Figure 4.5 Pin layout of the temperature sensor terminal

Table 4.3 Pin definition of the temperature sensor terminal

Position	Name	Description
13	Inside Battery Temperature	Locate battery temperature signal close to the UPS
14	Battery Temperature +12V Battery temperature signal power supply	
15	Outside Battery Temperature	Locate battery temperature signal at UPS remote end
16	GND	GND

4.5 USB Port

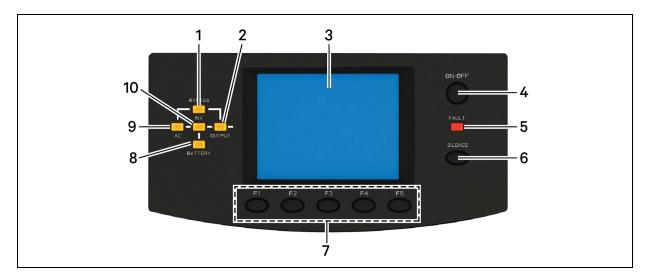

The Liebert[®] APS contains a standard B type USB port on the rear of the unit to connect the UPS to a network server or other computer for monitoring with any operating system or built-in UPS support.

4.6 LCD Port

The LCD module contains the LCD port for power and data communication between the UPS monitor module and display module. The LCD module can be removed from the Liebert® APS and remotely located. A longer Ethernet cable must be used when installing the LCD module remotely. A standard Ethernet type cable (Category 5, with RJ-45 connectors, both ends meet T568B standard) can be used. Maximum cable length is 14 meters to ensure proper communication signals between the UPS and the LCD module.

The user-interface module provides three network ports and one USB port. Of those, one network port (LCD port) is used for power supply and communication of the user interface module. Other network ports and the USB port are reserved for use only by customer-service personnel.

Figure 4.6 LCD port



ltem	Description
1	LCD port
2	User-interface module

5 Operation and Display Panel

The user-interface module is the operation and display panel composed of an LED mimic power flow diagram, fault LED indicator and LCD screen to show detailed operational information and UPS alarm list using the menu buttons.

Figure 5.1 Operation and display on the user-interface module

ltem	Description	ltem	Description
1	Bypass LED	6	Alarm silence button
2	Output LED	7	Menu buttons
3	LCD screen	8	Battery LED
4	On/Off button	9	AC LED
5	Fault LED	10	Inverter LED

5.1 Mimic LEDs

The mimic power-flow LEDs indicate current operating state of the UPS. LED descriptions below . describes the LED states.

	· · · · · · · · · · · · · · · · · · ·		
LED	State	Description	
	On (Green)	The rectifier is functioning normally	
	Flashing (Green)	The AC mains is normal, but the rectifier is not functioning properly	
AC LED	On (Red)	The rectifier is faulty	
	Off	The AC mains is abnormal, and the rectifier is not functioning	

Table 5.1 LED descriptions

LED	State	Description
	On (Green)	The battery is discharging
	Flashing (Green)	The battery has a pre-alarm of low voltage
Battery LED	On (Red)	The DC-DC converter is faulty
	Off	The battery is charging, and the DC-DC converter is not functioning
	On (Green)	The bypass is supplying power
Bypass LED	On (Red)	The bypass is abnormal and not available
	Off	The bypass is normal, but not supplying output power
	On (green)	The inverter is supplying output power
	Flashing (green)	The inverter is starting up, in soft start or phase locked, and is not supplying output power
Inverter LED	On (red)	The inverter is faulty
	Off	The inverter is off
	On (green)	The UPS output is supplying power
	Flashing (green)	The UPS internal manual bypass is supplying output power
Output LED	On (red)	The UPS has output overload
	Off	The UPS does not have output power
	On (yellow)	The UPS has an alarm or alarms
Fault LED	On (red)	The UPS has one or more faults
	Off	UPS operating normally with no alarm or fault conditions

Table 5.1 LED descriptions (continued)

5.2 Audible Alarms

Three different audible alarms may occur during the UPS operation, described in Audible alarm descriptions below.

Table 5.2 Audible alarm descriptions

Alarm sound	Meaning
One beep per second	When the UPS has an alarm, for example, AC fault (mains failure)
One beep every 0.5 second	Upon UPS output overload or low battery voltage alarm during discharge
Continuous beep	When the UPS has a fault

5.2.1 Control Buttons

The operation and display panel provides two control buttons described in Control buttons functions below .

Table 5.3 Control buttons functions

Control Button	Function
ON/OFF Button	Used to turn the UPS On and Off.
Alarm Silence Button	When an audible alarm sounds, pressing this button can silence the alarm. Pressing this button again can restart the audible alarm.

5.3 LCD Screen and Menu Buttons

The operation and display panel provides an LCD screen and menu buttons (F1, F2, F3, F4, F5) described in Function descriptions of menu button below.

The LCD is a 320 × 240 dot-matrix graphic display. You can browse the UPS input, output, load and battery parameters and obtain the current state and alarm information of the UPS. You also can perform relevant function/parameter settings and control operations.

Table 5.4 Function descriptions of menu button

Button	F1	F2	F3	F4	F5
Function 1	Home	_	To Left	To Right	Enter
Function 2	—	ESC Exit	Ĵ	J. Down	—

5.3.1 Start-up Screen

When the UPS starts up, it conducts a self-test, and the LCD displays the startup screen, which lasts for 15 seconds.

5.3.2 Main Screen

The main screen is divided into four parts: system information window, data window, menu window and keyboard window as shown in Main screen on the next page.

The functions of F1 ~ F5 buttons change automatically according to the currently-displayed screen. On any screen, press the F1 button to return to the Output screen. The window parts are described in the following sections

Figure 5.2 Main screen

item	Description
1	Information window, see System Information Window below .
2	Data window, see Menu Window and Data Window below .
3	Menu window, see Menu Window and Data Window below .
4	Keyboard window, see LCD Screen and Menu Buttons on the previous page .

System Information Window

The system information window displays the current date and time and the UPS name without the need to select an option or press a button.

Menu Window and Data Window

The menu window shows the menu name and navigates to menu items. Each menu item displays a set of data in the data window. You can browse the relevant parameters of the UPS and can adjust/set some operational parameters. Item description of menu window and data window below describes the menu items and data displayed.

Table 5.5 Item description of menu window and data window

Menu Name	Data Item	Data Description
Mains	L-N Voltage (V)	L-N input voltage
	L-N Current (A)	L-N input current
	Frequency(Hz)	Input frequency
	L-L Voltage (V)	L-L input voltage
	kVA	Input apparent power
	Power Factor	Input power factor

Menu Name	Data Item	Data Description
	Batt Voltage (V)	Battery bus voltage
	Batt Current (A)	Battery bus current
	Runtime (Min.)	Battery backup time remaining
	Batt Capacity (%)	Percentage of battery capacity
	Batt State	Charging, discharging or fully charged
Battery	Batt String Count	Online battery string count
	Batt Temp (°C)	Battery temperature
	Discharge Count	Maximum historical discharge count within current battery modules
	Discharge Time (H)	Maximum historical discharge time within current battery modules
	EBC Count	Number of connected External Battery Cabinets
Output	L-N Voltage (V)	L-N Output Voltage
	L-N Current (A)	L-N Output Current
	Frequency(Hz)	Output Frequency
	Power Factor	Output Power Factor
	Line Voltage (V)	L-L Output Voltage (not displayed for single-phase output model)
	kVA	Output apparent power
	kW	Output active power
Load	Load Level (%)	Output loading, indicated in percentage of the UPS system rated load
	Crest Factor	Output current peak value factor

Menu Name	Data Item	Data Description
UPSInfo	UPSID	UPSID
	LCD Module	If the module is online, the serial number and software version will be displayed
	Bypass Monitor Module	If the module is online, the serial number and software version will be displayed
	Bypass Control Module	If the module is online, the serial number and software version will be displayed
	Charger Module	If the module is online, the serial number and software version will be displayed
	Power Module	If the module is online, the serial number and software version will be displayed
	Battery Module	If the module is online, the serial number and software version will be displayed
	PM Installed	The number of installed power modules
Redundant State	PM	Whether there are redundant power modules supplying power.
	Set Redundancy	Disabled/ Enabled. If 'Enabled,' the system operational parameters will assume there is a redundant power module in the frame; if 'Disabled', the system operational parameters will assume that all power modules in the frame are not redundant.
	Mode	Note: This item is closely related to the 'Redundant alarm' setting
	Remote Comms	Disabled/ Enabled. If 'Enabled,' this allows the UPS output power to be shutdown through remote communication, including the dry contacts and Liebert IntelliSlot communication cards.
	Shutdown	Note: This item is closely related to 'Remote shutdown delay'
Settings	Bypass Setting	Enables the bypass to supply power or not
	Output Frequency	Sets the output frequency to allow frequency conversion operation
	Output Voltage	Sets the output voltage level to match the mains input voltage
	Inverter Sync Range	Sets the range of inverter synchronization for bypass frequency operation and availability
	Remote Shutdown Delay	Sets the shutdown delay time for the remote signal operation

Menu Name	Data Item	Data Description
Settings (continued)	Bypass Upper Limit	Sets the upper limit of bypass voltage operation and availability
	Bypass Lower Limit	Sets the lower limit of bypass voltage operation and availability
	Guaranteed Shutdown	Disabled/ Enabled. If 'Enabled,' once a low battery alarm is generated during a battery discharge, the UPS will continue battery mode operation until it reaches the end of discharge (EOD) setpoint, then will shutdown output power, whether the AC mains recovers or not.
	Bypass Alarm Mode	Allows an alarm to be generated when the bypass is abnormal
	Set RS232 Protocol	Because the slot 2 and the serial port on the rear panel cannot work at the same time, you must select one of them to work. If 'INTERFACE2' is selected, the slot 2 can communicate; if 'RS232' is selected, the serial port can communicate.
	Auto-Restart Mode	Allows auto restart after a EOD shutdown and AC mains returns
	Auto-Restart Capacity	Sets the battery capacity limit of auto restart feature. When AC mains power returns, the UPS will charge the battery to the specified battery capacity before enabling output power.
	Auto-Restart Delay	Sets the delay time of auto restart feature. When AC mains power returns, the UPS will start a countdown timer based upon the setting before enabling output power.

Table 5.5 Item description of menu window and data window (continued)

Menu Name	Data Item	Data Description
	Display Contrast	Adjusts the contrast of LCD backlighting
	Date and Time	Sets date and time
	Command Password	Users can change the command password to prevent unauthorized user from changing any user configurable settings. The default password is 1234567. Once the password is changed, the default password is no longer operational and users are then required to enter the new password to enter/change any 'Settings' or 'Battery settings'. If the new password is forgotten, contact your local customer service center for steps to reset the password back to the factory default.
	Max Load Alarm	Sets a maximum load alarm. This item is closely related to 'Max load threshold.'
	Max Load Threshold	Sets the threshold of maximum load alarm. When the UPS loads exceed the threshold, and the maximum load alarm is enabled, an alarm will be generated. This item is closely related to 'Max load alarm,' for example, set this item to 5.0kVA, when the UPS loads exceed 5.0kVA, an alarm will be generated.
	Redundant Alarm Mode	Allows alarm to be generated when the system loses redundant power module
Settings (continued)	Communication Address	Sets the UPS device address. This setting is only for the network card communication of newly emerging market.
	Air Filter Reminder	Set the reminder period of checking dust-proof filter
	Air Filter Type	Standard: Use this setting if air filter is not installed.
		Fine Dust: Use this setting if air filter is installed.
	IT System Compatibility	Enabled - Neutral back-feed relay will open on battery mode
		Disabled (Default) - Neutral back-feed relay is always closed
	UPSID	Users can set the UPS name to facilitate managing the UPS through remote communications
	Company Name	Set the local service company name of the UPS
	Contact Number	Set the local service telephone number of the UPS
	Load factory defaults	Restores the setting items in 'Settings' menu to factory values

Menu Name	Data Item	Data Description
Battery settings	Low battery Warning	Sets the battery low voltage alarm time
	Automatic Battery Test Interval	Sets the interval for the automatic battery test. Intervals of 8, 12, 16, 20, 26 weeks or Disable are available for selection. Factory default is 8 weeks.
	Auto Batt Test Start Day	Sets the day of the week for the automatic battery test
	Auto Batt Test Start Time	Sets the time of the day for the automatic battery test
	External Battery AH	Sets the AH capacity of external third party battery system to calculate the battery capacity and estimate the battery time remaining
	Load Factory Defaults	Restores the setting items in 'Battery set' menu to factory values
	Language Options	Provides a selection of seven languages:
		Chinese, English, French, Spanish, Italian, Russian and German
Alarms	Current Alarms	Displays the current alarms. See Active Alarms on page 71 for the UPS alarm list
Records	Historical Alarms	Displays all historical alarms. See Active Alarms on page 71 for the UPS alarm list
Module replacement	LCD Module	Displays the procedures for replacing LCD module
	Bypass Monitor Module	Displays the procedures for replacing system monitor module
	Bypass Control Module	Displays the procedures for replacing system control module
	Power Module	Displays the procedures for replacing power module
	Battery Module	Displays the procedures for replacing battery module
	Charger Module	Displays the procedures for replacing charger module

Table 5.5 Item description of menu window and data window (continued)

Menu Name	Data Item	Data Description		
	Battery Maintenance Test	Battery maintenance test allows battery to discharge some voltage to obtain the battery activity. The loads must be within 0% ~ 90%, the battery capacity must be larger than 70%, and there is no battery fault and alarm in the system.		
	Stop Battery Test	Stops battery maintenance test		
	System Test	A UPS self-test, used to test whether the LEDs are normal. When you start this function, 5 seconds later, the screen will prompt a window to display the system self-test result.		
	Stop Testing	Stops system test manually		
Service	Freshening Charge	Boost charges the battery by force, manually		
	Stop Freshening Charge	Stops freshening charge manually		
	UPSID	Allows customer service personnel to set the UPS ID, to facilitate maintenance		
	Site ID	Allows customer service personnel to set the UPS address, to facilitate maintenance		
	Tag Number	Allows customer service personnel to set the UPS tag, to facilitate maintenance		
	Company Name	Allows customer service personnel to set the UPS company name, to facilitate maintenance		
	Contact Number	Allows customer service personnel to set the UPS company contact number, to facilitate maintenance		
	Frame S/N	Reset this when replacing the LCD board. The frame S/N is labeled on the frame.		
	Normal Mode	Allows customer service personnel to set the UPS operating mode to normal online mode		
	ECO Mode	Allows customer service personnel to set the UPS operating mode to ECO mode		
	Enable Max Discharge Protection	By default, the UPS has a maximum discharge time to protect the batteries from a deep, slow discharge. After this time, the UPS will turn Off its output.		
	Disable Max Discharge Protection	If this variable is set, there will be no time limit and the UPS will stay on battery until the EOD setpoint is reached. This may cause damage to some battery types and should only be used for DC sources that do not have slow discharge issues.		
The Service s	The Service screen is only for customer service personnel. It is not open to the user.			

Keyboard Window

The keyboard window displays the functions of the menu buttons, F1 ~ F5, and the function icons are described in Function descriptions of menu button on page 57.

5.3.3 Default Screen/Screen Saver

While the UPS is operating, if there are no active alarms, the LCD enters screen-saver mode after 2 minutes of no activity. After a brief delay, the LCD back-light also turns off. Pressing any button will return to the original screen.

5.3.4 Screen Views

This section gives a detailed description of each display screen and its contents. The default "main screen" is the Output menu and its data. The navigation indicated for each screen is in reference to the Output screen.

Navigating to Screens and Screen Descriptions

AC Mains screen

From the main screen, press the **F3** button twice.

The AC mains screen displays the input L-N voltage, L-N current, input frequency, L-L voltage, apparent power and power factor of three phases (L1, L2, L3).

Battery screen

From the main screen, press the F3 button once.

On the first battery screen, press **F5** to change the function of the F2, F3, and F4 buttons from the primary functions to the secondary functions, described in Function descriptions of menu button on page 57.

The battery screen displays Battery voltage, Battery current, Battery time remaining, Battery capacity, Battery state, Battery string count, Battery temperature, cumulative discharge count (highest of all installed battery modules), cumulative discharge time (in hours) and External battery cabinet count.

Output screen

Output is the default main screen.

The output screen displays L-N or L-L voltage, L-N or L-L current, Frequency and Power factor.

Load screen

From the main screen, press the F4 button once.

The load screen displays output kVA (Sout/apparent power), output kW (Pout/active power), load level and crest factor.

UPS Information Screen

From the main screen, press the F4 button twice.

The UPS information screen displays UPS ID (name set by user), serial number and software version of LCD module, system monitor module, system control module, charger module, power module and battery module (if the modules are installed and are online).

Redundancy Screen

From the main screen, press the F4 button three times.

The redundancy screen displays the number of installed power modules in the frame, and whether the system contains a redundant module or not.

Settings Screen

From the main screen, press the F4 button four times. The settings screen is displayed in a total of nine screens as you scroll down.

On the first settings screen, press **F5** to prompt a password window to pop up. After you enter the correct password, the function of the F2, F3, and F4 buttons switch from the primary functions to the secondary functions, described in Function descriptions of menu button on page 57. To adjust the settings, see Entering a Password to Edit Settings on the facing page, and Editing Parameter Settings on the facing page.

Battery Setting Screen

From the main screen, press the F4 button five times.

On the first settings screen, press **F5** button to prompt a password window to pop up. After you enter the correct password, the function of the F2, F3, and F4 buttons switch from the primary functions to the secondary functions, described in Function descriptions of menu button on page 57. To adjust the settings, see Entering a Password to Edit Settings on the facing page, and Editing Parameter Settings on the facing page.

Language Selection Screen

From the main screen, press the F4 button six times.

The language selection screen displays a choice of seven languages: Chinese, English, German, Russian, French, Italian and Spanish.

NOTE: The languages are displayed in their alphabet.

To set the language:

1. Press **F5**.

The language option is highlighted.

- 2. Press F3 or F4 to navigate to the language to select.
- 3. Press F5 to confirm the selection.
- 4. Once the screen language changes, press F2 to exit language-setting mode.

Alarms Screen

From the main screen, press the F4 button seven.

The alarms screen displays any current alarms of the UPS, including the alarm name, alarm ID code and alarm date/time stamp.

Records Screen

From the main screen, press the F4 button eight times.

The records screen displays all historical alarms of the UPS, including the alarm name, alarm ID code, alarm date/time stamp and record number/total record count.

Module Replacement Screen

From the main screen, press the F4 button nine times.

The module-replacement screen displays the procedures for replacing all user-replaceable module assemblies in the UPS frame.

To view the module-replacement procedure:

- 1. press **F5** to enter the module replacement. One module option is highlighted.
- 2. Press F3 or F4 to navigate to the procedure for the specific model, then press F5 to view the procedures.
- 3. Once completed, press F2 to exit.

5.3.5 Entering a Password to Edit Settings

- 1. On the password prompt window, press F5, the first digit becomes editable, press F3 to enter the correct number.
- 2. Press F4, the second digit becomes editable, press F3 to enter the correct number.
- 3. Enter the remaining password digits this method, then press F5 when complete.

5.3.6 Editing Parameter Settings

- 1. Press F4 to navigate to the parameter, and press F5 to enter edit mode.
- 2. Press F3 or F4 to select the item or change value, then press F5 to confirm the setting.
- 3. Press F2 to exit the edit setting mode.

5.3.7 Prompt Window

During system operation, alerts, reminders, and notifications pop up in a prompt window. Information and actions required for the prompt window on the next page descibes the prompts and the action to take if needed.

Prompt Window	Explanation	
Turn On/Off: Turn On UPS Cancel	When you press the ON/OFF-button while UPS is Off.	
Turn On/Off: Turn On INV Turn Off UPS	When you press the ON/OFF-button while UPS is operating on bypass mode.	
Turn On/Off: Transfer to Bypass Cancel	When you press the ON/OFF-button while UPS is operating on inverter mode and bypass is qualified.	
Turn On/Off: Turn Off UPS Cancel	When you press the ON/OFF-button while UPS is operating on inverter mode and bypass is not qualified.	
Enter password ******	After the control password is changed, you are required to enter the password when you want to enter "Settings," "Battery set" and "Service" screens.	
Output must be Off	While the UPS output is supplying power, this prompt appears when you want to set some key system parameters. You need to close the output before setting key parameters.	
On manual bypass can't turn Off the load	This prompt appears when UPS operates on manual bypass and the ON/OFF button is pressed.	
Please verify output settings before starting the UPS Escape: Ignore this message Enter: Go to Settings Screen	After the UPS is powered on, When you press the ON/OFF button for the first time, this prompt appears to remind you of viewing relevant setting.	
Short Circuit Recovery	After the UPS output short circuits, wait 30 seconds before turning On the UPS again.	
System is not ready	When the power modules in the frame is initializing or there are no power modules, this prompt appears when you press the ON/OFF button.	
AC input not qualified, cannot start UPS	When the input voltage cannot meet the startup condition of the inverter, this prompt appears when you press the ON/OFF button.	
Please check air filter	When you set "Enabled" for "Air filter reminder," this prompt appears after the reminder time is up.	

Table 5.6 Information and actions required for the prompt window

Prompt Window	Explanation	
Removal of module will result	When only one of the system monitor module OR system control module is installed and active, when the	
in loss of output power	locking level is moved to the unlock position, this prompt appears to remind user of loss of output power will occur if the module is removed from the system.	
New Alarms Present		
Escape: Ignore this message	This prompt appears when a new alarm occurs.	
Enter: Go to Alarms Screen		
Warning! Frame Fan Fault		
Reduce load or replace fan	This prompt appears when frame fan is in fault and load is heavy, user should reduce load or replace fan	
to avoid damage to bypass		
Bypass source not qualified	This prompt appears when bypass source is not qualified and inverter can't power on the load for transformer	
Can not switch to bypass	based frame	

Table 5.6 Information and actions required for the prompt window (continued)

This page intentionally left blank

6 Troubleshooting

This is the basic troubleshooting guide and required actions for maintaining the Liebert Liebert® APS system.

6.1 Active Alarms

In the event of an alarm, the user-interface display displays the latest alarm message. A list of possible alarm messages are described in Alarm message list below. If an alarm occurs and you are uncertain of the corrective action to take, contact your local Vertiv representative.

Alarm Message	Possible Cause	Corrective Action
Power Module Warning	One or more power modules is not operating correctly.	View the corresponding module serial number in the fault logs or event logs and contact your local Liebert Services representative.
Power Module Fail	One or more power modules has a fault.	View the corresponding module serial number in the fault logs or event logs and either replace the module or contact your local Liebert Services representative.
Power Module Over Temp Warning	One or more power modules is operating at an internal high temperature.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If these conditions do not exist, contact your local Liebert Services personnel.
Power Module Over Temp Shutdown	One or more power modules has stopped operating due to an internal over temperature.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If these conditions do not exist, contact your local Liebert Services representative.
Power Module Fan Failure	One or more of the power module fans has failed.	Check to see if the fan is blocked. If not, contact your local Liebert Services representative.
Insufficient Capacity To Start Inverter	The load value exceeds the maximum load capacity of all operating modules.	Ensure all power modules are inserted and the locking lever is fully inserted. If all modules are active, add power modules to increase capacity or contact your local Liebert Services representative.
PM Locking Lever In Remove Position	The power module locking lever is not in the locked position.	Check the locking lever to ensure it is fully inserted. If so, contact your local Liebert Services representative.
Input Phase A Not Qualified	A-phase voltage is too high or too low.	Check the upstream feeder breaker or the UPS input breaker and reset if necessary, or contact your local Liebert Services representative.
Input Phase B Not Qualified	B-phase voltage is too high or too low.	Check the upstream feeder breaker or the UPS input breaker and reset if necessary, or contact your local Liebert Services representative.

Table 6.1 Alarm message list

Table 6.1 Alarm message list (continued)

Alarm Message	Possible Cause	Corrective Action
Input Phase C Not Qualified	C-phase voltage is too high or too low.	Check the upstream feeder breaker or the UPS input breaker and reset if necessary or contact your local Liebert Services representative.
L1L2 Phase Reversed	Two phases are reversely connected.	Have a qualified electrician check the phase rotation at the distribution panel and/or at the UPS input terminal block. If this is not the problem, contact your local Liebert Services representative.
Battery Reversed	The battery is reversely connected.	Have a qualified electrician check the wiring rotation at the external battery cabinet. If this is not the problem, contact your local Liebert Services representative.
No Battery Modules Are Ready	The battery module is not ready, and the yellow fault LED flashes.	Ensure that the battery module is fully inserted and locking levers are in the locked position. If this is not the problem, contact your local Liebert Services representative.
All PM's Are Not Ready	The power module is not ready, and the yellow fault LED flashes.	Ensure that the power module is fully inserted in the upper frame bays and locking levers are in the locked position. If this is not the problem, contact your local Liebert Services representative.
Power Module Redundancy Alarm	The UPS has no redundant power module	Add power modules or replace the faulty power module to obtain redundancy, or contact your local Liebert Services representative.
Output Exceeds Max Load Setting	The maximum load alarm is effective, the actual load is larger than the setting	Either decrease load on the UPS or readjust the user programmable alarm set point from the LCD. It might also require another power module to increase capacity. If this is not the problem, contact your local Liebert Services representative.
Turn Rocker Switch Off Before Removing	The bypass power is unqualified or the system output is disconnected. There is only one system monitor module or one system control module in the system, and the control lever is removed. The alarm reminds you to open the startup switch before pulling out the control module.	Open the startup switch.
Time to Check the Fan Filters for Excessive Dirt	When the air filter reminder is 'Enabled,' this message appears to remind users to check the air filters.	Check the air filters and clean them if necessary, or contact your local Liebert Services representative.
No Matching Module	Only one battery module is inserted into one row of bays in the system.	Ensure that there are a pair of battery modules in the same row of the frame, or contact your local Liebert Services representative.
Load Exceeds Battery Module Capacity	The system has determined the load exceeds the capacity of the battery.	Check to ensure that all battery modules are fully inserted and the locking lever is in the locked position. It is possible that more battery modules are required to increase battery run time. If this is not the problem, contact your local Liebert Services representative.
Battery Cabinet Not Connected	The power cable of the external battery cabinet is not connected or fully inserted.	Connect the cable or contact your local Liebert Services representative.

Table 6.1 Alarm message list (continued)

Alarm Message	Possible Cause	Corrective Action
BM Lock Lever in Remove Position	The locking lever is not in the locked position.	Check the locking lever to ensure it is fully inserted. If so, contact your local Liebert Services representative.
BM Over Temperature Warning	The internal battery module temperature is at an elevated level.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If this is not the problem, contact your local Liebert Services representative.
Low Battery Warning	The battery capacity has reached the user programmable set point.	Check upstream feeder breaker or the UPS input breaker and reset if necessary.If this is not the problem, begin the orderly shutdown of all connected equipment as UPS shutdown is imminent.
Battery Module Warning	One or more battery modules is abnormal.	View the corresponding module serial number in the fault logs or event logs and contact your local Liebert Services representative.
Battery Module Fail	One or more battery modules has a fault.	View the corresponding module serial number in the fault logs or event logs and either replace the module or contact your local Liebert Services representative.
Battery Test Warning Weak Battery	One or more battery modules has detected batteries that are no longer in specification due to age or operating conditions.	Replace the battery string or contact your local Liebert Services representative.
BM Temp Unbalance	The temperature difference between all the battery modules exceeds 10°C.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If this is not the problem, contact your local Liebert representative.
Frame Fan Failure	The fan located behind the display panel has failed.	Contact your local Liebert Services representative for fan replacement.
Transformer Fan Failure	There is a transformer on the UPS frame and at least one transformer fan has failed.	Contact your local Liebert Services representative for fan replacement.
Transformer Temperature Warning	A high temperature condition has occurred in the output transformer area.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If this is not the problem, contact your local Liebert Services representative.
Bypass Source Not Qualified	The UPS bypass functionality is not available because the input source is out of tolerance to the bypass voltage and/or frequency window.	No action necessary unless the AC input has been verified within bypass settings. If this is not the problem, contact your local Liebert Services representative.
Output Is Off Abnormal Output Volt	The cable connection is wrong.	Check the power distribution.
System Control Module Lock Lever in Remove Position	The locking lever is not in the locked position.	Check the locking lever to ensure it is fully inserted. If so, contact your local Liebert Services representative.

Table 6.1 Alarm message list (continued)

Alarm Message	Possible Cause	Corrective Action
System Monitor Module Lock Lever in Remove Position	The locking lever is not in the locked position.	Check the locking lever to ensure it is fully inserted. If so, contact your local Liebert Services representative.
Charger Module Warning	The charger module is not operating correctly.	View the corresponding module serial number in the fault logs or event logs, and contact your local Liebert Services representative.
Charger Module Fail	The charger module has a fault.	View the corresponding module serial number in the fault logs or event logs, and either replace the module or contact your local Liebert Services representative.
CM Power source Is Not Qualified	Check the power distribution.	Check upstream feeder breaker or the UPS input breaker and reset if necessary, or contact your local Liebert Services representative
Charger Module LOCK Lever in Remove Position	The locking lever is not in the locked position.	Check the locking lever to ensure it is fully inserted. If so, contact your local Liebert Services representative.
Charger Module Fan Failure	One or more of the charger module fans has failed.	Check to see if the fan is blocked. If not, contact your local Liebert Services representative.
Charger Module Temperature Warning	One or more charger modules is operating at an internal high temperature.	Check the air filters located behind the bezels and clean if necessary, or check to see if the ambient temperature is too high. If this is not the problem, contact your local Liebert Services representative.

6.2 Module Troubleshooting

The power, battery, charger, system-control and system-monitor module have two LEDs each to indicate the module operating state. The location of the LED is shown in the description of each module in Major Components on page 10, and Descriptions of module LEDs below describes the meaning the LED indicators.

Table 6.2 Descriptions	of module LEDs
-------------------------------	----------------

Green Status LED	Yellow Fault LED	Descriptions of Module State
Off	Off	The module is not inserted into the frame, lock lever is in unlocked position or the system is off
Off	On	The module is initializing (maximum 30 seconds ¹)
Flashing	Off	The module is operating normally
Flashing	Flashing	The module is in startup mode or the module has an alarm ²
Flashing	On	The module is faulty and off-line, and the control module is operating

Green Status LED	Yellow Fault LED	Descriptions of Module State
Off	Flashing	
On	Off	The module is not operating correctly, re-insert the module. If this
On	On	persists, contact technical support personnel.
On	Flashing	
1. If this condition persists for more than 30 seconds, verify that the lock lever is in the locked position. If it is not, the module is faulty.		
2. If both green and yellow LEDs are flashing for more than 30 seconds, reinsert module.		

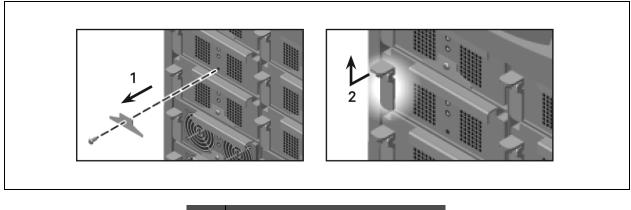
Table 6.2 Descriptions of module LEDs (continued)

6.3 Module Replacement

Follow these instructions when replacing or adding a system-control, system-monitor, power, battery, or charger module. Contact your Vertiv representative to purchase additional modules to expand your system or for replacement modules.

6.3.1 Removing Power, Battery and Charger Modules

WARNING! Risk of heavy unit falling over. Can cause equipment damage, injury or death. Read all of the instructions before attempting to move the unit, lift it, remove packaging or prepare the unit for installation. The UPS presents a tipping hazard. Do not remove more than one module at a time. Failure to do so may cause unit to tip over and cause serious injury.


1. Remove bezel cover to locate the faulty module. The yellow fault LED is illuminated on the faulty module.

NOTE: When removing bezels from a transformer-based UPS, note which have filters and replace them accordingly. Bezels from the modules have air filters. There are no filters on the bottom three transformer bezels. The transformer has a separate air filter.

NOTE: If your system does not contain a redundant module, you may need to manually place the UPS into manual bypass before removing modules to avoid accidental loss of output power for the connected equipment.

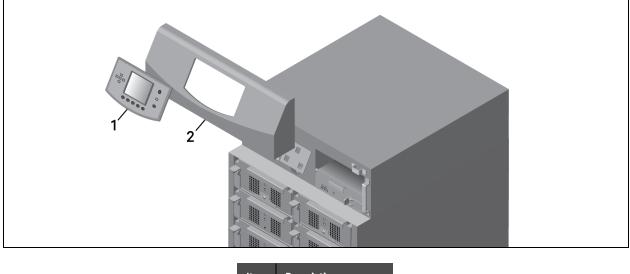
- 2. Use a Phillips screwdriver to remove the fastener (if installed).
- 3. Pull out the lock lever slightly and lift up, then wait a few seconds before continuing.
- 4. Slide the module out about two-thirds of the way until it is stopped by the safety catch, then lift the module slightly and, while supporting the module, slide it completely out.

Figure 6.1 Removing a module

6.3.2 Removing System-Control and System-Monitor Modules

NOTICE

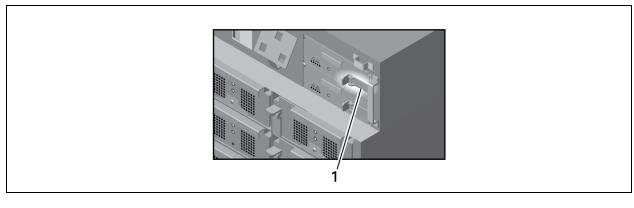
Risk of unintended shutdown. Can cause equipment damage.


Do not remove both the control and the monitor modules at the same time. Removing both the control module and monitor module at the same time will cause the UPS to shut down and remove power from the load. Replace these modules one at a time.

- 1. Remove the display bezel and the user interface (LCD) module from the frame, as shown in Remove display bezel and user-interface module on the facing page, then lay the user-interface module on top of the UPS.
- 2. Locate the faulty module. The yellow fault LED is illuminated on the faulty module.

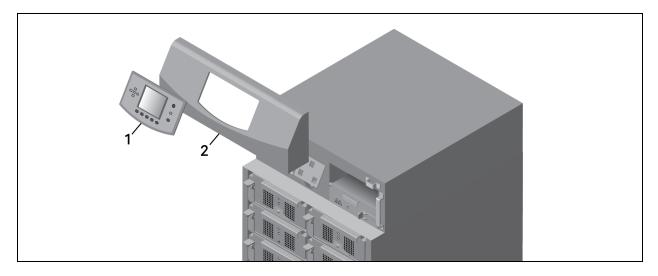
NOTE: If your system does not contain a redundant module, you may need to manually place the UPS into manual bypass before removing modules to avoid accidental loss of output power for the connected equipment.

3. Use a Phillips-head screwdriver to remove the screws from the 2 securing holes.


Figure 6.2 Remove display bezel and user-interface module

- 4. Pull out the lock lever slightly and pull to the left (see Releasing the lock lever below), then wait a view seconds before continuing.
- 5. Making sure to support the module, slide it completely out of its control bay.

Figure 6.3 Releasing the lock lever


ltem	Description
1	Lock lever

6.3.3 Replacing the User Interface Module

Replace the User Interface Module only while the Liebert® APS is turned On (System Enable switch On and input power available). If this module is replaced while the UPS is Off, the UPS settings will be reset to factory defaults when the UPS is powered On with the new User Interface Module installed.

- 1. Remove the display bezel on top of the frame, see Remove display bezel and user-interface module below .
- 2. Lift up the user interface module, and put it on top of the UPS frame.
- 3. Disconnect the network cable from the user interface module.
- 4. Connect the network cable to the new user interface module.
- 5. Insert the new user interface module into the clips and replace the display bezel.

Figure 6.4 Remove display bezel and user-interface module

ltem	Description
1	User-interface module
2	Display bezel

7 Maintenance

Routine maintenance for the Liebert® APS, includes proper care, scheduled maintenance and cleaning fan filters.

7.1 Proper Care

Proper maintenance of the UPS is imperative to optimal performance and life of the unit. We recommend that a certified technician perform preventive and corrective maintenance. Vertiv is dedicated to ensuring the highest level of performance and unmatched support for your Liebert UPS. Contact your local Vertiv representative for service.

7.2 Scheduled Maintenance

We recommend performing the following maintenance at least monthly:

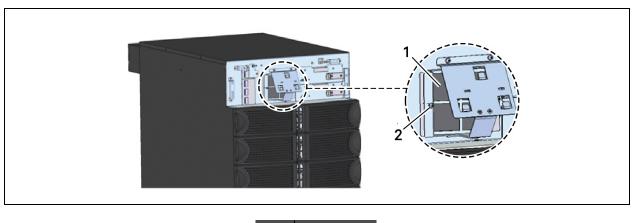
- Clean unit.
- Clean or replace filters.
- Verify proper airflow.

We recommend performing the following maintenance annually:

- Verify that all power modules are operating properly.
- Verify that all battery modules are operating properly.
- Verify redundancy (if applicable).

7.3 Cleaning Fan Filters

The intake fans contain filters that must be replaced or cleaned periodically, depending on the surrounding environment. Check filters and replace them if they are very dirty or damaged.

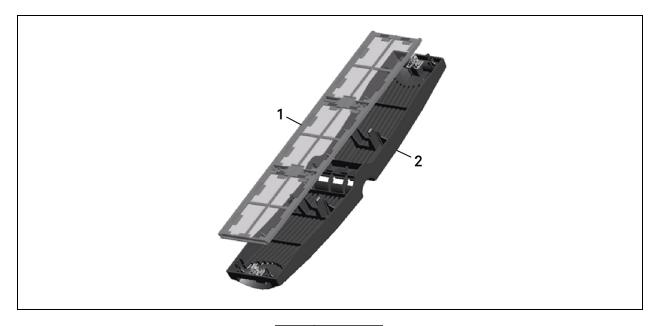

To remove dirt and dust from a filter:

Use a vacuum or rinse out the filter under running water (with the dirt side down). If you cleaned with water, blot the filters dry with a towel and allow to air-dry before reinstalling.

7.3.1 Accessing the Top Filter

- 1. Remove the display bezel.
- 2. Remove the user interface module, and lay it on top of the UPS frame.
- 3. Remove the two screws on the LCD mounting plate
- 4. Remove the screw in the middle of the filter assembly, remove the filter as shown in Replacing/Cleaning the top filter on the next page, and clean the filters as described in Cleaning Fan Filters above.
- 5. Replace the filter, mounting plate, user interface module and display bezel.

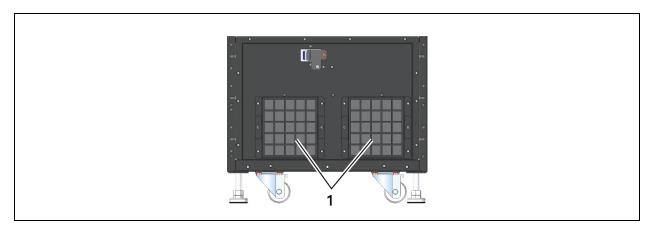
Figure 7.1 Replacing/Cleaning the top filter



7.3.2 Accessing the Bezel Filter

- 1. Remove the bezel from the frame.
- 2. Remove the filter assembly from the bezel, see Replacing/Cleaning the bezel filter below, and clean the filters as described in Cleaning Fan Filters on the previous page.
- 3. Replace the filter in the bezel and and place the bezel on the frame.

Figure 7.2 Replacing/Cleaning the bezel filter


ltem	Description
1	Filter
2	Bezel

7.3.3 Accessing the Bottom Fan Filter

NOTE: Only transformer-based frames have bottom fans.

- 1. Remove the three lower bezels at the bottom of the frame.
- 2. Remove the screws and take out the filter, shown in Replacing/Cleaning the bottom fan filter below, and clean the filters as described in Cleaning Fan Filters on page 79.
- 3. Replace the filter and bezels.

Figure 7.3 Replacing/Cleaning the bottom fan filter

ltem	Description
1	Filters

This page intentionally left blank

8 Specifications

Table 8.1 Liebert APS specifications

	10 Bay	16 Bay	12 Bay	16 Bay	10 Bay	16 Bay
Unit Size, Type	No Tran	sformer	Transform	ner-based	No Transforme	er Dual Inverter
Frame Rating, kVA/kW	15/13.5	20/18	15/13.5	20/18	15/13.5	20/18
General & Enviror	nmental					
Conducted and Radiated EMC Levels		IEC/EN/AS	5 62040-2 Cat 2, CIS	PR22 Class A, FCC F	Part 15 Class A	
Compliant Safety Standards			62040-1:2008, d CSA 22.2 No. 107.3		UL 1778 5 CSA 22.2	^{;th} Ed and No. 107.3
Compliant Immunity Standards			IEC/EN/AS 61	000-4-2, 3, 4, 5, 6		
Transportation	Inc	lividual packaged r	nodules meet ISTA-	1A / 1B; the complet	e system meets IST	A-1E
Environmental		٧	VEEE and ROHS2 (6	by 6), REACH Comp	bliant	
Protection Degree IEC60529			11	^{>} 20		
Color			RA	L 7021		
Dimensions, W x	D x H, in (mm)					
	17x32x27 (440x800x695)	17x34x38 (440x850x970)	17x32x42 (440x800x1060)	17x34x49 (440x850x1240)	17x32x27 (440x800x695)	17x34x38 (440x850x970)
Weight, lb. (kg)						
Unit Weight (empty frame)	280 (127)	320 (145.1)	510 (231.3)	540 244.9)	280 (127)	320 (145.1)
Shipping Weight (empty frame)	320 (145.1)	360 (163.3)	550 (249.5)	580 (263.1)	320 (145.1)	360 (163.3)
Unit Weight (frame rating populated)	565 (256.3)	700 (317.5)	795 (360.6)	920 (417.3)	565 (256.3)	700 (317.5)
Shipping Weight (frame rating populated)	605 (274.4)	740 (335.7)	835 (378.7)	960 (435.4)	605 (274.4)	740 (335.7)
Environmental	• •	·	·	·	·	·

Linit Ciza Tupa	10 Bay	16 Bay	12 Bay	16 Bay	10 Bay	16 Bay
Unit Size, Type	No Tran	sformer	Transform	er-based	No Transforme	er Dual Inverter
Frame Rating, kVA/kW	15/13.5	20/18	15/13.5	20/18	15/13.5	20/18
Operating Temperature			0 - 40°C	(32 - 104°F)		
Relative Humidity			0 - 95%, no	n-condensing		
Altitude			3000m (10000) ft.) @ 25°C (77°F)		
Efficiency (AC- AC)	91.8-92.0%	91.6-92.0%	88.5-89.9%	88.6-89.7%	90.4-91.0%	90.0-91.0%
Nominal Heat Dissipation (maximum)	4208 BTU/Hr	5747 BTU/Hr	5528 BTU/Hr	7965 BTU/Hr	4904 BTU/Hr	6768 BTU/Hr
Acoustic Noise Level, dBA		< 55d	B (<u><</u> 50% load), < 650	dB (51-100% load) @)1meter	
Input Data	•					
Nominal Input		200/208/220/23	0/240; Single-Phase	9		, 230/115, 240/120,
Voltage, VAC	380/400/415;	Three-Phase	_	_		, 173/100, 190/110, 27; Two-Phase
Input Voltage Range	The input voltag	ge range based on	the output loading, r	efer to Rated input	voltage range (Unit:	VAC) on page 86
Power Factor,	Single-Phase	Input, <u>></u> 0.99;		Singlo-Phase	e Input, > 0.99	
Cos	Three-phase	Input, <u>></u> 0.95		Single-Filds	e input, <u>~</u> 0.88	
Input Frequency, Nominal			50,	/60Hz		
Input Current Distortion, THDi			<	5%		
Input Frequency Range			40 to 70Hz	, auto-sensing		
Battery Module						
Lead-Acid Batteries Per String				12		
Battery Cells Per String				72		
Battery Capacity		36	W @ 15min-rate to 1.	67V per cell@25°C	(77°F)	

Table 8.1 Lieb	ert APS specif	ications (cont	inued)	
	10 Bav	16 Bav	12 Bav	

Unit Size, Type	10 Bay	16 Bay	12 Bay	16 Bay	10 Bay	16 Bay
onin Size, Type	No Tran	sformer	Transform	er-based	No Transforme	er Dual Inverter
Frame Rating, kVA/kW	15/13.5	20/18	15/13.5	20/18	15/13.5	20/18
Backup Time, Full Load	5 (for i	non-redundant sys	stem which has equa	I number of battery	strings and power m	nodules)
Maximum Charge Current (Full, Load)				ternal charger: 1.8A nodule: 10A	٨	
Nominal Voltage			144	• VDC		
Recharge Timer	<	5 Hr. to 90% capa	city (PM internal cha	rger with 1:1 ratio of	PM to Battery String	gs)
Output Data						
Output Voltage, VAC	200/208/22 Single-		100/100/ 110/110/ 115/115/ 120/120/ Single-	190/220 199/230 208/240	254/127, 208/120	, 230/115, 240/120, , 173/100, 190/110, 127; Two-Phase
Voltage Regulation			=	:3%	l	
Voltage Stability (100% Step Load)			=	=7%		
Voltage Recovery Time			≤ 6	i0 ms		
			≤ 3%, li	near load		
Voltage Distortion	≤ 5%, non-	linear load	≤ 7%, non-	inear load	≤ 5%, non-	-linear load
Output Frequency			50/	60 Hz		
			< 104% c	continuous		
Output			105% - 13	0% for 1 min		
Overload Capability			131% - 150	0% for 10 sec		
Capability			151% - 20	0% for 1 sec		
			> 201% fc	r 250 msec		

System Configuration	% UPS Load	Low Limit Value	High Limit Value
	>100%	98 ±3.1	
Dual-Inverter	90% ~ 100%	89 ±3.1~98 ±3.1	
Configured to 120	70% ~ 90%	74 ±3.1~89 ±3.1	
or 127 VAC per Phase	30% ~ 70%	60.5 ±3.1~74 ±3.1	
	<30%	60.5 ±3.1	100 5 10 1
	>100%	84 ±3.1	139.5 ±3.1
Dual-Inverter	90% ~ 100%	80 ±3.1~84 ±3.1	
Configured to 100,	70%~90%	72 ±3.1~ 80 ±3.1	
110 or 115 VAC per Phase	40%~70%	60 ±3.1~72 ±3.1	
	<40%	60 ±3.1	
	>100%	170 ±5	
Single-Inverter	90% ~ 100%	160 ±5 ~ 170 ±5	
Transformer-Based and	70%~90%	140 ±5 ~ 160 ±5	280 ±5
Transformer-Free	50%~70%	120 ±5 ~ 140 ±5	
	<50%	120 ±5	

Table 8.2 Rated input voltage range (Unit: VAC)

Table 8.3 Liebert APS external battery cabinet specifications

Parameters	AS7EBCNCC1BX000
General and Environmental	
Conducted and Radiated EMC Levels	IEC/EN/AS 62040-2—Class A, FCC Part 15 (Class A)
Safety Standards	IEC/EN/AS 62040-1:2008, UL 1778 5 th Ed and CSA 22.2 No. 107.3
Immunity Standards	IEC/EN/AS 61000-4-2, 3, 4, 5, 6
Transportation	ISTA-1E
Dimensions, WxDxH	17x28x38 in. (440x712x970mm)
Unit Weight	147.7 lb.(67kg)
Shipping Weight	209.4 lb. (95kg)
Environmental	
Operating Temperature	32 to 104°F (0 to 40°C)
Storage Temperature	Without battery: -4 to 140°F (-20 to 60°C)
	With battery: 5 to 104°F (-15 to 40°C)
Relative Humidity	0 - 95%, non-condensing
Altitude	10,000 ft. (3000m)

Parameters	AS7EBCNCC1BX000
Battery Module *	
Lead-Acid Batteries (Per String)	12
Backup Time (Full Load), Minutes	See ,Estimated Battery Run Times: Model-number Digits 1-3 = AS1 or ASA on the next page through Estimated Battery Run Times: Model-number Digits 1-3 = AS6 or ASF on page 170
*Up to four external battery cabinets can up to seven strings of batteries.	be connected to each UPS frame and each external battery cabinet can be configured with

Table 8.3 Liebert APS external battery cabinet specifications (continued)

8.1 Estimated Battery Run Times: Model-number Digits 1-3 = AS1 or ASA

modules at a temperature of 25 degC (77 degF) with 100% resistive UPS loading batteries. Run times in aronge highlight require charger module in the UPS frame Use these tables if your UPS model number digits 1-3 are ASI or ASA Unit type N String digit 6 = N) battery stondard of the new, fully charged (& UPS r ning 1 updn based vary by +/-5% due to They are ŝ 20 20 ote. N can abor are table listed 9 8 times imes in this σι Run 2 9 -n 115 21 30 30 Run Note: Load Level 100% 90% 80% 75% 50% 60% 40% 20% 22% 22% 100% 90% 80% 75% 70% 60% 60% 20% 22% 22% 100% 90% 80% 75% 50% 60% 50% 25% 25% 20% MA 5. . . . MA 6 / WAN OT MA S'ET / WAN ST

Figure 8.1 10-bay, single-phase, no transformer unit Type N (UPS model-number digit 6 = N)

												8	UPS mo	[& UPS model number digit 6 = R]	e R ber digit	t 6 = R)																
	I and I and														b	# Ba	# Battery Strings	ings									4					
UPS Rating	FORU LEVEL	1	2	3	4	5	9	1	8	6	10	11	12	13 1	14 1	15 1	16 17	7 18	8 19	20	21	22	23	24	25	26	27	28	29	30	31	32
	100% (4.5kw)	5	15	26	38	48	61	75	92	103	113	129	137	145 1	51 1.	56 16	51 16	5 18	3 19.	3 202	210	217	224	302	308	313	318	322	327	330	334	1
	90% (4.05kw)	9	17	28	43	51	70	82	101	112	129	138	146 1	153 1	158 16	163 16	167 190	0 200	0 209	9 218	3 225	304	310	315	320	325	329	334	337	341	344	10
	80% (3.6kw)	7	20	34	47	64	62	66	111	129	140	148	155.	161 1	166 18	188 19	199 209	9 218	8 226	6 306	5 312	2 318	324	329	333	337	341	345	420	424	427	1
	75% (3.375kw)	00	21	37	49	69	83	105	123	135	145	153	159	165 10	186 19	198 20	209. 219	9 227	7 307	7 314	t 320	325	331	335	340	344	347	423	426	429	432	1
KM	70% (3.15kw)	6	23	40	52	74	96	110	130	141	150	158	164 1	184 19	197 20	209 21	219 300	0 308	8 315	5 322	2 327	7 333	338	342	346	422	425	428	431	434	437	10
C.+	60% (2.7kw)	11	27	46	67	91	109	131	143	153	161	167	195 2	208 2.	220 30	302 31	311 319	9 326	6 332	2 337	7 343	3 347	423	427	431	434	437	440	442	445	447	1
1.	50% (2.25kw)	14	35	52	80	107	131	145	156	165	191	207	221 3	304 3.	314 32	323 331	31 337	7 343	3 420	0 425	5 429	9 433	437	440	443	446	449	451	453	455	457	
07	40% (1.8kw)	18	44	72	104	132	148	160	184	205	222	307	319 3	328 3	337 34	344 42	422 427	7 432	2 437	7 441	1 444	447	450	453	456	458	460	462	464	466	467	1
<u> </u>	30% (1.35kw)	25	53	66	133	153	166	203	224	312	326	336	345 4	425 4	431 43	437 44	442 446	6 450	0 453	3 457	459	9 462	464	466	480	2		2			a	2
L	25% (1.125kw)	28	71	113	147	164	202	226	317	331	342	423	431 4	437 44	443 4/	448 45	452 456	6 459	9 462	2 465	5 467	7 480	2	3	2	3	3	3	1	1	ж	. *
<u> </u>	20% (0.9kw)	39	92	138	161	203	303	323	338	422	431	439	445 4	451 4	455 45	459 46	463 466	6 480		1		1	1	<u>.</u>	- 30	<u>.</u>		3.	-6	3	е	8
L	10% (0.45kw)	78	154	216	327	422	438	449	457	464	480	2				1	1		1	1	3		2	100	3	2	-	ŝ.	-	100	ũ.	<u></u>
-	100% (9kw)		o,	10	15	20	26	32	39	44	48	52	62	69 7	75 8	81 9	92 99		04 109	9 113	3 125	130	134	138	142	145	149	151	154	157	159	1
<u> </u>	90% (8.1kw)	-53	9	11	18	23	28	37	43	48	52	64	71	78 8	83 9	96 10	103 108	8 113	3 125	5 130	135	5 140	144	147	151	154	157	159	162	164	166	10
<u> </u>	80% (7.2kw)	1	7	14	20	27	35	43	48	52	65	74	80	94 1(101 10	107 11	113 126	6 131	1 137	7 141	1 146	5 150	153	156	159	162	165	167	185	191	197	10
L	75% (6.75kw)	2	00	15	22	28	38	45	50	61	71	79	92 3	100 10	107 11	113 12	126 132	2 137	7 142	2 147	7 151	155	158	161	164	166	183	190	196	202	208	
KW	70% (6.3kw)	10	6	16	25	33	41	48	52	67	76	83	98	106 1.	113 12	126 13	132 138	8 143	3 148	8 152	2 156	5 159	163	165	181	189	195	202	207	213	218	- 69
	60% (5.4kw)	a.	11	20	28	40	47	53	70	79	95	104	112	126 1	133 14	140 14	146 151	1 155	5 159	9 163	3 166	5 184	192	200	207	213	219	224	301	306	311	
	50% (4.5kw)		14	25	37	47	53	72	83	100	110	126	134 1	142 14	148 15	54 15	59 163	3 167	7 188	8 197	7 205	213	220	226	304	309	314	319	323	327	331	10
	40% (3.6kw)	e.	19	32	46	60	76	56	108	125	136	144	152	158 10	163 18	180 19	192 202	212	2 220	0 300	307	7 313	318	324	328	333	337	341	344	420	423	1
	30% (2.7kw)	53	26	44	62	81	104	124	138	148	157	163	184	199 2:	211 22	222 30	303 311	1 319	9 325	5 331	1 336	5 341	346	422	426	429	432	435	438	441	443	10
	25% (2.25kw)	2	32	50	75	101	125	140	151	160	167	197	211 2	223 3(306 31	315 32	323 330	0 337	7 342	2 347	7 424	428	432	435	439	441	444	447	449	451	453	
	20% (1.8kw)	- 20	41	67	98	126	143	156	165	195	213	227	311 3	321 3	330 33	338 34	344 422	2 427	7 432	2 436	5 440	443	446	449	452	454	457	459	461	463	464	
	10% (0.9kw)		90	136	160	199	300	320	336	420	429	437	444 2	49 4	54 4	58 46	52 46	5 48	- 0	1	10	8	- 62	8	- 62	9	0	6	0	6		
-	100% (13.5kw)			5	8	12	16	19	22	26	30	35						<u>.</u>	- 10		ар. С		а. С	3.			•	2	а: 		a:	
	90% (12.15kw)		e.	9	10	13	18	21	26	28	35	39	×.	- 10 - 5		18. 10	е 2	<u></u>	•	- 60	•	- 60		8		×		ë	×	÷,	÷	
	80% (10.8kw)	3	a	7	11	16	20	25	28	35	40	44	1			2	े ज	2		1	- 4	2	а	200		1	a	×		20		
	75% (10.125kw)			00	13	18	22	27	32	38	43	47		1	1	1	1	~	2		2	1		1	а. П	8		3	a	8	a.	
14	70% (9.45kw)	- 20	×.	6	14	19	25	28	36	41	46	49	×	10	- 2	10 10	- C - 2	1		-		1	×	100	÷	10	*	8	÷	3	æ	
	60% (8.1kw)	3	3	11	18	23	28	37	43	48	51	62	1			2		-	•	- 63	100	- 00	- 6	10		1	•	1		20	e	
	50% (6.75kw)	2	a	15	22	28	38	44	50	60	69	77	-		9	1	2	*	2		2	1		3	•	×.		3	a	3	a	
	40% (5.4kw)	2	8	19	27	38	46	52	67	77	92	101	÷		1	8	- 2	*	3				×	×.	×	×	×	×.	×	×	ж	
20	30% (4.05kw)	12	4	27	40	49	64	LL	94	106	122	132	2	2 12		2	10 10		•6		•3	- 23	e	×	•	×	•	- K	e	1	е	2
	25% (3.375kw)		3	33	46	61	77	97	109	127	137	146	1	2	14		27	3	2.4	3	2.4	9	3	a.)à		ii.	10	10	n.	
	20% (2.7kw)	1	a.	42	53	78	100	120	134	145	154	161	Ŧ		7	12 . 	*	*	3.	1	а.	4	÷	×.	×	×.	×	Ϋ́	×	10	×	20
	1002 (1 25 bur)			16	125	146	161	189	212	302	316	327	Ŧ		1	-		-		-	•	- <u>(</u>)		- K	6	i.		3	,	,	,	

Figure 8.2 10-bay, single-phase, no transformer unit Type R (UPS model-number digit 6 = R)

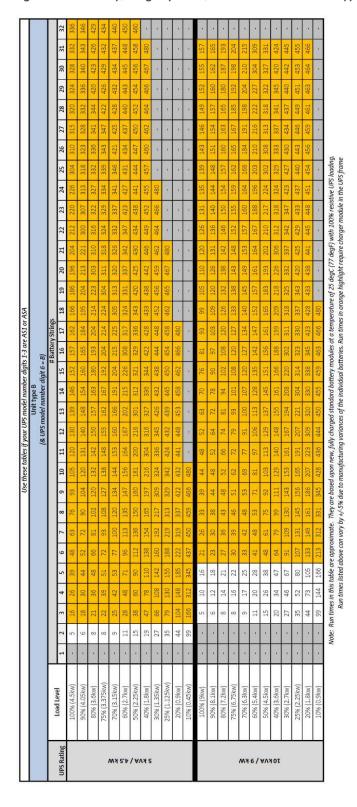


Figure 8.3 10-bay, single-phase, no transformer unit Type B (UPS model-number digit 6 = B)

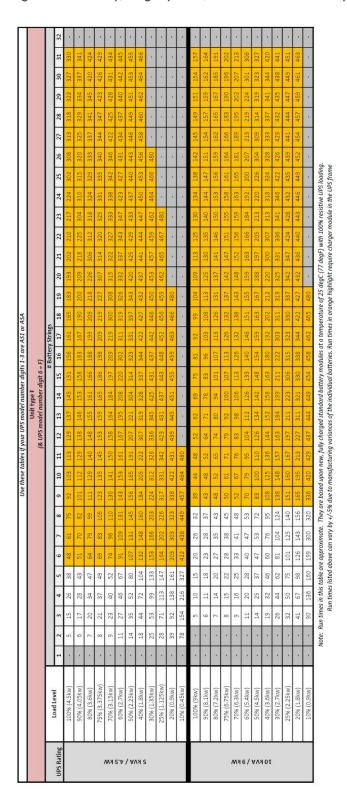


Figure 8.4 10-bay, single-phase, no transformer unit Type F (UPS model-number digit 6 = F)

modules at a temperature of 25 degC (77 degF) with 100% resistive UPS loading. nodule in the UPS frame Use these tables if your UPS model number digits 1-3 are AS2 or ASB idhlidh # Battery Strings (& UPS model number digit 6 = N) Run Unit type N standard fully charged upon new, pased They are varv bv +/-5% due nate. Run times in this table are Run times listed above 27 Note: Load Level JPS Rating ANA 2.4 / 4.5 KW WA 6 \ AVA 01 TT KAN / T3.5 KM 20 KVA / 18 kW

8.2 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS2 or ASB

Figure 8.5 16-bay, single-phase, no transformer unit Type N (UPS model-number digit 6 = N)

Motion Provinci (1)																n0	it typ	A A																		
Matrix Table State State State State														(&	UPS	labor	mum	ber di	git 6 -	= R)																
I I			100						5										#Batt	tery Stu	rings			- 5				5	8		3	3		3		
Modeline 1 1 1 1 </th <th></th> <th>רחמת רבאבו</th> <th>1</th> <th>2</th> <th></th> <th>4</th> <th>5</th> <th>9</th> <th>1</th> <th>8</th> <th>H</th> <th>10</th> <th></th> <th></th> <th>E</th> <th>14</th> <th></th> <th></th> <th>17</th> <th>18</th> <th>19</th> <th>20</th> <th>21</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>\square</th> <th></th> <th></th>		רחמת רבאבו	1	2		4	5	9	1	8	H	10			E	14			17	18	19	20	21	2										\square		
Provision I I I I<		100% (4.5kw)	5	15	26	38	48	61	75	92	103	113	129	137	145	151	156	161	165	183	193	202	210	218	224	502	808	113	18 3.	23 31	27 3:	31 33	14 33	341	344	1
Witzizzani 1 2 2 2 2		90% (4.05kw)	9	17	28	43	51	70	82		112	129	138	146	152	158	163	167	190	200	209	247	225	303	309	315	320	25 3	29 3	33 33	37 3	41 34	H 34	425	-	10
Matrix Matrix<		80% (3.6kw)	-	2	2	47	69	79	ŝ	III	129	139	148	155	161	166	187	199	209	218	226	305	312	318	323	828	333	37	41 3	8	10	23 42	95	432	-	-
Model Model <th< td=""><td></td><td>75%6 (3.375kcw)</td><td>60 0</td><td>17</td><td>37</td><td>8 G</td><td>54</td><td>55</td><td>105</td><td>-</td><td>135</td><td>145</td><td>153</td><td>159</td><td>165</td><td>136</td><td>198</td><td>209</td><td>219</td><td>227</td><td>307</td><td>314</td><td>320</td><td>325</td><td>155</td><td>335</td><td>010</td><td>4 :</td><td>-</td><td>23 4</td><td>26 4</td><td>29 43</td><td>1 43</td><td>-</td><td></td><td>•</td></th<>		75%6 (3.375kcw)	60 0	17	37	8 G	54	55	105	-	135	145	153	159	165	136	198	209	219	227	307	314	320	325	155	335	010	4 :	-	23 4	26 4	29 43	1 43	-		•
Matrix Matrix<		(MALLS 1907	11	38	4	20	1 6	110	135	1	1	161	180	196	200	100	203	212	310	376	120	33.0	875	020	000	100	131	1 12		f F	1 20	12 20	1 1			•
Matrix Matrix<		5056 (2 25km)	14	36	2	5	108	137	146	157	165	107	20B	222	205	345	PCE	155	UEE	AAA	100	926	430	PET	187	144	A A A	90		15	24 42	26 AF	80 80	261		1
Situation Situation <t< td=""><td></td><td>40% (1.8km)</td><td>100</td><td>4</td><td>-</td><td>104</td><td>132</td><td>149</td><td>161</td><td>185</td><td>206</td><td>222</td><td>306</td><td>319</td><td>329</td><td>755</td><td>344</td><td>422</td><td>428</td><td>435</td><td>437</td><td>144</td><td>445</td><td>148</td><td>151</td><td>1 23</td><td>156</td><td></td><td>1</td><td>100</td><td>1 23</td><td>56 46</td><td>100</td><td></td><td>1</td><td>•</td></t<>		40% (1.8km)	100	4	-	104	132	149	161	185	206	222	306	319	329	755	344	422	428	435	437	144	445	148	151	1 23	156		1	100	1 23	56 46	100		1	•
Sint Listoni Sint Sint Distant Sint Sint Distant <t< td=""><td></td><td>30% (1.35kw)</td><td>25</td><td>53</td><td>+</td><td>133</td><td>153</td><td>166</td><td>202</td><td>223</td><td>312</td><td>325</td><td>336</td><td>345</td><td>424</td><td>431</td><td>437</td><td>141</td><td>446</td><td>450</td><td>453</td><td>456</td><td>459</td><td>462</td><td>464</td><td>166</td><td>180</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ľ</td><td>Ľ</td></t<>		30% (1.35kw)	25	53	+	133	153	166	202	223	312	325	336	345	424	431	437	141	446	450	453	456	459	462	464	166	180	1							Ľ	Ľ
Matrix Matrix<		5% (1.125kw)	28	-		146	163	200	225	315	329	341	422	430	437	442	447	451	455	458	461	464	467	480				200			. 24. SV	30 57/) ×	<u>.</u>	25	14
Weile Weile <th< td=""><td></td><td>20% (0.9kw)</td><td>38</td><td>+</td><td></td><td>160</td><td>199</td><td>300</td><td>320</td><td>100</td><td></td><td></td><td>1</td><td>444</td><td>449</td><td>454</td><td>458</td><td>462</td><td>465</td><td>480</td><td>,</td><td>1</td><td>ä</td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2</td><td>•</td></th<>		20% (0.9kw)	38	+		160	199	300	320	100			1	444	449	454	458	462	465	480	,	1	ä	2		1								2	2	•
Monta I <td></td> <td>10% (0.45kw)</td> <td>-</td> <td>-</td> <td></td> <td>320</td> <td>345</td> <td>433</td> <td>445</td> <td>454</td> <td>461</td> <td>466</td> <td>480</td> <td></td> <td></td> <td>-</td> <td>2</td> <td></td> <td>-</td> <td>14</td> <td></td> <td>0</td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>10</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td>		10% (0.45kw)	-	-		320	345	433	445	454	461	466	480			-	2		-	14		0	14						1		10	1		1		
Model and the field a		100% (9km)	2	-	10	16	21	26	32	⊢	4	67	52	62	69	76	81	66	66	104	109	120	125	130	134	138	42	45	49 1	52 15	54 10	15 15	9 16	164	166	аř
Open (2) I<		90% (8.1kw)	-	9	11	18	23	28	37	+		52	64	71	78	83	57	103	106	213	125	131	135	140	144		151	54 5	7	-		-	-		17	
Yeek Foreiner Yeek Foreiner Yeek Foreiner		80%6 (7.2kw)		-	14	20	27	36	43	+		99	74	81	94	101	108	113	126	132	137	142	146	150	153		160	62 1	17	67 18	85 19		7 20	208	1.0	•
Yee in the field of the f		75% (6.75kw)	•		15	22	28	39	45	-		71	62	92	100	101	113	126	132	138	143	147	151	155	158	161	164	99	84 1	90 10	97 20	02 20	8 21	216	222	•
Generation C C C C		70%6 (6.3km)	1	0	17	25	33	42	48	-		76	90	66	106	113	126	133	138	144	148	152	156	160	163	166	182	89 1	96 2/	02 20	08 2	13 21	8 22	300	306	4
Solution I<	6/	60% (5.4kw)	100	11	20	28	40	47	53			95	104	112	126	133	140	146	151	155	159	163	166	184	192	500	2 403	13 2	19 2	24 30	02 3(06 31	1 31	315	322	×.
Model Model <th< td=""><td>AV</td><td>5096 (4.5kw)</td><td>1.4</td><td>14</td><td>25</td><td>37</td><td>47</td><td>53</td><td>72</td><td>-</td><td>-1</td><td>-</td><td>126</td><td>134</td><td>142</td><td>148</td><td>154</td><td>159</td><td>163</td><td>167</td><td>187</td><td>197</td><td>205</td><td>213</td><td>219</td><td>226</td><td>304</td><td>60</td><td>14 3</td><td>19 32</td><td>23 31</td><td>27 33</td><td>33</td><td>1 338</td><td>341</td><td></td></th<>	AV	5096 (4.5kw)	1.4	14	25	37	47	53	72	-	-1	-	126	134	142	148	154	159	163	167	187	197	205	213	219	226	304	60	14 3	19 32	23 31	27 33	33	1 338	341	
The contract of the cont		40% (3.6kw)	1141	19	32	46	60	76	-		125	136	144	152	158	163	180	192	202	222	220	300	306	313	318	524	828	33	37 3	42 34	4	20 42	3 42	5 426		•
The field of		30%6 (2.7%W)	in the	26	44	62	80	104		-	148	156	163	184	198	211	221	303	SII	318	325	331	336	341	346	122	125 4	29 4	32 4	35 4:	38 44	40 44	13 44	5 447	449	1
The field of		25% (2.25kw)		32	20	75	101	124	-	-	160	167	961	211	223	306	315	323	330	336	342	347	424	428	432		138 4		44 4	4 14		51 45	33 45	5 457		4
Minolity Minoli		20%6 (1.8km)		41	6	86	125	143	156	-	-	212	227	314	321	330	337	344	422	427	432	436	440	443	446	-			-			2	1		-	×.
Terr 100(113(1) 100(113(1) 1		10% (0.9km)	1	83	135	159	199	227	320	-	347	429	437	443	449	454	458	461	465	467	480	÷	12			740		30	14		200 1910	200 (200	-	*	10	10
Operimentation · · · · · · · · · · · · · · · · · · ·		(00% (13.5kw)	3	2	5	63	12	16	19	22	26	30	35	39	43	46	48	51	53	63	67	22	76	79	83	93	97 1	01 1	05 1	08 11	11 E	20 12	12	130	ः -	4
Berlingliame in the constraint of the cons	~	10% (12.15kw)	1	20	9	10	14	18	21	-		8	40	43	47	49	52	19	99	12	76	8	83	94	66	103	107	9	13	23 12	27 12	30 13	13	7 140	×	×.
Tell (1015(16)) 		80% (10.8kw)	4		~	11	16	20	25	+	-	8	45	48	51	53	65	71	76	80	16	%	101	50E	109	-	123	-	31 1	35 13	38 1/		-	-	10	*
Tooling the field of the		596 (10.125kw)			00	13	18	22	27	-	-	54	47	50	53	65	71	76	81	92	57	102	107	111	121	_	130	34 1	38 1	11 17	1 1	-	0 15	155		•
Complicationer in the set of the set o		70% (9.45kw)			0	14	19	55	28	+	-	8	20	23	64	71	12	18	6	66	104	109	113	124	129	133	137	9	4	47	1	15	12	160	3 S	•
The conditionable and co		60%6 (8.1kw)		2	11	18	53	28	37	+	-	-	63	20	11	83	95	102	107	112	124	129	134	139	143	146	120	23	26 1	20 10	61 10	53 16	99	186	2	•
40% 54 0		50% (6.75kw)		2	5	8	58	8	42	+		+	11	6	86	105	111	124	130	136	141	145	150	153	157	190	5	29	1	51 26	93 51	50	51	212	×	7
Diversionance in the second of the sec		40% (5.4kw)			19	22	39	46	23	67	+	+	-	109	123	131	138	143	149	153	157	161	164	167	188	195	503	60	15 2	22 22	26 3(03 30	7 31	315	•	•
Termane in the second of		30% (4.05kw)			27	8 :	69	8	E	+	-	+	+	140	147	153	158	163	167	189	198	207	215	222	300	-	21	1	22	26 3:	00		7 34	341	•	100
Term 14.1. The first of t		25% (3.375kW)			m (8	29	11	16	-	-	-	-	153	159	101	184	196	206	215	223	303	309	316		-			-		9 1	-		-	9 2 2	•
Torregarding the conditionant of the con		10% (1.35kw)		9	74	126	147	161	190	-	-	-	-	338	346	425	431	436	100	145	170	452	455	458	-		1		-	f i	f i		-	-		1
Termonic conditionantee condit		100% (1 Skur)				v	-	10	13	Ł	-	-	23	26	28	\$	36	BE	07	44	46	48	02	65	52	3	99	g	5	6 7	8	5	.0	8	2	
Terres (Tatelle) 576 1		30%6 (16.2kw/)		3	53	9	0 0	1	41	+		-	56	28	34	37	41	13	1 99	1 27	9	¥ 64	8 10	: 53	8 6	12	75					10	0 10		2	
Televisticatelyievie: a constrained or a constraine		3056 (14.4kw)		2	3	7	10	14	17	-		27	31	35	39	43	45	48	20	52	19	65	70	74	1	08	68	-	1	-		11 10	0 11	-	2	ja,
Tricit (15 (N)) In (1) (2 (N)) (1) (2 (N)) (2		75% (13.5kw)	1	8	R	60	11	15	18	22	-	28	34	38	42	45	48	50	25	61	66	12	75	79	85	92	96	00	03 10	07 11	10 1	13 12	2 12	5 129	9	1
6006(10.08M) i <t< td=""><td></td><td>70% (12.6kw)</td><td>1</td><td>2</td><td>2</td><td>01</td><td>13</td><td>17</td><td>20</td><td>-</td><td></td><td>33</td><td>38</td><td>42</td><td>45</td><td>48</td><td>50</td><td>23</td><td>62</td><td>68</td><td>72</td><td>76</td><td>8</td><td>05</td><td>96</td><td>66</td><td>103</td><td>8</td><td>10</td><td>13</td><td>22 1</td><td>26 12</td><td>9 13</td><td>3 136</td><td>1</td><td>14</td></t<>		70% (12.6kw)	1	2	2	01	13	17	20	-		33	38	42	45	48	50	23	62	68	72	76	8	05	96	66	103	8	10	13	22 1	26 12	9 13	3 136	1	14
Operimeter i	-	50% (10.Skw)	15			11	16	20	25	28	-	8	44	48	51	53	65	20	75	80	90	56	100	101	109	112	22	27	30 1	34 13	37 12	41 24	14	5 145		1
Molici 2livici in the conditional and th	AV	50% (9kw)	323	3	98	15	20	26	31			47	51	60	67	73	52	80	96	102	107	111	122	127	131	136	139	143 1		49 15	52 13	55 15	31 16		25	4
30%(54%) - - - 2 2 3 6 10 100 126 141 166 141 166 162 162 160 210 <	N 4 0	40% (7.2km)	141	1	3	19	26	33	41			62	70	11	83	97	104	109	121	127	133	138	142	146	150		156	59 1	F	64 16	67 II	84 19	0 19	202		1
- -	z	30%6 (5.4kw)	245	8	30	27	37	45	51	-		83	_	107	120	128	134	141	146	151	155	159	162	165	182		197 2	04 2	10 2	16 22	21 22	26 30	30 30	7 311	50	10
·· ·· <td< td=""><td></td><td>2596 (4.5kw)</td><td>11-11</td><td>- 2</td><td>13</td><td>34</td><td>44</td><td>51</td><td>67</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>136</td><td>143</td><td>149</td><td>154</td><td>159</td><td>163</td><td>166</td><td>185</td><td>194</td><td>202</td><td></td><td>_</td><td>223</td><td></td><td>8</td><td>11 31</td><td>15 3</td><td>19 32</td><td>32</td><td>33.1</td><td>1</td><td>10</td></td<>		2596 (4.5kw)	11-11	- 2	13	34	44	51	67	-	-	-	-	-	136	143	149	154	159	163	166	185	194	202		_	223		8	11 31	15 3	19 32	32	33.1	1	10
+ · · · 5 122 140 153 153 153 153 222 307 317 326 334 341 347 424 429 433 437 441 441 447 440 420 450 43		20% (3.6kw)	1		<u>.</u>	43	52	71	-	-	-	-	-	-		159	164	180	192	202	211	219	226	305	311	_			30 3	34 33	38 3	42 34	5 42		2	1
		1096 (1.Bkw)	1	3	S.	95	122	140	-	-	-	-	-	-		326	334	341	347	424	429	433	437	441	444	147	150 4	152	55 4	57 45	59. 44	51 46	3 46	456	2	4

Figure 8.6 16-bay, single-phase, no transformer unit Type R (UPS model-number digit 6 = R)

														1		1																l	I	l
												~	& UP	Unit type B (& UPS model number digit 6 = B)	Unit type B del number (nber d	digit t	5 = 8)																
	loud loud																# B,	attery	# Battery Strings															
UPS Rating		1	2	3	4	5	9	7	8	6	10 1	11 1	12 13	3 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 3	32 33	34	30
	100% (4.5kw)		5	16	26	39	48	63	76	93	05 1	20 1	0 13	9 14	5 152	157	162	166	186	196	205	213	220	226	304	310	315	320	324	328	332 3	6 339	342	34
	90% (4.05kw)	10	9	18	30	44	52	72	90	103	20 1	31 1/	40 14	48 154	1 160	165	183	194	204	213	221	300	307	313	318	323	328	332	336	340	343 31	6 42:	424	42
	80% (3.6kw)	•	00	21	36	48	99	81	102	120	32 1	42 1:	50 15	7 16	180	198	204	214	222	302	309	316	321	327	332	336	340	344	420	423	126 4	9 43	434	43
M	75% (3.375kw)	-		22	39	20	14	92	107	126	38	47	5 16	1 16	191	203	214	223	303	311	317	323	329	334	338	343	347	422	425	429	131 4	43	439	44
15	/U%6 (3.15KW)		л ;	3		20	11	<u>R</u>	113	89	44	1	101 10	PL 19	202	417	1	202	215	519	525	251	336	149	245	471	Ş	876	431	434	45/ 4	94	944	4
· + /	60% (2.7kw)		-	28		0Z	95	112	134	146	56 3	63	56 20 r	21	226	307	316	323	330	336	341	346	423	427	430	434		440	443	-			-	45
AV	50% (2.25kW)		a :	20 14	3 1	06		136	149	160	80	5 5	30 20	12 0	321	329	336	292	420	472	478	433	43/	141	444	447		452			458 4	460 462	465	40
. ж. с	40% (1.8kw)		+	46		601	13/	153	164	195	2	02	22 0	6 33	340	421	42	43.4		141	445	448	451	454	45/	459	461	463	465	46/	0.81	1	-	1
;	30% (1.35kw)		-	64	106 1	140	159	189	215	307 3	22 3	34 344	44 42	4 43	-	443	44/	451	-	458	461	463	466	480	×	8			-	4			2	-
	25% (1.125kw)		34	78	128	154	185	216	-	327	40 4		1 43	8 444	-	-	~	461	464	466	480	4			2	-			5	à			à	1
	20% (U.9KW)		£ ;	707	14/	180	617	919	934	4 074	4 5	139 446	47	149 7	195	<u>6</u>	085			•		2	•				,		e	0		-	2	1
	10% (0.45kw)	•	96	164	308	342	434	448	457	165	80	4		1	1	1	1	1	1	28	26	10		28		a.	2	9		a.			2	*
	100% (9kw)	(*)	÷.	5	10	16	21	26	33.	39	44	49 5	2 62	3. 70	76	82	94	100	105	110	121	126	131	135	139	143	146	149	152	155	11	162	164	1
	90% (8.1kw)	2	3	9	12	18	23	30	38	44	48	52 64	4 7	2 78	90	97	104	109	120	126	131	136	140	144	148	151	154	157	160	162	165 1	167 184	189	2
	80% (7.2kw)	10	10	00	14	21	27	36	43	48	25	66 7.	74 81	1 95	102	108	120	127	132	138	142	147	150	154	157	160	163	165	180	187	193 10	9 204	209	2
	75% (6.75kw)				16	22	30	39	46	51	63	72 8	80 93	3 101	108	120	127	133	139	144	148	152	156	159	162	165	167	186	192	199	2.04	210 215	220	
AN F	70% (6.3kw)		34	6	17	25	33	42	48	53	69	16 1	1 10	0 10	7 120	127	134	140	145	149	153	157	161	164	166	184	191	198	204	210	215 2	0 225	302	2
5/1	60% (5.4kw)	10	2	12		30	41	48	60	72	81	7 30	6 12	0 121	3 136	142	148	152	157	161	164	180	188	196	204	210	217	222	300	305	33	4 318	321	10
10.5	50% (4.5kw)		+	15	-	38	48	61	75	92	03	13	9 13	7 14	151	156	161	165	183	193	202	210	217	224	302	308	813	318	322	327	331 3	14 338	341	1
101	40% (3.6kw)	4		+	+	47	64	79	66	111	29 1	40 14	8 15	5 16	1 166	188	199	209	218	226	306	312	318	324	329	333	337	341	345	420	124 4	7 429	-	2
	30% (2.7kw)	1		+	+	67	16	109	130	143	~1	-	61 19	4 20	215	301	310	318	325	331	337	342	347	423	427	430	434	437	439	442	-	4	-	5
	25% (2.25kw) 20% /1 8km1			35	73 1	80 105	137	131	145 1	156 1 186 0	006 7	90 207	07 221 NR 320	1 304 n 374	1 314	328	330	337	343	420	425	429 445	433	437	440	443 456	446	448 460	451	453 4	455 457 466 480	457 459 480 -	461	2 2
	10% (1.0%)			-		165		-	1	1			1	1	-		466	480	-									3	101	+	1	2		+
	1000/ (10 5004				÷		5	10	10	-		0	00	1	AC	Vo	ĩ	2	3	00	10	76	Vo	0	0	00	101	105	100	411	-F 00	44 V	121	
	(MXCCT) 9/00T				+	0 0	+	+	7 6	22	0 0	00 00	RC CC	4 42	0 ⁺	40	10	8 5	3 5	26	7/	0/	00	00	05	107	TOT	COT	100	111	1 N7	121 12	TCT	
	90% (12.15KW)	• *	-		-	10	+	10	77	07	+				-	25	10	10	17	9/	80	50	106	66	100	107	111	120	124	971	1 121	121	140	1 3 1
	80% (10.8KW)	•			+	17	+	7 5	50	30	000		40 40	-	8	00	27	11	19	76	16	102	901	100	1021	1.24	129	152	140	159	T 751	5 140	100	
	(WXC7T101) %C/			6 3	+	9 :	+	+	17	22	20 04	44 4/	2	1 22		27	1	70	100	101	COT.	907	717	777	121	100	001	ACT -	747	C#1	T 02	CT TO	CCT	
2.E.	(WXCF/E) 070/	•			- -	10	2 2	0 8	00	10	74			60 °F	2/	11	20	top	TOD	105	101	120	C71	144	1 40	154	141	140	145	101	1 00		101	
	50% (6.75kw)		ĩ		-	22	+	+	45	-	25	4	79 92	100	107	113	126	132	138	143	147	151	155	158	161	164	167	184	190	197	203 20	10 21	218	
	40% (5.4kw)				+	28	+	+	23	20	64	94 10	04 11	2 126	133	140	146	151	155	159	163	166	184	192	200	207	213	219	224	301	306 3	1 319	319	
	30% (4.05kw)		14	<u>5</u>	-	41	-	-	80	86	1 60	13	5 14	3 150	156	161	165	184	195	204	212	220	227	305	311	3.16	321	326	330	334	337 3.	11 34/	347	10
	25% (3.375kw)	ŀ	ĩ	1	1	48	-	-	101	13 1	31 1	11 15	50 15	6 16	167	191	202	212	221	301	308	315	321	326	331	335	339	343	347	422	125 4	8 431	434	1
-	20% (2.7kw)		4	3	44	63	-	105	126	189	49 1	58 16	64 18	7 201	213	224	305	313	320	327	333	338	343	347	423	427	430	433	436	439 4	442 444	446	448	1
	10% (1.35kw)	34	1	14					202	23 3	12 3	25 33	6 34	5 424	431	436	441	446	450	453	456	459	462	464	466	480		- 63		- 6			1	а ^н .,
	100% (18kw)	24	24	3	21	5	00	10	13	16	18 2	21 2	3 26	5 28	32	36	39	42	44	46	48	50	52	53	62	66	69	73	76	78	81 8	8 93	2	ं
	90% (16.2kw)	•	e.	K		9	6	11	14	18	20 2	23 2	7 28	34	37	41	43	46	48	50	52	53	64	68	71	75	78	81	83	93	97 1	0 10	2	*
	80% (14.4kw)		6			60	11	14	18	21	25 2	27 3	1 36	6 40	43	46	48	50	52	61	99	70	74.	78	81	06	94	98	102	105	1 801	1 120	9.	
~	75% (13.5kw)	33		<u>i</u> .	21	00	12	16	19	22	26 3	30 3	5 35	9 43	46	48	51	53	62	67	72	76	79	83	93	97	101	104	108	111	(20 I	3 127	S.	25
	70% (12.6kw)		2	×		6	13	17	21	25	28 3	33 8	8 42	2 45	48	51	53	64	69	73	17	81	91	96	100	104	107	111	120	124	127 1	11 134	1	2
т /	60% (10.8kw)	-	9	1		12	16	21	26	30	36 4	41 4	45 48	8 51	60	99	72	11	81	92	67	102	106	110	120	124	128	132	136	139	142 1	148	3	
~	50% (9kw)	*	34	2		-	+	-	32	39	-		51 62	2 69	75	81	92	86	104	109	113	124	129	134	138	142	145	148	151	154	1 12	191 6	3	3
4 0i	40% (7.2kw)		2	,		20	+	+	+	+	+	64 7.	2 7	9 92	100	106	112	124	130	135	140	144	148	152	155	158	161	164	166	182	169	5 200	1	
,	30% (5.4kw)		3	2	,	-	+	-	-	-	+	-1	01 10	09 123	131	138	143	149	153	157	161	164	167	188	195	202	209	215	221	226	303	7 31:	9. I	*
ĺ	25% (4.5kw)	39	3	6		-	+	+	-	-	-	108 12	3 13	32 139	146	152	157	161	165	182	192	200	208	215	222	300	305	310	315	320	324 3.	8 33	8	ं
	20% (3.6kw)	•	-	12			-	-	-	_		133 14	15 15	0 15	5 161	166	187	198	208	217	224	303	310	315	321	326	330	334	338	342	345 4	1 42	8	
	1 00% /1 0 burl	2		1		00	127	144	157	166 1	197 2	214 30	0 31	321	331	339	345	202	428	433	437	441	444	447	450	453	455	457	450	461	163 41	466	ð.	1

Figure 8.7 16-bay, single-phase, no transformer unit Type B (UPS model-number digit 6 = B)

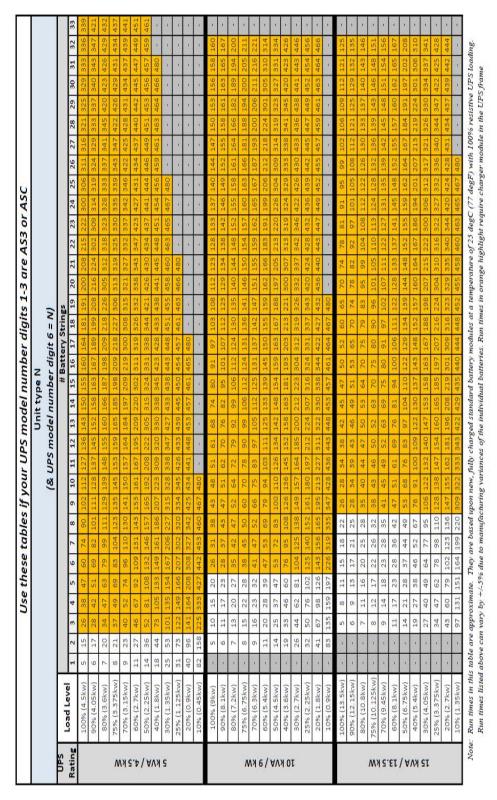

												8)	Unit type F (& UPS model number digit 6 = F)	Uni nodel	Unit type F del number	e F er dig	it 6 =	F)															
	I and I and															-	# Batte	# Battery Strings	sât											3			
UPS Rating	LUGU LEVEL	1	2	3	4	5	9	7	8	9 10	11	12	13	14	15	16	17	18 1	_	20 21	1 22	23	24	25	26	27	28	29	30 31	1 32	33	34	35
	100% (4.5kw)	2.0	-	_		38	48 6	19	5 9	2 10	113	129	137	145	151	156	161	165 14	83 15	93 20	2 210	0 218	224	302	308	313	318	323 3	27 33	1 334	338	341	21
_	90% (4.05kw)	0	9	_	28	43	51	3 02	22 16	11 11	129	138	146	152	158	163	167	190 20	00 20	39 21	7 22	5 303	309	315	320	825	329	333 3	37 34	1 344	347	422	10
	80% (3.6kw)	3	2	-	34	47	63	5 64	9 11	1 12	139	148	155	161	166	187	199	209 2.	18 22	26 30	5 31	318	323	328	333	337	341	345 4	20 42	3 426	429	432	2
N	75% (3.375kw)	10	00	21	37	49	69	33 1	05 12	13	145	153	159	165	186	198	209	219 2.	27 30	7 31	4 32(325	331	335	340	344	347	423 4	26 42	9 432	434	437	- 13
N	70% (3.15kw)		6		40	52	74	96 1	11 15	0 14.	150	158	164	184	198	209	219	300 30	08 31	5 32	2 328	3 333	338	342	346	422	425	429 4	32 43	4 437	439	442	-8
5.4	60% (2.7kw)		11	-	46	68	92 2	10 1	31 14	14 15	161	180	196	209	221	303	312	319 3.	26 33	32 33	8 34	3 420	424	428	431	434	437	440.4	43 44	147	450	452	2
/ \	50% (2.25kw)		-	-	-	81	108	32 1	46 14	7 16	192	208	222	305	315	324	331	338 34	44 42	21 42	6 43(434	437	441	444	446	449	451 4	54 45	6 458	459	461	- 13
κ۸	40% (1.8kw)	1	+	+-	+	104	132 1	49 1	51 18	5 200	222	308	319	329	337	344	422	428 4	33 43	37 44	1 44	5 448	451	453	456	458	460	462 4	164 46	166 467	480	4	1
s	30% (1.35kw)		+	+	+	133	153 1	66 2	02 22	3 31	325	336	345	424	431	437	441	446 4	50 45	53 45	6 459	462	464	466	480	1	23		12	10	-	-	
_	25% (1.125kw)		+		-	146	163 2	00 2	25 31	5 320	341	422	430	437	442	447	451	455 4	58 46	51 46	4 46	480	8					T.	2 2	8 2 2		÷	
	20% (0.9kw)		-	06	-	160	199 3	00 3	20 33	6 42	429	437	444	449	454	458	462 4	465 48	- 081	*					si.	Æ						n.	1
	10% (0.45kw)	3	+	-	-	320	345. 4	33 4	45 45	54 461	466	480			1			1			-	10	20	•	-	¥.			12 13	10	114		2
	100% (9kw)			⊢	10	16	21	26 3	32 3	9 44	48	52	62	69	76	81	93	99 10	04 10	9 12	0 12	130	134	138	142	145	149	152 1	54 15	7 159	162	164	2
_	90% (8.1kw)	e.	-6	+	-	-	-	+	37 4	3 48		64	12	78	83	57	103	108 1	13 12	5 13	1 13	140	144	147	151	154	157	159 1	62 16	166	182	188	1
	80% (7.2kw)		1	-	-	-		-	43 4	8 52	66	74	81	94	101	108	113	126 1	32 13	87 14	2 146	5 150	153	157	160	162	165	167 1	85 19	2 197	203	208	1
,	75% (6.75kw)		-	60			28		45 51	0 62	71	62	92	100	107	113	126	132 15	38 14	18 14	7 15	1 155	158	161	164	166	184	190 1	97 20	12 208	213	218	<u>.</u>
KN	70% (6.3kw)	-03	- 63	\vdash	-		-	+	48 5	3 68	76	90	66	106	113	126	133	138 1-	44 14	15 15	2 156	5 160	163	166	182	189	196	202 2	08 21	3 218	223	300	20
6/	60% (5.4kw)		x	-	20	28	40 4	47 5	53	0 79	36	104	112	126	133	140	146	151 11	55 15	91 16	3 166	5 184	192	200	207	2.13	219	224 3	02 30	6 311	315	319	12
AV	50% (4.5kw)	0	-	-	25	37	47	53 7	72 8	3 10	110	126	134	142	148	154	159	163 14	67 16	87 19	7 20	5 213	219	226	304	309	314	319 3	23 32	7 331	. 334	338	25
жо	40% (3.6kw)	-0	- AR	19	32	46	60	76 9	10 10	8 12	136	144	152	158	163	180	192	202 2.	12 22	20 30	0 306	5 313	318	324	328	333	33.7	341 3	44 42	0 423	426	428	- 10
T	30% (2.7kw)	с	×.	26			-	104 11	124 13	8 14	156	163	184	198	211	221	303	311 3.	18 32	25 33	1 336	5 341	346	422	425	429	432	435. 4	38 44	143	445	447	1
	25% (2.25kw)	9		-	-	-	-	-	140 15	11 16	167	196	211	223	306	315	323	330 3,	36 34	12 34	-	4 428	432	435	438	441	444	4			-	457	25
	20% (1.8kw)	10		41	-	\rightarrow	-+		156 16	19	212	227	311	321	330	337	344	422 4.	27 45	32 436	6 440	443	446	449	452	454	456	459 4	161 462	32 464	466	467	10
	10% (0.9kw)	1	1	-	135 1	159 1	199 2	227 3.	320 38	34	429	437	443	449	454	458	461	465 4	67 48		*	2	0		æ.	÷			े क	*	*	2	<u>.</u>
-	100% (13.5kw)		×	1	5	8	12 3	16 1	19 21	22 26	30	35	39	43	46	48	51	53 6	53 6	7 7	2 76	79	83	93	- 26	101	105	108 1	11 12	124	127	÷.	<u>.</u>
	90% (12.15kw)			14	9	10	14 1	18 2	21 2(26 28	35	40	43	47	49	52	61	66 7	7 17	76 80	0 83	94	66	103	107	110	113	123 1	27 13	0 134	137	1	85
	80% (10.8kw)	9 2	æ	2/	7	11	16 2	20 2	25 21	28 35	40	45	48	51	53	65	71	76 8	30 9	91 9(5 10:	105	109	113	123	128	131	135 1	38 14	144	147	2	- 28
	75% (10.125kw)	1	10	2		13	18	22 2	27 33	3 39	43	47	50	53	65	71	76	81 9	92 9	7 10	2. 107	111	121	126	130	134	138	141 1	44 34	150	152	Ŧ	2
4 S.	70% (9.45kw)	0		14	6	14	19	25 22	28 36	6 42	46	50	53	64	71	11	81	93 9	99 10	04 10	9 11	3 124	129	133	137	140	144	147 1	50 15	3 155	157	3	2
ст	60% (8.1kw)	0	e	20	11	18	23 23	28 3	37 43	3 48	51	63	70	77	83	95	102	107 1.	12 12	24 12	9 13/	1 139	143	146	150	153	156	159 1	61 16	3 166	180	2	- 25
/~	50% (6.75kw)	1	1	1	15	22	_	38 4	45 51	50 60	69	17	06	86	105	111	124	130 1.	36 14	11 14	5 15(153	157	160	163	165	180	187 1	93 19	9 205	210	a.	2
	40% (5.4kw)	2		4	-	-	_	46 5	52 67	7 77	92	101	109	123	131	138	143	149 1.	53 15	57 16	1 16	4 167	188	195	203	209	215	221 2	26 30	307	811	4	2
	30% (4.05kw)	¢	e	2		-	_	64 7	77 9:	-	-	132	140	147	153	158	163	167 IA	89 19	88 20	7 219	5 222	300	306	312	317	322	326 3	30 33	14 337	341	12	18
	25% (3.375kw)		24		33	46	62 7	77 9	97 11	110 127	138	146	153	159	164	184	196	206 2.	15 22	23 30	3 30	3 316	321	326	331	335	339	343. 3	46 42	2 425	428	3	<u></u>
	20% (2.7kw)	10	24	14	42	53	78 1	101 11	121 135	85 145	154	161	167	193	205	216	226	307 33	14 32	1 32	7 33	3 338	342	347	422	426	429	432 4	135 438	18 440	443	4	25
	10% (1.35kw)	0	10	25	92 1	126 1	147 1	161 19	190 21	13 302	316	328	338	346	425	431	436	443 44	45 44	19 45	2 455	5 458	460	463	465	467	480		25	20 20	~	12	15
	100% (18kw)	1	i.	20	3	5	00	10 1	13 10	16 18	21	23	26	28	32	36	39	42 4	44 4	6 48	8 50	52	53	62	99	69	73	92	78 8.	1 83	93	10	25
	90% (16.2kw)	3	24	-	ġ.	9	6	11	14 10	18 20	23	26	28	34	37	41	48	46 4	18 5	0 52	2 53	63	67	71	75	78	81	83	96 96	6 100	103	3	×.,
	80% (14.4kw)	1	24	96		7	10	14 1	17 2(20 23	27	31	35	39	43	45	48	50 5	52 6	51 65	5 70	74	11	80	83	93	97	101 1	04 10	7 110	113	54	े'
N	75% (13.5kw)	9		-	1	00	11	15 1	18 22	2 26	28	34	38	42	45	48	50	52 6	51 6	6 7:	1 75	79	82	92	96	100	103	107 1	10 11	3 122	126	12	15
NA 8	70% (12.6kw)		×	1		9	13 1	17 2	20 21	25 28	33	38	42	45	48	50	53	62 6	58 7.	2 76	6 80	90	94	66	103	106	110	113 1	22 12	6 129	133	1	×.
τ /	60% (10.8kw)	24	24	95		п	_	20 2	25 21	28 35	40	44	48	51	53	65	70	75 8	30 9,	0 95	5 100	0 104	109	112	122	127	130	134 1	37 14	1 143	146	3	8
AV	50% (9kw)	0	6		i di la	15	20	26 3	31 3(38 43	47	51	60	67	73	79	06	96 11	02 16	7 11	1 123	127	131	136	139	143	146	149 1	52 15	5 157	160	12	15
жо	40% (7.2kw)	3	20	4	÷.	19	26 3	33 4	41 4	46 51	62	70	77	83	57	104	109	121 1.	27 18	33 13	8 14	2 146	150	153	156	159	162	164 1	67 18	190	195	4	×.,
7	30% (5.4kw)	2.9	7a	94	1		-	45 5	-	-	-	86	107	120	128	134	141	146 I.	51 15	55 15	9 16	165	182	190	197	204	210	216 2	21 22	6 303	307	-	81
	25% (4.5kw)	9	10		•	-	-	51 6	-	-	\rightarrow	-	128	136	143	149	154	159 1	63 16	56 18	5 194	4 202	210	216	223	300	306	311 3	15 31	9 323	327	10	15
	20% (3.6kw)		56 P	1		-	+	-	+	+	+	_	147	153	159	164	180	192 24	02 23	11 21	9 22(5 305	311	316	321	326	330	334 3	38 34	12 345	420	4	8.5
						- uc	-	1 C F F	010	00.0	200	000	100	1.40	200		144	· Pac	C	-		100	VVV	TAAT	000	011	LLI				-	3	

Figure 8.8 16-bay, single-phase, no transformer unit Type F (UPS model-number digit 6 = F)

8.3 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS3 or ASC

Figure 8.9 12-bay, single-phase, transformer-based unit Type N (UPS model-number digit 6 = N)

		23 24 25 26 27 28 29 30 31 32 33	9 226 304 309 314 319 323 327 331 334 -	16 311 317 322 326 330 334 338 341 344 ·	0 325 330 334 338 342 345 421 424 426 -	27 331 336 340 344 347 423 426 429 431 -	33 338 342 346 422 425 428 431 434 436 -	347 423 426 430 433 436 439 441 444 446 -	32 436 439 442 445 447 449 452 454 456 -	446 449 451 454 456 458 460 462 464 465 -	460 462 465 467 480	480			2 136 140 143 147 150 152 155 158 160 -	11 145 148 151 154 157 160 162 164 166	151 154 157 160 163 165 167 186 192 197 -	56 159 162 164 167 184 191 197 202 208	0 163 166 183 190 196 202 208 213 218	77 195 202 208 214 220 225 302 307 311	15 222 300 305 310 315 319 324 327 331 -	4 320 325 329 333 337 341 344 420 423	1 346 421 425 428 432 434 437 440 442 -	431 434 437 440 443 445 448 450	442 445 44/ 450 452 455 45/ 459 461 462											
		21 22	205 213 2	221 227 30	308 314 3	315 321 33	323 328 3	338 342 3	424 428 4	439 443	455 458 40	463 466 4	-	i.	122 127 1	132 137 1	143 147	148 152 1	154 157 1	164 167 1	200 208 2	302 308 3	332 337 34	423	434 438 4	200	1	6) 1	,	,	1	9	i i	3 9	ξ. K	1
= R)	Strings	18 19 20	67 187 197	95 205 213	213 222 301	22 302 309	03 310 317	320 326 332	37 343 420	426 431 435	445 448 452	454 458 461	465 467 480		02 107 112	11 122 127	128 134 139	134 140 144	141 145 150	153 157 161	165 182 192	206 215 223	13 320 326	331 337 342	421 426 430			()) ())	3		1)	1 1 1	2	1	
R r digit 6 :	Battery Sti	16 17	159 163 1	165 185 1	193 204	203 213 2	213 222 3	304 313 3	324 331 3	343 421	436 441	447 451 4	458 462		1 96 06	100 106 1	110 122	122 129	129 135 1	143 148 1	157 161	186 197 2	225 305 3	316 324 3	33/ 343 4	n nnt			,		X	-	5 7	3	1. 10	1
Unit type R & UPS model number digit 6	#	13 14 15	42 148 154	50 156 161	158 164 182	163 167 192	67 190 203	200 213 223	24 307 316	20 329 337	346 425 431	431 437 442	445 450 454	1 × 1 ×	67 74 79	75 81 93	90 98 105	97 104 110	03 110 123	23 131 137	39 146 152	55 161 165	91 204 215	15 226 308	13 322 330		1				1	1	1) 10 72	2	1	1
Dom Sau	100	11 12 1	126 134 14	135 143 19	145 152 15	150 157 10	155 161 1	164 186 20	197 212 21	226 310 32	328 337 3	344 424 4	432 439 44	480	51 60 6	61 69 7	71 78 9	76 83 9	81 95 10	101 109 12	122 132 1	141 149 15	160 166 19	187 202 2	21/ 302 31		- 50	6 39	46	49	60	75	- 66	129 - 12	143 -	159
8)	-	9 10	100 110	109 126	8 126 137	3 132 142	5 138 147	9 149 157	2 161 180	5 193 211	2 302 316	5 321 334	9 342 424	2 459 465	43 47	47 51	51 63	53 68	65 74	16 11	98 108	5 121 132	4 144 153	7 156 164	1 182 201	000	27 Q7	34	37	40	47	53	75 83	103 113	124 135	142 151
	10 A.S.	6 7 8	3 72 83	67 80 98	76 96 108	81 101 113	2 107 126	05 126 139	15 140 152	142 155 165	51 190 212	38 214 306	219 313 329	31 443 452	26 31 38	28 36 42	34 41 47	37 44 49	40 47 51	46 52 67	52 70 81	91	120	135		000	12 18 22	36	36	28	36	43	45 51 65	61 75 91	75 94 107	97 112 131
		4 5 6	37 47 5	41 50 6	46 61 7	48 66 8	50 71 9	63 81 10		97 125 14	125 147 16	140 158 18	155 188 21	317 342 43	15 20 2	17 22 2	19 26 3	21 28 3	23 31 4	27 38 4	36 46 5	44 52 7	77	96	91 112 13	Int	T TT C =	19	17	18	22	-	27 37 4	38 48 6	45 53 7	52 75 9
		2 3	14 25	16 27	19 33	20 36	22 39	26 44	32	41	50 91	64 106	79 130	147 203 3	5 10	6 11	7 13	8 14	9 16	11 19	14 25	-	-	-	-	177 C/	1		. α	0	11	- 14	- 18	- 26	- 32	- 41
	loud beal		100% (4.5kw) 5	90% (4.05kw) 5	80% (3.6kw) 7	75% (3.375kw) 7	70% (3.15kw) 8	60% (2.7kw) 10	-	40% (1.8kw) 16	30% (1.35kw) 22	25% (1.125kw) 27	20% (0.9kw) 35	10% (0.45kw) 71	100% (9kw)	90% (8.1kw) -	80% (7.2kw) -	75% (6.75kw) -	70% (6.3kw) -	60% (5.4kw) -	50% (4.5kw) -	40% (3.6kw) -	30% (2.7kw) -	25% (2.25kw)	20% (1.8kw) -	(MNC-0) %/	- (MXC:ET) %001	80% (10 8km)	75% (10 125km) -	70% (9.45kw) -	60% (8.1kw) -	50% (6.75kw)	40% (5.4kw) -	30% (4.05kw) -	25% (3.375kw) -	20% (2.7kw) -

Figure 8.10 12-bay, single-phase, transformer-based unit Type R (UPS model-number digit 6 = R)

Figure 8.11 12-bay, single-phase, transformer-based unit Type B (UPS model-number digit 6 = B)

UPS Lo UPS Lo 100 900 900 75% 70%													11.	1+ +in	000	u															
										(8	UP	S m	odel	lel numbe	ype	r di	Unit type F (& UPS model number digit 6 = F)	= F,													
	Load Level									ŀŀ			ŀ			Batt	# Battery Strings	tring				L P		L 14	1 K	1 F	l ł		ŀŀ		
		1	2	e	4	5	9	~	8	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23 2	24 2	25 26	6 27	28	29	30	31	32
	100% (4.5kw)	1	5 1	14 2	25 3	37 4	47 5	53 7	72 83	3 10	0 11	126	134	142	148	154	159	163	167	187	197	205 2	13 2	19 2	26 30	14 30	9 31	4 319	323	327	33.1
	90% (4.05kw)		5 1	16 2	27 4	41 5	50 6	67 8	80 98	8 109	9 126	5 135	143	150	156	161	165	185	195	205	213 2	221 2	27 3	306 31	311 317	7 322	2 32(5 330	334	338	341
	80% (3.6kw)	÷	7 1	19	33 4	46 6	61 7	76 9	96 108	08 126	6 137	7 145	152	158	164	182	193	204	213	222	301 3	308 3	14 3	20 3.	25 33	80 334	4 338	8 342	345	421	424
	75% (3.375kw)	3	7 2	20 3	36 4	48 6	66 8	81 10	11 10	3 13	2 142	150	157	163	167	192	203	213	222	302	809	315 3	21 3	27 3.	31 33	6 34	0 344	4 347	423	426	429
	70% (3.15kw)	•	8	22 3	39 5	50 7	71 9	92 10	07 126	26 138	8 147	155	161	167	190	203	213	222	303	310	317 3	323 3	328 33	333 33	338 342	12 346	6 42	2 425	428	431	434
	60% (2.7kw)	1	10 2	26 4	44 6	63 8	81 10	05 12	126 139	39 149	9 157	7 164	186	200	213	223	304	313	320	326	332	338 3	42 3	347 42	423 426	26 430	0 433	3 436	439	441	444
	50% (2.25kw)	1	13 3	32	50 7	76 1	02 1	25 14	t0 15	12 16	1 18	197	212	224	307	316	324	331	337	343	120 4	124 4	28 4	432 43	36 43	89 442	2 445	5 447	449	452	454
	40% (1.8kw)	1	16 4	41 6	66 9	97 1	25 1.	42 15	55 16	5 19	3 21	226	310	320	329	337	343	421	426	431 4	135 4	139 4	443 44	446 44	449 451	51 454	4 456	5 458	460	462	464
	30% (1.35kw)	1	22 5	50 5	91 1:	125 14	147 16	51 15	90 21	2 30	2 316	328	337	346	425	431	436	441	445	448	452 4	155 4	458 4(460 46	462 465	55 467	7 480	1	E.	6	5
25%	25% (1.125kw)	1	27 6	64 1	106 14	140 1	158 18	188 21	214 306	06 321	1 334	1 344	424	431	437	442	447	451	454 4	458 4	461 4	463 4	466 48	480			1	j.	ų.	6	1
20	20% (0.9kw)	1	35 7	79 1	130 1	155 1	188 2:	219 31	313 329	342	2 424	432	439	445	450	454	458	462	465 4	467 4	480	i.		1	A V	*	÷ ()			×.	1
105	10% (0.45kw)	R.	71 12	147 2	203 3	317 34	42 4.	31 44	13 45	2 45	9 46	480	1	ić.	1	22	R.	W.	120	R	i.	Ň	15	12	20	<u>.</u>	<i>C</i>	8	2	i.	5
10	100% (9kw)			5	10 1	15 2	20 2	26 31	1 38	8 43	47	51	09	67	74	62	90	96	102	107	112	22 1	27 1	32 10	36 14	10 14	3 147	7 150	152	155	158
96	90% (8.1kw)	1		9	11 1	17 2	22 22	28 3	36 42	2 47	51	61	69	75	81	93	100	106	111	122	127	132 1	137 14	141 14	145 148	151	1 154	4 157	160	162	164
8	80% (7.2kw)	1	1	2	13 1	19 2	26 3	34 41	1 47	7 51	63	71	78	96	98	105	110	122	128	134 1	139 1	143 1	147 13	151 15	154 157	57 160	0 163	3 165	167	186	192
	75% (6.75kw)	1		00	14 2	21 2	28 3	37 44	4 49	9 53	68	76	83	97	104	110	122	129	134	140	144	148 1	52 1	56 1	59 16	32 16	4 16	7 184	191	197	20
	70% (6.3kw)	P.	1	6	16 2	23 3	31 4	40 47	7 51	1 65	74	81	95	103	110	123	129	135	141	145	150	154 1	57 1	50 1	53 16	66 18	3 190	0 196	202	208	21
© 6/	60% (5.4kw)	•	-	11	19 2	27 3	38 4	46 52	2 67	77 77	16 /	101	109	123	131	137	143	148	153	157	161	164 1	67 1	87 1	95 20	02 20	8 214	4 220	225	302	30
	50% (4.5kw)	ł	1	14 2	25 3	36 4	46 5	52 70	0 81	1 98	3 108	3 122	132	139	146	152	157	161	165	182	192	200 2	208 2:	215 22	222 30	0 30	5 310	315	319	324	327
	40% (3.6kw)	ų.	1	18	30 4	44 5	52 7	73 91	1 105	121	1 132	2 141	149	155	161	165	186	197	206 2	215	223 3	302 3	308 3	314 32	320 325	5 32	9 333	3 337	341	344	420
	30% (2.7kw)	1	2	25 4	42 5	53 7	77 10	100 120	20 134	84 144	4 15	160	166	191	204	215	225	305	313	320	326	332 3	37 3	341 34	346 421	1 425	5 428	8 432	434	437	440
259	25% (2.25kw)	1	- 2	28 4	48 7	71 9	96 11	113 13	135 147	17 156	6 164	1 187	202	215	226	308	316	324	331	337	342 3	347 4	423 4.	427 43	431 434	84 437	7 440	0 443	445	448	450
20	20% (1.8kw)	j.	5	38	61 9	1 16	112 13	137 15	150 161	51 182	2 201	L 217	302	313	322	330	337	343	421 4	426 4	430 4	434 4	438 44	442 44	445 447	17 450	0 452	2 455	457	459	461
10	10% (0.9kw)		- 1	75 1	124 1	151 10	167 23	211 306	36 32	33 33	6 34	428	435	441	447	451	455	459	462	465 4	467 4	180		1			4	1	2	19	2
100	100% (13.5kw)	ų.	2	12	S	00	1	15 1	18 22	2 26	28		<u>.</u>	10	6	ĸ	×.	ų.	1	ε	¥.	- E	e.	- 80. 70	33 10	- E 	÷.	ŝ)	2	12	- 6
906	90% (12.15kw)	4	4	4	9	9 1	13 1	17 2	21 25	5 28	34	1	7.0	0	1	W	1	1	2	0	1	9					1	1	/4	10	1
	80% (10.8kw)		1	1	7 1	11 1	16 2	20 25	5 28	8 34	1 39	1	×.	ŝ.	÷	1	<i>i</i>	÷	-	1	1	Ŧ	7	1	1	*	1	i	x	ŝ.	•
₩ 75%	75% (10.125kw)		100	10	00	12 1	17 2	21 2	26 31	1 37	42	1	10	- 62	- 6	.83	×.	i.	-	Ð	¥.	e	- e	8	2	•		ŝ.	×	1	6
	70% (9.45kw)	ų.	4	-	9 1	13 1	18 2	23 23	28 35	5 40	45	1	/0	10	Ä	w	1	1			1	9			3	0	1	2	/4	10	0
	60% (8.1kw)	ł	1	1	11 1	17 2	22 22	28 3	36 42	2 47	51	Ť,	A.	×.	<u>ě</u>	ų.	j,	ł	4	1	ï	Ŧ	1	1	1		*		x	x	9
	50% (6.75kw)	2	2 3	<u>ः</u> ः	14 2	21 2	27 3	36 4	43 49	9 53	8 67	<u>f</u>	63	6	K	.0	6	Ŋ	ł.		- 63	R.	0	- 22	25	0	0	5	- 63	8	N.
	40% (5.4kw)		4	1	18 2	27 3	37 4	45 51	1 65	5 75	83	1	0	9	1	2	0	X		0	1	1			1		-1	1	9	9	1
	30% (4.05kw)	1	1	1	26 3	38 4	48 6	61 7	75 91	1 103	3 113	1	-0	T.	X	<i>R</i>	0	X	5	0	i.	X	T.		18 }	0	- E	Ť.	£	<i>ï</i>	X
25%	25% (3.375kw)	1	3	2%) (4	32 4	45 5	53 7	75 9.	94 107	7 124	4 135	10	£3	- ES	120	0	£.	Ŋ	-5	0	6	ŝ	- 0	10	8	0	Û.	- 6	-0	8	Ň
20	20% (2.7kw)	1	4	4	41 5	52 7	75 9	97 11	112 131	81 142	2 151	1	9	1	1	2	0	i		9	1	Y				- 1	-	1	2	6	•
105	10% (1.35kw)	1	¥		82 1:	121 14	143 15	158 18	183 206	06 225	5 311	N.	- 02	T	X	J.	Ū	1	5	1	10	Ň	1	18	N.	0	- 6	Ŷ	Æ	- C	X

Figure 8.12 12-bay, single-phase, transformer-based unit Type F (UPS model-number digit 6 = F)

		.oad Level .000% (4.5kw) 00% (4.05kw) 												(s	u PS n	Un	it typ	N N																			
Image: state		0ad Level 00% (4.5kw) 0% (4.05kw) 0% (3.6kw)												18	UPS II	labou	hum																				
Moto Subsolving Subsolving <th></th> <th>.0ad Level 00% (4.5kw) 0% (4.05kw) 80% (3.6kw)</th> <th>-</th> <th></th> <th></th> <th></th> <th>۱</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th>Der alt</th> <th>git 6 -</th> <th>N</th> <th></th>		.0ad Level 00% (4.5kw) 0% (4.05kw) 80% (3.6kw)	-				۱							2				Der alt	git 6 -	N																	
Mit Mit <th></th> <th>00% (4.5kw) 0% (4.05kw) 80% (3.6kw)</th> <th>-</th> <th>-</th> <th>"</th> <th></th> <th></th> <th>4</th> <th>-</th> <th>8</th> <th></th> <th>9</th> <th>=</th> <th>4</th> <th></th> <th></th> <th></th> <th>1 H</th> <th># Batt</th> <th>ery Str</th> <th>- en en</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th>H</th> <th></th> <th></th> <th>2</th> <th></th> <th>2</th> <th>*</th>		00% (4.5kw) 0% (4.05kw) 80% (3.6kw)	-	-	"			4	-	8		9	=	4				1 H	# Batt	ery Str	- en	H	H	H	H	H	H	H	H	H			2		2	*	
Model Model <th< th=""><th></th><th>096 (4.05kw) 3096 (3.6kw)</th><th>in</th><th>15</th><th>26</th><th>38</th><th>47</th><th>60</th><th>73</th><th>90</th><th>102</th><th>111</th><th>127</th><th>136</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th>_</th><th></th><th>336</th><th>339</th><th>342</th><th>345</th></th<>		096 (4.05kw) 3096 (3.6kw)	in	15	26	38	47	60	73	90	102	111	127	136			_									_					_		336	339	342	345	
		3096 (3.6kw)	9	17	28	42	51.	69	81	100	111	128	137	145	152	157	162	167				~		02 30	32	4 31	9 32	4 32	8 332				346	421	424	426	
Mittent I Mittent Mitt		the second second	7	19	34	47	63	78	98	110	128	139	147	154	160	165	186	197	208	227	25	04 B	11 3	17 8:	2 32	7 33	2 33	6 34	0 34/	1 347	423	426	428	431	434	436	
Matrix Matrix<		596 (3.37) KW		21	37	49	88	83	104	122	134	144	152	159	164	184	197	208	217	226	906	13	6 919	24 3:	0 33	4 33	9 34	the second	-	2 425	428	431	434	436	438	442	
Model Model <th< td=""><td></td><td>0%6 (3.15kw)</td><td>a</td><td>53</td><td>40</td><td>51</td><td>74</td><td>55</td><td>110</td><td>129</td><td>141</td><td>150</td><td>157</td><td>163</td><td>183</td><td>196</td><td>208</td><td>2.18</td><td>227</td><td>307</td><td>14</td><td>21 3</td><td>27</td><td>32 3:</td><td>2</td><td>7 27</td><td>42</td><td>4</td><td>425</td><td>432</td><td>124</td><td>436</td><td>439</td><td>441</td><td>443</td><td>445</td></th<>		0%6 (3.15kw)	a	53	40	51	74	55	110	129	141	150	157	163	183	196	208	2.18	227	307	14	21 3	27	32 3:	2	7 27	42	4	425	432	124	436	439	441	443	445	
Matrix Matrix<		60% (2.7kw)	=	27	46	67	16	109	130	143	153	160	167	194	208	219		310	318	325	12	37 3	42	27 42	13 42	+	-	~		-	444	447	449	451	453	455	
Matrix Matrix<		096 (2.25kw)	14	35	25	80	107	131	145	156	164	190	207	221	304	314	323	330	337	343	120	125 4	129 4	33 4:	14	-	94	6	8 45	453	455	457	459	461	462	464	
Provincial Provincia Provincia Provincia		10% (1.8kw)	18	4	73	104	132	149	160	185	206	222	308	319	329	337	344	422	428	133	37	41 4	44 4	4	1 45	-	6 45	8 46	0 46	2 464	456	467	480	X.	1	2	
Provincial Provincia Provincia Provincia		096 (1.35kw)	25	23	100	134	154	167	205	226	314	327	337	346	426	-	-	443	447		-	-	4	52 46	5 46	7 48	0	-	-	•	-		•				
Provincial Provincia Provincia Provincia		596 (1.125kw)	30	72	120	148	165	205	301	319	332	344	425	432	439	-	-	453	457		-	-	80			<u>_</u>	5	*	-	•	•	•	•	0		2	
Matrix I Matrix		20% (0.9kw)	40	94	140	163	206	306	326	340	424	433	440	447	452	-	460	-	-	180			0			-	1	5	1	-	6		-	0	e.	2	
Mex (we) i		0% (0.45kw)	18	157	222	331	426	441	451	459	466	480	-112	1000	1000	1	1			-					1 100	100	100	1	2	-	12	•	-	- 22		2	
Model Model <th< td=""><td></td><td>100% (9kw)</td><td>100</td><td>5</td><td>10</td><td>5</td><td>20</td><td>26</td><td>31</td><td>35</td><td>43</td><td>48</td><td>51</td><td>61</td><td>89</td><td>74</td><td>80</td><td>16</td><td>67</td><td>103</td><td>08</td><td>12 1</td><td>23 1</td><td>28 13</td><td>13 13</td><td>7 14</td><td>0 14</td><td>4 14</td><td>7 150</td><td>153</td><td>156</td><td>158</td><td>160</td><td>163</td><td>165</td><td>8</td></th<>		100% (9kw)	100	5	10	5	20	26	31	35	43	48	51	61	89	74	80	16	67	103	08	12 1	23 1	28 13	13 13	7 14	0 14	4 14	7 150	153	156	158	160	163	165	8	
9 1		10% (8.1kw)	1	9	11	17	53	28	37	43	47	51	62	70	76	82		~	107		-	-	-1	-			9 15	2 15	5 156		-		167	185	190	20	
Tick field I <thi< td=""><td></td><td>30% (7.2kw)</td><td>•</td><td>2</td><td>5</td><td>20</td><td>27</td><td>35</td><td>42</td><td>47</td><td>52</td><td>64</td><td>72</td><td>79</td><td>92</td><td>66</td><td>106</td><td>112</td><td>124</td><td>130</td><td>35</td><td>-</td><td>-</td><td>1 85</td><td>2 15</td><td>5 15</td><td>-</td><td>1 16</td><td>4 166</td><td>1</td><td>189</td><td>194</td><td>200</td><td>205</td><td>210</td><td>•</td></thi<>		30% (7.2kw)	•	2	5	20	27	35	42	47	52	64	72	79	92	66	106	112	124	130	35	-	-	1 85	2 15	5 15	-	1 16	4 166	1	189	194	200	205	210	•	
This This <th< td=""><td></td><td>596 (6.75kw)</td><td></td><td>60</td><td>15</td><td>22</td><td>28</td><td>38</td><td>45</td><td>50</td><td>60</td><td>70</td><td>17</td><td>90</td><td>98</td><td>106</td><td>112</td><td>124</td><td>131</td><td>136</td><td>41 1</td><td>46 1</td><td>50 1</td><td>53 1</td><td>7 26</td><td>0 16</td><td>3 16</td><td>5 18</td><td>1 188</td><td>8 194</td><td>200</td><td>205</td><td>211</td><td>215</td><td>220</td><td>22</td></th<>		596 (6.75kw)		60	15	22	28	38	45	50	60	70	17	90	98	106	112	124	131	136	41 1	46 1	50 1	53 1	7 26	0 16	3 16	5 18	1 188	8 194	200	205	211	215	220	22	
Ome, Lower, we can all and contained and containe		70% (6.3kw)	1	6	16	23	32	41	47	52	99	75	83	25	105	112	125	131	137	142	47	51 1	55 1	59 16	12 16	- CI	7 18	6 19	5 200	0 206	214	216	221	226	302	2	
Model Model <th< td=""><td></td><td>3096 (5.4kw)</td><td>1000</td><td>11</td><td>20</td><td>28</td><td>39</td><td>47</td><td>53</td><td>69</td><td>62</td><td>94</td><td>103</td><td>111</td><td>125</td><td>133</td><td>139</td><td>145</td><td>150</td><td>155</td><td>59</td><td>62 1</td><td>66 1</td><td>83 19</td><td>1 19</td><td>9 20</td><td>6 21</td><td>2 22</td><td>8 22</td><td>301</td><td>305</td><td>310</td><td>314</td><td>318</td><td>322</td><td>5</td></th<>		3096 (5.4kw)	1000	11	20	28	39	47	53	69	62	94	103	111	125	133	139	145	150	155	59	62 1	66 1	83 19	1 19	9 20	6 21	2 22	8 22	301	305	310	314	318	322	5	
Model Model <th< td=""><td></td><td>50% (4.5kw)</td><td>1.00</td><td>14</td><td>25</td><td>37</td><td>47</td><td>23</td><td>72</td><td>83</td><td>100</td><td>110</td><td>126</td><td>134</td><td>142</td><td>148</td><td>154</td><td>159</td><td>163</td><td>167</td><td>87</td><td>97 2</td><td>05 2</td><td>13 2</td><td>9 22</td><td>6 30</td><td>4 30</td><td>9 31</td><td>4 319</td><td>9 323</td><td>327</td><td>331</td><td>334</td><td>338</td><td>541</td><td>a.</td></th<>		50% (4.5kw)	1.00	14	25	37	47	23	72	83	100	110	126	134	142	148	154	159	163	167	87	97 2	05 2	13 2	9 22	6 30	4 30	9 31	4 319	9 323	327	331	334	338	541	a.	
The contract of the cont		10% (3.6kw)	11.11	19	32	46	60	76	56	108	125	136	145	152	158	163	180	192	203	212	21	m 8	07 3	13 31	9 32	4 32	9 33	33	7 34:	1 345	420	423	426	429	431	2	
The contract of the cont		30% (2.7kw)	1	26	44	62	81	104	125	138	149	157	164	185	199	212	222	100	312	319	26	32 3	37 3	42 34	16 42	2 42	6 42	9 43			441	443	446	448	450	2	
The functione is a consistent of a consi	4	596 (2.25kw)	2.0	32	50	76	102	125	140	152	191	180	197	222	224	307	316	324	155	122				28 4	12 43						2	454	456	457	459	a	
Open (0.10) · </td <td>-14</td> <td>10% (1.8kw)</td> <td>1</td> <td>41</td> <td>67</td> <td>38</td> <td>126</td> <td>143</td> <td>156</td> <td>165</td> <td>195</td> <td>213</td> <td>227</td> <td>311</td> <td>321</td> <td>330</td> <td>338</td> <td>544</td> <td>422</td> <td>127</td> <td>32</td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>a.</td> <td></td> <td>466</td> <td>467</td> <td>480</td> <td>æ</td>	-14	10% (1.8kw)	1	41	67	38	126	143	156	165	195	213	227	311	321	330	338	544	422	127	32	_				-	-				a.		466	467	480	æ	
Modellisityiii	1	10% (0.9kw)	14	83	135	159	197	226	319	335	347	428	436	443	449	453	457	161	464	167	80	14	1		11		1.1	87	1	2.2	19		1.	24		æ	
Meikulaki i i i i i i i i i i i i i i i i i i	10	30% (13.5kw)		1	5	60	11	15	18	22	26	28	34	38	42	45	48	50	52	61	99	04	74	8	1 9.	.6	56 9	10	3 106	5 109	112	121	125	128	131	22	
Moliciality (i)	96	796 (12.15kw)			9	on	11	17	21	25	28	34	39	43	46	49	51		65		74		2	2	7 10	-		11 0	2 121		-1		135	138	141	2	
Civi(101340) Civ		096 (10.8kw)	11.1	10 10	7	11	16	20	25	28	35	40	44	47	50	53	64	70	75		-	-	-	04 10	11 80	2 12	2 12	6 13	0 134	1 137	140		146	148	151	13	
Tori i a conditional condital conditional conditional conditional conditional condit		% (10.125kw)	11.11	-	-	12	11	22	27	32	38	43	47	50	53	64	22	-	_		-1	1 10	06 1	10 11	0 12	4 12	9 13	3 13	6 140	-			151	154	156	2	
(6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		096 (9.45kw)	100	1	0	14	18	23	28	35	41	45	49	52	63	20	75		16		03	07 1	12 1	22 11	7 13	1 13	5 13	9 14	2 146	5 149	151	154	156	159	161	2	
Objectivityies in the second of the se		50% (8.1kw)	1	1	11	17	23	28	36	42	47	51	61	69	76	81	94	100	106	111	22	28. 1	33 1	37 1/	11 14	5 14	9 15	2 15	5 15	160	162	165	167	183	188	3	
Moli aliviiii (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		096 (6.75kw)	14	a.	14	21	28	37	44	49	53	68	76	83	97	104	110	122	129	134	39	44 1	48 1	52 1	15 15	9 16	2 16	4 16	7 18/	191 1	197	202	208	213	217	2	
Term 2014 (211) (2		10% (5.4kw)	1	2	19	27	38	46	52	99	76	91	100	108	122	130	137	142	148	152	57	60 1	64 1	57 10	16 19	3 20	1 20	7 22	3 219	9 224	105	306	310	314	318	æ	
Tell (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		096 (4.05kw)			27	40	49	64	77	94	106	122	132	140	147	153	158	163	167	188	98	07 2	24 2	22 30	02 00	6 31	2 31	7 32	1 326	330	334	337	340	344	347	2	
The condition interval and the conditient and the conditient and the	12	596 (3.375kw)			34	47	62	78	86	110	128	138	147	154	160	165	185	197	207	216	24	04 3	10 3	16 3.	12 32	7 33	2 33	6 34	-	-	422	425	428	431	433	2	
Toricitation in the stand of the stand	~	20% (2.7kw)		2	43	99	79	102	122	136	147	155	162	181	195	208	~	300	309	316	23	529 B	34	8	42	92	4 42	7 43		437	439	442	444	446	448	8	
Torial conditionante and a series and	1	096 [1.35kw]	100		96	130	151	164	198	220	309	322	333	342	422	429	435	440	444	448	52	155-4	158 4	50 44	3 46	5 46	7 48	े 0	×.		1	*	æ		3		
Bolicitationic in the index of the ind	4	(00% (15kw)	1	1	2	5	2	10	12	15	18	20	22	26	27	31	34	38	40		45	47	49	1	2 6(70	74	76	52	81	06	56	a,	2	
Dobeli (14.4km) i	ő	0%6 (16.2kw)	1.	13	1	9	6	Ħ	14	11	20	23	26	28	32	36	99	42	-	-		-			-	-				-		6	101	104	•	2	
75*(13.5km) i = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		1096 (14.4kw)	4	2	3	2	10	13	17	20	23	27	30	35	38	42	45	47		-	-	-	68	2 2	9	-	-	96	66	103	106	109	112	120	14	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5% (13.5kw)	14			-	11	15	10	22	26	28	33	38	41	45	47	50	52		65	70	74	2	1 90	6 0	1 96	8	2 10	2 109	112	121	124	127		2	
60% (10.8/w) ·		096 (12.6kw)	4		3	n	12	36	20	53	27	32	37	41	44	47.	50	52	61	99	71	75	79	6 E	8	10	1 10	S 20	8 113	122	125	128	131	134	4	8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		096 (10.8kw)			3	11	16	20	25	28	ŝ	40	44	47	50	53	64	69	75	-	100	94	39	04 10	11	1 12	1 12	6 13	0 133	137	140	143	145	148	×.	2	
40% 7.2km - - 10 23 41 46 21 61 70 75 83 87 100 112 122 122 132 136 136 130 <th< td=""><td></td><td>50% (9kw)</td><td></td><td></td><td></td><td>14</td><td>20</td><td>25</td><td>30</td><td>37</td><td>43</td><td>47</td><td>20</td><td>83</td><td>67</td><td>73</td><td>78</td><td>83</td><td>95</td><td>-</td><td>90</td><td>11</td><td>21 2</td><td>26 1</td><td>13</td><td>5</td><td>9 34</td><td>ti m</td><td>6 149</td><td>152</td><td>154</td><td>157</td><td>159</td><td>161</td><td>2</td><td>•</td></th<>		50% (9kw)				14	20	25	30	37	43	47	20	83	67	73	78	83	95	-	90	11	21 2	26 1	13	5	9 34	ti m	6 149	152	154	157	159	161	2	•	
20%(5.4km)		40% (7.2kw)		2	æ	19	26	33	41	46	51	61	70	77	83	26	103	109	121	127	32	37 1	42 3	46. 1	15	3 15	6 15	9 16	2 164	4 167	183	189	195	200	2		
·· ··<		3096 (5.4kw)		-	*	27	37	45	51	65	75	83	86	107	120	128	135	141	146	151	55	-	-	22	5	0 19	20	4 23	0 216	522	226	303	307	311	1	-	
·· ·· <th td="" ··<<=""><td>са </td><td>25% (4.5kw)</td><td>+</td><td>1</td><td>1</td><td>34</td><td>44</td><td>51</td><td>67</td><td>78</td><td>94</td><td>105</td><td>113</td><td>128</td><td>136</td><td>143</td><td>149</td><td>154</td><td>159</td><td>163</td><td>99</td><td>86 1</td><td>95 2</td><td>03 2:</td><td>0 21</td><td>7 22</td><td>30</td><td>30</td><td>6 31</td><td>1 316</td><td>320</td><td>324</td><td>328</td><td>331</td><td>2</td><td>25</td></th>	<td>са </td> <td>25% (4.5kw)</td> <td>+</td> <td>1</td> <td>1</td> <td>34</td> <td>44</td> <td>51</td> <td>67</td> <td>78</td> <td>94</td> <td>105</td> <td>113</td> <td>128</td> <td>136</td> <td>143</td> <td>149</td> <td>154</td> <td>159</td> <td>163</td> <td>99</td> <td>86 1</td> <td>95 2</td> <td>03 2:</td> <td>0 21</td> <td>7 22</td> <td>30</td> <td>30</td> <td>6 31</td> <td>1 316</td> <td>320</td> <td>324</td> <td>328</td> <td>331</td> <td>2</td> <td>25</td>	са 	25% (4.5kw)	+	1	1	34	44	51	67	78	94	105	113	128	136	143	149	154	159	163	99	86 1	95 2	03 2:	0 21	7 22	30	30	6 31	1 316	320	324	328	331	2	25
96 123 141 154 164 190 209		20% (3.6kw)		1		43	52	71	83	102	113	130	139	147	153	159	164	181	192	202	11	19 2	27 3	33	1 31	7 32	2 32	8	1 33	339	342	345	420	423			
		10% (1.8kw)			-	96	123	141	154	164	190	209	223	308	318	327	335	342	420	125	30	124	38 4	11	4	42	0 45	42	5 45	459	191	463	465	466	•	•	

Figure 8.13 16-bay, single-phase, transformer-based unit Type N (UPS model-number digit 6 = N)

8.4 Estimated Battery Run Times: Model-number Digits 1 to 3 = AS4 or ASD

VERTIV.

UPS Load Level															Unit	Unit type R	~																	
_												-	& UP	S mo	del n	umbe	(& UPS model number digit 6 = R)	t 6 =	R)															
	P		-	-		-		-									10 11	attery >	a battery strings	30				2	36	36			30	100			32	2
		t		-	30	15	27	70	06	105				_			_	_		-	-	-				330		358	373	387	402	416	481	446
%06		+		-	12	57	74	87	103	111	132	94	17	1	10	1.0	1	1 246	6 26	2 27	10	307	328	338	354	370	385	401	417	434	450	1 4	480	497
80%		-		-	20	67	84	100	116	133	148	165 1	80 1	196 21	210 22	28 24	244 261	1 278	8 295	5 312	2 329	9 347	364	382	399	417	436	454	471	488	506	525	542	561
75%		-		-	23	72	88	106	122	140	157	74	90	06 2	23 2	10 2	58 276	6 29	4 31	2 33	0 34	36	385	404	422	443	461	478	498	517	536	555	574	593
70%		-		-	57	17	94	112	130	147	166 1	58	8	17 2	36 2	55 27	3 292	2 31	1 33	0 35	50 369	388	408	428	449	468	487	507	527	547	567	587	606	622
60%		-		-	69	88	110	130	149	171	161	8	31 2	52 2	73 Z	15 31	17 339	9 36	1 38	5 40	6 42	452	473	496	519	541	565	588	609	627	650	674	698	721
50%		-		-	+	107	130	153	177	200	224	49	73 2	98 32	4 3	50 37	6 402	2 42	8 45	5 480	0 50	534	1 561	588	612	634	662	683	717	745	772	800	829	857
40%		-		-	+	131	159	187	214	244	274	2	35 3	66 3	77 4	94 95	51 492	2 52	4 55	5 58	8 61	646	619	712	746	779	813	847	881	915	949	-983	1018	1052
30%		-		+-	+-	170	204	241	279	318	357	16	38 4	177 53	518 55	9 60	500 634	4 67	6 71	8 761	80	1 847	890	933	977	1021	1065	1109	1154	1198	1239	1279	1318	1359
25%		-		+	-	194	234	277	321	366	111	58 5	03 5	549 59	9 90	56 68	34 732	2 780	0 82	9 878	5 92	97	102	5 1076	1127	1178	1225	1271	1316	1361	1407	1450	1491	1529
20%		-		-	-	230	281	332	385	440	493	548 6	502 6	651 70	08 76	55 822	22 880	0 938	966 8	6 1055	5 111	5 1174	4 1230	0 1284	1338	1391	1443	1491	1536	1577	1617	1653	1688	1720
10%		78 1	169 2	259	-	456	555	651	756	863	971 1	080 1	1 161	91 13	90 14	84 15	65 163	170	1175	9 181	0 185	7 189	9 198	8 1973	2006	2036	2064	2090	2114	2137	2158	2177	2196	2213
100%		-		-	15	21	27	33	40	44	52	28	99	4	1	5	10	0 10	7 11	11 1	9 12	134	1 140	146	153	160	167	173	179	186	193	199	205	211
906			-	-	17	+	31	38	44	52	58	89	76	60	0	7 10	05 11	2 11	9 12	7 13	5. 14	2 148	1156	5 164	171	178	185	193	200	206	213	221	229	236
80%		+	-	+	20	28	36	50	51	59	69	18	86	1 5	1 50	1	8 12	7 13	5 14	3 15	16	166	1 176	184	193	200	207	216	225	233	241	250	259	267
75%				-	22	30	39	46	55	65	75	83	00	01 1	0 1	7 12	7 13	6 14	4 15	2 16	2 17	1 178	187	196	204	211	221	230	238	248	257	266	275	285
70%				-	24	33	42	20	59	71	80	88	1 66	1 60	17 1	7 13	6 14	S 15	4 16	4 17	3 18	191	200	208	218	228	237	247	257	266	276	286	296	305
80%		-		-	29	6	20	99	74	84	94	90	16 1	27 1	1 8	18 15	9 17	0 18	0 19	1 20	1 21	222	233	244	256	267	278	290	301	313	324	336	347	359
50%		te		+	80	49	62	11	88	102	114	27	40	52 1	1 9	81 19	10 202	2 25	4 22	8 240	0 25	1 267	281	294	308	321	335	349	362	376	389	404	417	433
40%				-	47	63	8	56	111	126	141	56	72 3	87 20	2 2	16 23	32 249	9 26	5 28	1 29	7 31	1 330	347	363	380	397	414	432	449	466	482	499	516	534
30%				-	59	+			145	165	184 2	203 2	23 2	43 26	54 22	35 30	96 327	7 34	8 37	168 0	1 413	6 435	458	478	500	522	544	567	589	609	627	650	672	695
25%			32			100	121	144	167	189	509	33	57 2	81 30	34 3,	28 35	3 37	7 40	2 42	7 453	3 47	503	526	552	577	602	623	647	673	698	725	751	177	804
20%				-	6	117	144	170	195	221	247	22	302 3	30 35	58 35	87 43	15 446	6 473	3 502	2 531	1 561	1 590	0 616	643	673	703	733	764	794	825	856	887	918	949
10%		-		-	178	224	274	325	376	429	181	34.	89 6	35 6	7 06	46 86	22 85	8 91	5 97	2 103	0 108	7 114	5 120	3 1256	1308	1361	1413	1462	1508	1550	1590	1628	1663	1695
100%		-		5	00	11	15	19	23	27	31	36	0	3	7 5	2 5	9 90	0 66	1 72	76	81	84	88	93	98	103	101	112	116	119	124	129	134	138
906				10	10	13	11	22	26	31	36	40	44	5 65	4	9 65	2 2	1 76	81	85	89	95	100	106	110	115	119	124	130	135	140	144	148	154
80%		10.0		7	11	16	20	25	30	36	41	45	52	57 6	3	1 0	6 81	1 86	90	97	10	3 10	114	119	125	131	136	141	146	152	158	164	169	174
75%		1		-	12	17	22	28	34	39	44	20	56	1 6	5	80	1 86	6 6	96	10	11 5	116	5 121	128	134	140	145	150	157	163	169	174	180	186
70%		1		-	14	19	24	30	37	42	48	54	60	58 7	5 8	1 86	6 92	10	0 10	5 11	2 11	8 124	131	137	143	149	155	162	168	174	180	187	193	199
60%				-	17	23	30	37	43	51	57	99	74	10	8	5 10	3 11	11 11	7 12	4 13	13	9 14	5 153	191 1	168	175	182	190	196	203	209	217	225	232
50%		•		14	22	29	38	45	54	63	74	82	68	99 10	1 80	1 91	5 13	4 14	2 15	0 159	9 16	3 176	5 185	193	201	209	218	227	236	245	254	263	271	281
40%				-	29	39	-	53	-	-	-	103	14 1	24 1	1 58	1 5	5 16	66 17	6 18	7 197	7 20	5 21)	228	238	250	261	271	283	294	305	317	328	339	351
30%				-	40	-	-	-	-	-	_	137 1	49 1	164 17	1 1	91 20	33 21	16 23(0 24	4 259	9 27	3 28	301	316	330	345	359	375	389	404	419	435	451	465
25%				-	48	+	+	-		-	-	160 1	175 1	191 20	05 2	21 22	17 25	54 26	9 28	7 303	3 320	0 33	354	371	388	405	422	195	458	475	492	509	527	545
20%				41	-	-	61	115	-+	-	-	188 2	05 2	24 2/	42 2	51 28	1 30	0 32	0 33	9 359	9 37	9 39	418	440	460	479	50	520	541	562	582	602	619	637
10%				-	120	154	187	219	254	289	324 3	360 3	16	34 4	71 5	07 5	5 58	3 61	7 65	2 69	0 72	9 76	8 80	846	886	926	996	1006	1046	1087	1128	1168	1208	1245
100%		1	1		5	~	10	12	15	18	21	24	27 2	29 3	33 3	6	4	44	48	52	SS	58	62	99	70	74	11	80	83	98	89	92	96	
%06					9	6	=	14	11	21	24	27	31	35 3	38 4	4	4 48	5 52	55	58	63	68	72	76	8	83	86	88	93	16	102	105	109	4
80%					2	10	14	17	20	24	28	32	36 4	40 4	43 43	7 5	2 56	55 55	64	70	74	78	82	86	88	94	66	103	107	111	115	119	123	1
75%					00	11	15	18	22	26	30	35	39 6	43 43	47 5	I S	6 S9	69	71	76	80	84	87	92	45	102	107	III	115	118	123	128	133	4
70%					6	13	-	50	24	50	The second	38	42	46 5	5 15	ų g	0 6	21 2	17	100	85	88	95	100	105	110	114	118	123	128	133	138	142	4
60%				x	11	16	20	25	30	36	17	45	S1 S	56 6	62 6	1 6	5 80	82	88	96	10	100	113	118	123	129	135	140	145	150	156	162	168	1
50%		-		-4	15	20	26	32	39	44	20	21	64 7	72 7	79 8	5 90	0 98	10	5 11	1 11	7 12	13	137	143	149	156	163	170	176	182	188	195	201	Ĩ.
40%		-	-		-	27	35	42	49	57	99	75	83 83	89 9	99 10	11 10	15 122	2 13	1 13	39 146	6. 154	4 163	171	178	186	194	201	208	216	225	233	241	250	4
30%		-	1	1	28	38	47	57	69	80	89	101	111 1	120 13	132 14	12 13	51 163	3 17	3 18	3 19	3 20	213	223	233	244	255	266	277	288	298	309	321	331	L
25%				1	35	-	-	71	-	-	-	-	-	-		167 17	78 19	90 201	1 21	2 225	5 237	7 250	0 262	274	287	299	313	325	338	351	364	377	390	×.
20%			-		41	55	20	84	86	112	-	140	152 1	-	180 19	94 20	6 22	1 23	5 249	9 26	4 27	8 29	3 308	523	337	352	367	382	397	413	428	444	460	a
10%			-	6	87	113	138	163	187	210	236 2	263 2	290 3	316 34	343 37	70 35	97 425	5 45	4 48	0 50	53	565	593	618	643	672	701	730	759	789	818	848	878	

Figure 8.14 16-bay, single-phase, transformer-based unit Type R (UPS model-number digit 6 = R)

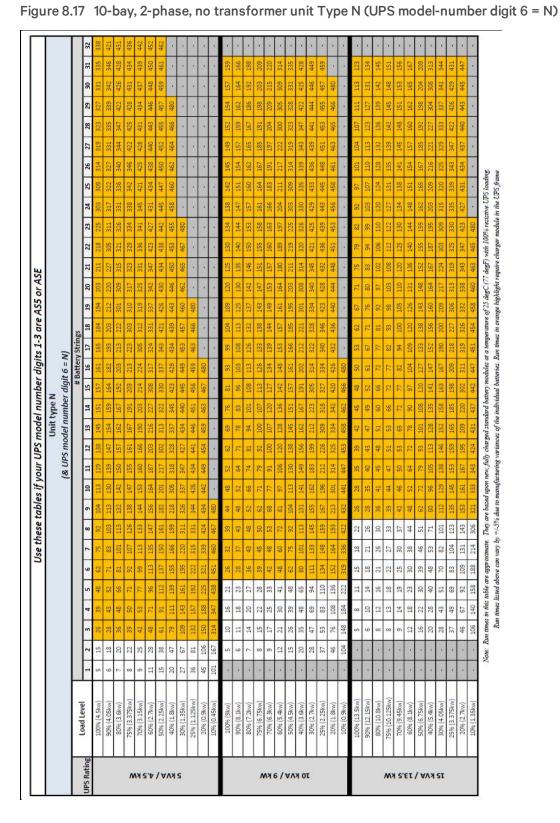

UPS Rating Loa 00% 20% 20% 20% 20% 20% 20% 20% 20% 20%															D	Unit type B	H O																		
													8	UPS	mode	(& UPS model number digit 6 = B)	ber d.	igit 6	= B)																
	I and I and								3									# Bat	# Battery Strings	rings										3					
		1	2	E	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	1.00	20	21	22	23 2	24 2	25 21	26 2	27 28	29	30	31	32	33	34	35
	100% (4.5kw)		5	15	26	38	47	60		96	102	111	127	136	143	149	155	160	164	180					m								336	339	34
	9096 (4.05kw)	•	9	17	28	42	21	69	85	100	111	128	137	145	152	157	162	167	188	198	208	216	223	302 3/	308 3.	314 31	319 32	324 328	332	336	340	343	346	421	42
	80% (3.6kw)	•	2	19	34	47	63	78	86	110	128	139	147	154	160	165	186	197	208	217	225	304	311 3	17 3	322 3	52 33	882 38		344		7. 423	2	~	431	43
	75% (3.375kw)	•		21	37.	49	89	83	104	122	134	144	152	159	164	184	197	208	217	226	306	313	319	24 3	30	m t		<u> </u>	5 422	425	-	-	434	436	E4
	7096 (3.15kw)		6	23	40	51	74	82	110	129	141	150	157	163	183	196	208	218	227	307	314	321	327	32 3	37 3	11 34	845 421	1 425	5 428	431	1 434	436	439	141	443
	60% (2.7kw)	•	11	27	46	67	16	109	130	143	153	160	167	194	208	219	301	310	318	325	331	337	342	47 4	23 4	27 43	0 43	13.4 43	7 435	442	2 444	447	449	451	45
	50% (2.25kw)		14	35	52	80	101	131	145	156	164	190	207	221	304	314	323	330	337	343	420	425	129 4	33 4	37 4	10 44	143 44	446 448	8 455	453	455	457	459	461	462
	40% (1.8kw)		18	44	73	104	132	149	160	185	206	222	308	319	329	337	344	422	428	433	437	442 6	144 4	48 4	151 4	53 45	156 45	158 460	0 462	464	1 466	467	480	1	10
25% 209 10%	30% (1.35kw)	1	25	53	100	134	154	167	205	226	314	327	337	346	426	432	438	443	447	451	454	457 4	160 4	62 4	465 41	57 48	0			- 63		0	*	÷	2
20%	2596 (1.125kw)	(and	30	22	120	148	165	205	301	319	332	344	425	432	439	444	449	453	457	460	463	466 4	180	10		ند 202	100	20	5) 220		-	-	2	×.	10
10%	20% (0.9kw)	11. Carlo	40	54	140	163	206	306	326	340	424	433	440	447	452	457	460	464	467	480		2	1	Ter (6)		200	10	10	- 12	6	•	13	8	1	5
100	5 (0.45kw)	1000	81	157	222	331	426	441	451	459	466	480	and and	1.2000	100 N	15 10	10	1			1	1	10 12	7.1 12.1	100	1000 25	100	2	10	- 5	•	10	8	12	2
	100% (9kw)			10	10	15	20	26	31	38	43	48	51	61	63	74	08	91	97	103	108	112	123	28 1	1	17 14	10 14	4 14	7 150	153	156	158	160	163	16
606	90% (8.1kw)			9	11	5	23	28	37	43	47	15	62	02	76	82	56	101	107	112	123	120	13.4	38	42 1	46 14	49 15	52 155	158	161	163	165	167	185	19
809	80% (7.2kw)		•	5	1	20	27	50	42	47	52	64	72	62	92	66	106	112	124	130	135	140	-		1			1	-			1		205	21
	7596 (6.75kw)			00	15	22	28	38	45	50	09	70	17	8	86	106	112	124	131	136	141	146	150	53 1	10	16	10	18	180	194	200	205	211	215	22
708	70% (6.3km)		1	0	1 1	1 10	1	41	10	2	3	75	83	10	105	582	175	121	127	CT1	147	121	25	50 5		16	1 4	5 10 Y	200	206	211	236	224	226	UE
	60% (5.4km)			11	20	28	02	42	12	89	20	76	103	111	125	133	130	145	150	155	150	162	166	83 15	10	20	52	2 24	223	301	305	310	314	318	25
	5 /4 5km/			P1	50	12	47	5	22	100	100	110	126	13.4	142	SAR	154	159	163	167	187	107	505	C 81	0	90	JE TU	15 0	319	ECE	2/2E	335	255	33.0	P.E
	40% (3.6kw)	(10	32	46	60	76	56	108	125	136	145	152	158	163	180	192	203	212	225	300	107	5	6	CE 10		100	34	345	420	423	426	429	43
	30% (2.7kw)	1.00	1950	26	44	62	18	104	125	138	149	157	164	185	199	212	222	304	312	319	326	332	137	42 3	46 4	2 42	6 42	429 43	436	438	100	443	446	448	45
25%	25% (2.25kw)			32	50	76	102	125	140	152	161	180	197	212	224	307	316	324	331	337	343	420	424 4	28 4	432 4	136 43	139 44	142 445	5 447	449	9 452	454	456	457	45
209	20%6 (1.8kw)			41	67	96	126	143	156	165	195	213	227	311	321	330	338	344	422	427	432	436	440 4	143 4	447 4	149 45	52 454	4 45	7 459	461	1 463	464	466	467	4
109	10% (0.9kw)		1350	83	135	159	197	226	319	335	347	428	436	443	449	453	457	461	464	467	480	1	13					1	0	1		7.	1	3	1
1009	100% (13.5kw)			5	10	60	11	19	100	22	26	28	34	38	42	45	48	50	52	61	99	70	74	78 8	1	6i	6 5	9 10	3 106	109	9 112	121	125	128	
9606	(12.15kw)	1000	15-10	1	9	6	13	17	21	25	28	34	39	43	46	49	51	53	65	70	74	78	82	92 9	97 10	01 10	05 10	11 60	2 121	125	5 129	132	135	138	
	80% (10.Skw)	80.00	8.000	24 - Se	2	11	16	20	25	28	35	40	44	47	50	53	64	70	75	79	83	95	100	04 1	08 1	12 12	12 12	6 13	0 134	137	140	143	146	148	
	75% (10.125kw)	New N	New .	16 1	60	12	17	22	27	32	38	43	47	50	53	64	70	75	80	06	96	101	106	10 1	20 1	24 12	ET 60	3 13	5 140	143	3 146	148	151	154	
	70% (9.45kw)	100 C	Part .	20	σ	14	18	23	28	35	41	45	49	52	63	70	75	80	16	97	103	107	112	22 2	27 1	51 13	35 13	9 14	2 146	5 149	151 6	154	156	159	2
13	60% (8.1kw)			2	11	17	23	28	36	42	47	51	61	69	76	81	94	100	106	111	122	128	133	37 1	11 1	10 14	19 15	2 15	5 157	160	162	165	167	183	
	50%6 (6.75kw/)		1	22	14	21	28	37	44	49	53	68	76	83	57	104	110	122	129	134	139	144	148	52 2	10	59 16	52 16	4 I6	181	191	197	202	208	213	1
	40% (5.4kw)		×.	10	19	27	38	46	52	66	76	16	100	108	122	130	137	142	148	152	157	160	164 1	67 3	86 10	93 20	01 20	7 21	3 219	22.4	1 301	306	310	314	<u> </u>
	30% (4.05kw)			10	27	40	49	64	77	94	106	122	132	140	147	153	158	163	167	188	198	207	114 2	22 34	00 30	96 31	2 31	7 32	1 326	330	334	337	340	344	
25%	25% (3.375kw)	1	3		34	47	62		-	110	128	138	147	154	160	165	185	197	207	216	224	304	310 3	16 3	22 3:	27 33	32 33	336 34	0 344	347	7. 422	425	428	431	<u></u>
209	20% (2.7kw)				43	60	_	-	-	136	147	155	162	181	195	208	219	300	309	316	323	329	334 3	339 3.	34.4 4	420 42	424 42	427 431	1 434	437	439	442	444	446	<u> </u>
10%	1096 (1.35kw)	•	1	3	96	130	151	164	198	220	309	322	333	342	422	429	435	440	444	448	452	455	158 4	60 4	53 44	55 46	57 46	0		195		10	14	1	Č.
100	100% (18kw)	0.00	100	2 24	3	10	4	10	12	15	18	20	22	26	27	31	34	38	40	43	45	47	49	51 5	52 6	60 6	64 6	67 70	74	76	79	81	06	a.,	
9606	90% (16.2kw)			2		9	0	11	14	17	20	23	26	28	32	36	40	42	45	47	49	51	53	62 6	66 6	69 7	73 7	76 79	82	16	94	25	101	4	а С
80%	80%6 (14.4kw/)	230	1.0		*	7	10	13	17	20	23	27	30	35	38	42	45	47	50	52	53	64	68	72 7	6 7	9 8	82 9	92 96	96	103	8 106	109	112	24	2
	75% (13.5kw)		1	3			11	15	18	22	26	28	33	38	41	45	47	50	52	60	65	70	74	8 24	t d	6 06	94 94	98 10	2 105	109	9 112	121	124	9	2
	7096 (12.6kw)			1		6	12	16		23	27	32	37	41	44	47	20	52	61	66	11	75	79	83 9	93 g	7 10	01 10	05 10	8 112	121	125	128	131	2	2
	60% (10.8kw)		•	2	2	=	16	20	R	28	8	40	44	47	50	53	64	69	75	79	83	94	66	10	08	17	2	6 13	0 133	137	7 140	143	145	1	1
	50% (9kw)		÷	2	*	14	20	-	8	37	43	47	50	53	67	73	78	83	56	101	106	11	121	26 1	31	55 13	10	43 14	5 149	152	2 154	157	159	S.	2
40%	40% (7.2kw)	•	•	2	3	19	26	+	-	46	21	61	02	- 22	83	67	103	109	121	127	132	137	-	~		-	-	59 16	2 164	191	7 183	189	195	÷.	<u>.</u>
	3096 (5.4kw)		1		*	27	37	45		65	75	83	98	107	120	128	135	141	346	151	155	159	162 1	165 1	182 11	190 19	197 20	204 21	216	5 223	1 226	303	307	×,	<u></u>
259	25% (4.5kw)			2	•	7	4	51	6	78	-	105	113	128	136	143	149	154	159	163	166	186	195 2	-	-	217 22	223 30	-	913	316	320	-	-	20	<u>.</u>
502	20%6 (3.5KW)				•	4	70	+	-	_	-	130	139	14/	193	501	100	181	785	202	117	617	177	9 1		25	+	155 975		355		5 5	420	e .	2
102	1070 (J.5KW)	•		•	•	95	172	141	154	101	190	607	622	205	815	066 889 C66 189 869 866 066 C79 076 786 C66 /76 81C 80E 577 607 061 891 861 181 571 96 -	225	245	920	C74	450	424	Di la	41 4	the cet	8 6 7	-	CB 2CB	0 40	104	105 8	403	402	•	

Figure 8.15 16-bay, single-phase, transformer-based unit Type B (UPS model-number digit 6 = B)

Image: 1	Iood Levit I 2 3 4 5 6 7 6 7 6 7 1 1000 LEvit 1 2 3	U (& UPS mode	Init type F el number digit 6 = F)						
Mutuality Image: state sta	Ibadilativi123456767676710 <th< th=""><th></th><th>In a subin manner</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		In a subin manner						
Method I <th>Total test Total test</th> <th></th> <th># Battery Stri</th> <th>ings</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Total test		# Battery Stri	ings					
Model I <th>Tooling lation in the lation of the la</th> <th>11 12 13</th> <th>15 16 17 18</th> <th>20 21</th> <th>24 25</th> <th>27</th> <th>30 31</th> <th>32 33 34</th> <th>35</th>	Tooling lation in the lation of the la	11 12 13	15 16 17 18	20 21	24 25	27	30 31	32 33 34	35
method i <th>Berik (13.8) 969 1<th>110 125 134 1</th><th>154 159 163</th><th>167 187 196 205</th><th>212 219 226 3</th><th>303 309 314</th><th>318 323 327</th><th>331 334 33</th><th>1</th></th>	Berik (13.8) 969 1 <th>110 125 134 1</th> <th>154 159 163</th> <th>167 187 196 205</th> <th>212 219 226 3</th> <th>303 309 314</th> <th>318 323 327</th> <th>331 334 33</th> <th>1</th>	110 125 134 1	154 159 163	167 187 196 205	212 219 226 3	303 309 314	318 323 327	331 334 33	1
Model Model <th< th=""><th>Terrer 1 and the contract of the contrac</th><th>126 135 143 1</th><th>161 165 185</th><th>204 213 2</th><th>227 305 311 3</th><th>517 321 326</th><th>330 334 338</th><th></th><th>•</th></th<>	Terrer 1 and the contract of the contrac	126 135 143 1	161 165 185	204 213 2	227 305 311 3	517 321 326	330 334 338		•
Witzickel I	Tring 12:51/30(1) To 12 To 12, 21, 21 To 12, 21, 21 To 12, 21, 21 To 12, 21, 21 To 12, 21 To 12, 21, 21 To 12, 21	152 1	181 193 2		314 319 325 3	329 334 338 340 340	342 345 420	423 426 429	
model model <th< td=""><td>Officiation Officiation Officiation</td><td>127 147 151 151 151 154 131 151 151 151 154</td><td>15 CCC EXC CUC UD1</td><td>CTC 200 700 777</td><td>2 TCC 07C T7C</td><td>200 346 421</td><td>024 C24 740</td><td>424 TCH 624</td><td></td></th<>	Officiation	127 147 151 151 151 154 131 151 151 151 154	15 CCC EXC CUC UD1	CTC 200 700 777	2 TCC 07C T7C	200 346 421	024 C24 740	424 TCH 624	
Model Model <th< td=""><td>96%(12.5%) 1 1 2 1 2 1 2 1 2 <th2< td=""><td>149 157 164 186 200</td><td>212 223 304 312 3</td><td>320 326 332 337</td><td>342 347 423 4.</td><td>426 430 433</td><td>436 439 441</td><td>1</td><td></td></th2<></td></th<>	96%(12.5%) 1 1 2 1 2 1 2 1 2 <th2< td=""><td>149 157 164 186 200</td><td>212 223 304 312 3</td><td>320 326 332 337</td><td>342 347 423 4.</td><td>426 430 433</td><td>436 439 441</td><td>1</td><td></td></th2<>	149 157 164 186 200	212 223 304 312 3	320 326 332 337	342 347 423 4.	426 430 433	436 439 441	1	
Merilandi No No <	0 0 1	160 180 197 212 224	306 316 324 331 3	337 342 420 424	428 432 436 4	139 442 444	447 449 452	454 456 457	1
Matrix Matrix<	Term to the term of term of the term of term	193 211 226 310 320	329 336 343 421 4	126 431 435 439		454 456	458 460 462	464 465 46	-
Exercise	Conditional and the control of	301 316 327 337 345	430 436 4	44 452 455		164 466 48D	1		
Apply (apply) Apply (a	Term (10 few) in (1 a) (1	423	442 446 450	457 460	467		•		
Monolisity is the probability of the probab	1006(1048(w) 1 10	439	454 458 461	467 480	•	x x x			
Movinality in the probability of a	100% 10% 1 10 11 12 22 26 21 21 26 21 27 26 26 27 26 2	459 464 480			0 0 0	2			•
effectional is	00%(a1%) : i<	43 47 51 60 67	74 79 90 96 10	02 107 112 122	127 132 136 1	140 143 147	150 152 155	158 160 16	
Tend for the control of the co	E004 C21M C T </td <td>51 61 69</td> <td>93 100 1</td> <td>11 122 127 132</td> <td>145 1</td> <td>151 2</td> <td>-</td> <td>164 166 132</td> <td></td>	51 61 69	93 100 1	11 122 127 132	145 1	151 2	-	164 166 132	
Tell (2)(1) 79, (1, 2)(1) 1	Totik (6.TSiw) Totik (62 71 78	98 104 110 122 1	128 134 138 143	-	157 160 163	165 167 185	191 197 200	1
The form of	Tronic (3.4 km) : <th< td=""><td>68 76</td><td>104 110 122 129 1</td><td>134 140 144 148</td><td>152 156 159 1</td><td>162 164 167</td><td>184 191 197</td><td>202 208 213</td><td></td></th<>	68 76	104 110 122 129 1	134 140 144 148	152 156 159 1	162 164 167	184 191 197	202 208 213	
(6) (1) <td>60% (5 4%) : 11 29 21 29 21 29 21 29 21 29 21 29 21 20 21 20 21 20 21 20 21 20 21</td> <td>74 81</td> <td>110 122 129 135 1</td> <td>141 145 150 154</td> <td>157 160 163 1</td> <td>166 183 190</td> <td>196 202 208</td> <td>213 218 223</td> <td></td>	60% (5 4%) : 11 29 21 29 21 29 21 29 21 29 21 29 21 20 21 20 21 20 21 20 21 20 21	74 81	110 122 129 135 1	141 145 150 154	157 160 163 1	166 183 190	196 202 208	213 218 223	
(4) (4) (4) (4) (4) (4) (4) (4) (4)	90% (1-5%) : <td></td> <td>131 137 143 148 1</td> <td>153 157 161 164</td> <td>167 187 195 2</td> <td>202 208 214</td> <td>220 225 302</td> <td>307 311 315</td> <td></td>		131 137 143 148 1	153 157 161 164	167 187 195 2	202 208 214	220 225 302	307 311 315	
model model <th< td=""><td>40% (3 6%) </td><td>98 108 123 132 139</td><td>146 152 157 161 10</td><td>165 182 192 200</td><td>208 225 222 3</td><td>300 305 310</td><td>315 320 324</td><td>328 331 333</td><td>10</td></th<>	40% (3 6%)	98 108 123 132 139	146 152 157 161 10	165 182 192 200	208 225 222 3	300 305 310	315 320 324	328 331 333	10
Meillary in the constraint of the constrai	30% (2.7%) : <td></td> <td>165 186 1</td> <td>206 215 223 302</td> <td>308 314 320 3</td> <td>325 329 333</td> <td>337 341 344</td> <td>420 423 425</td> <td></td>		165 186 1	206 215 223 302	308 314 320 3	325 329 333	337 341 344	420 423 425	
Test (1.2) 25(1.2) 1<	256(1250w) (1) (2) (-4	204 215 225 305 3:	313 320 326 332	337 341 346 4	422 425 428	432 434 437	440 442 444	-
The contract of the cont	20%(18\w) : : : : : : : : : : : : : : : : : : :	156 164 187 202 215	226 308 316 324 3	331 337 342 347	~	437	445 448	450 452 454	-
The formation of	10 ⁴ (10 θiv(1) 10	182 201 217 302 312	530 337 343	426				461 462 461	6
(0)(1.13(1))(1) </th <th>100% (12.5%) : <t< th=""><th>336 347 427 435 441</th><th>446 451 455 458 4/</th><th>162 464 467 480</th><th>12 1 2 1 2 1 2 1</th><th>2 6 2 6 2</th><th>a to the second second</th><th>27 10 15 1 13</th><th>2</th></t<></th>	100% (12.5%) : <t< th=""><th>336 347 427 435 441</th><th>446 451 455 458 4/</th><th>162 464 467 480</th><th>12 1 2 1 2 1 2 1</th><th>2 6 2 6 2</th><th>a to the second second</th><th>27 10 15 1 13</th><th>2</th></t<>	336 347 427 435 441	446 451 455 458 4/	162 464 467 480	12 1 2 1 2 1 2 1	2 6 2 6 2	a to the second second	27 10 15 1 13	2
OPFII OPFII <th< td=""><td>90% (1.1.1.5ku) :</td><td>1</td><td>45 47 50 52 6</td><td>60 65 70 74</td><td>77 81 90 5</td><td>94 98 102</td><td>105 109 112</td><td>121 124 -</td><td>30</td></th<>	90% (1.1.1.5ku) :	1	45 47 50 52 6	60 65 70 74	77 81 90 5	94 98 102	105 109 112	121 124 -	30
Toring the solution in the solution of t	Bornelliantial contractione contracticone contractione contractione contractione contractione contracti	34 38 42	51 53 64	74 78	96 100 1	108	124 3	131 134	
Tick (101216M) I = 1 <l< td=""><td>Trick (10.11351w), i.e. i.e. i.e. i.e. i.e. i.e. i.e. i.e</td><td>39 43 47</td><td>-</td><td>78 82 93 98</td><td>103 107 111 1</td><td>121 125 129</td><td>132 136 139</td><td>142 145 -</td><td>10</td></l<>	Trick (10.11351w), i.e. i.e. i.e. i.e. i.e. i.e. i.e. i.e	39 43 47	-	78 82 93 98	103 107 111 1	121 125 129	132 136 139	142 145 -	10
Meijadismu, 	TORF (a LASINV) <	+	63 69 74 79 8	83 95 100 105	109 113 123 1	127 131 135	139 142 145	148 150 -	-
Member Mem	66% (3.10) ·<		69 74 79 90 9	96 101 106 111	121 126 130 1	134 138 141	145 148 150	153 155	
Monolicy in the control of the	Split (A.M.) · <t< td=""><td>+</td><td>81 93 99 105 1</td><td>10 121 127 132</td><td>136 140 144 1</td><td>148 151 154</td><td>157 159 162</td><td>164 166 -</td><td>-</td></t<>	+	81 93 99 105 1	10 121 127 132	136 140 144 1	148 151 154	157 159 162	164 166 -	-
Molicianti i i i i i i i i i i i i i i i i i i	40% (5.4%) ·<	+	103 109 121 127 1	33 138 143 147	151 155 158 1	161 163 166	182 188 195	200 206 -	60 0
The former and	Joint (177%) · <t< td=""><td>+</td><td>128 135 141 146 1</td><td>[51 155 159 162</td><td>166 182 190 1</td><td>197 204 210</td><td>216 221 226</td><td>303 308</td><td>• •</td></t<>	+	128 135 141 146 1	[51 155 159 162	166 182 190 1	197 204 210	216 221 226	303 308	• •
Torial conditioned by the	278 127 -	-	101 001	193 202 210	21/ 224 302 3	308 315 318	322 326 350	334 33/	•
Tokicalizationer is a serie of a serie	ION(1.151N) · <th< td=""><td>134 143 151 1 151 158 164 1</td><td>211 221 302</td><td>218 226 317 323</td><td></td><td>327 331 336 347 423 426</td><td>346</td><td>422 424 - 438 440 -</td><td>•</td></th<>	134 143 151 1 151 158 164 1	211 221 302	218 226 317 323		327 331 336 347 423 426	346	422 424 - 438 440 -	•
Total and table and	100% < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		421 427 433 437 4	142 446 449 452	455 458 460 4	464 466	430		
90% 1	90% 1 1 1 1 1 2 2 2 3 3 90% 1 1 1 1 1 1 1 2 2 2 3 3 3 90% 1 1 1 1 1 1 2 2 2 2 3 </td <td>20 22 26</td> <td>34 38 40</td> <td>45 47</td> <td>-</td> <td>67</td> <td>73 76 79</td> <td>81 90 -</td> <td></td>	20 22 26	34 38 40	45 47	-	67	73 76 79	81 90 -	
00% > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <<	00% - - - - - - - - 1 1 2 <th2< th=""> 2 2 2</th2<>	23 26 28	39 42	47 49 51 53		72 76 79	81 90 94	97 100 -	- 63
	75% ·	26 30 34	47 49	55	72 75 79 8	82 91 95	99 102 105	105 111	- 60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70% ·	28 33 37	47 49 52	64	-	94 98 101	105 108 111	120 123 -	a
60% ·	60% ·	32 36 41	52 60 0		82 92 96 1	100 104 108	111 120 124	127 130 -	à
SOM: ·	50% ·	39 43 47	74	82	103 107 111 1	120 124 128	132 136 139	142 145 -	•
	40% ·	46 50 53	-	100 105 110 120	125 130 134 1	138 141 145	148 151 153	156 158 -	-
30% -	30% - - - 26 36 44 50 82 73 81 96 104 111 135 25% - - - - 23 50 44 50 82 73 81 96 104 111 135 25% - - - - 13 30 64 76 10 111 125 133 140 25% - - - 13 50 64 76 10 111 125 133 140 70% - - - 13 50 64 76 10 111 125 130 140 70% - - - 13 50 64 76 10 111 125 130 140 70% - - - 13 50 64 76 10 111 125 1	60 68 76	102 108 113 1	131 136 1	148 152 1	158	163 165 180	186 192 -	
- -	· · · · · 32 43 50 64 76 91 102 111 125 133 140	81 96 104	132 138 144	153 157	167 185 1	193 199 206	212 217 222	227 304 -	-
		102 111 125	146 152 156	164 180	205 212	224	307 312 316	320 324	1
		126 136 144	161 166 186	196 205 213 221	312	322	331 334 338	342 345 -	-
* * * * 90 111 136 180 180 310 311 320 328 336 342 433 430 446		180 199 215 300 311	320 328 336 342 4.	20 425 429 433	437 440 444 44	446 449 452	454 456 458	460 462 -	ii T

Figure 8.16 16-bay, single-phase, transformer-based unit Type F (UPS model-number digit 6 = F)

8.5 Estimated Battery Run Times: Model-number Digits 1-3 = AS5 or ASE

Vertiv | Liebert® APS™ Installer/User Guide |

		0 31 32	2 335 -	2 345 -	5 428 -	0 433 -	6 438 -	7 449 -	7 459 -	0		1020	1. 1.	1 × 1 × 1	7 160 -	165 167 -	3 199 -	4 209 -	5 220 -	8 313 -	0 333 -	3 426 -	4 447 -	5 457	6 480 -		•	 1 4 4			1. 1. 1 1 1 1 1 1 1.			•				1000 0 000
		30	8 33	9 342	2 425	7 430	3 436	4 447	5 457	6 480			1	-	5 15		7 193	198 204	9 215	4 308	6 330	0 423	2 444	3 455	5 466		-	-		-	-	•••	-	-	-			-
		8 29	4 32	335 339	6 422	4 427	0 433	2 444	3 455	4 466	2				2 15	160 162	180 187	192 19	204 209	7 304	2 326	4 420	9 442	1 453	3 465		*						-	*	•			
		7 28	9 32		343 346	1 424	7 430	9 442	1 453	2 464	3. 22				49 15	157 16	165 18	185 19	197 20	221 227	7 322	1 344	6 439	125 451	1 463	27	<u>.</u> 22							<u>.</u>				
		26 27	4 31	327 331	339 34	345 421	424 427	436 439	448 451	50 462	1				46 14	154 15	163 16	167 18	191 19	216 22	312 317	337 341	433 436	446 448	459 461	22	*	2	20 		20			~	2			
		25 2	3.	322 33	335 33	341 34	420 45	433 43	445 44	458 460					42 I/	151 1	160 10	164 1(183 19	209 2:	307 3:	332 33	430 4	443 44	456 45	1	 											
		24 2	04 3(317 33	330 3:	337 34	344 4:	429 43	443 44	456 49	480		1	200	39 1/	148 1	157 1(162 1(166 10	203 20	301 30	328 33	427 43	440 44	454 45		-			- 21		2	-					
		23	26 3	311 3	325 3	332 3	340 3	426 4	439 4	453 4	467 4			36	35 1	44 1	154 1	159 1	163 1	195 2	223 3	323 3	423 4	437 4	451 4	35	<u> </u>		3	т. 29				÷	a l		11 29	
		22	219 2	305	320	327 3	335	421 4	436 4	450 4	465 4			(i) (i)	130	140	150 1	155	160	187	216	317 3	346 4	433 4	448 4	1			3			•	i i			3	8	•
		21	212	227	314	322	330	345	432	447	462		4	10	125	136	146	152	157	167	209	311	342	429	445	2.0	25		2		•	•				3		
		20	204	219	308	316	324	340	428	444	460	480	1	T.	120	131	142	148	153	164	201	305	337	425	442	14	¥.		-	24	12	•		*				-
		19	195	211	301	309	318	335	423	440	457	465			109	126	137	143	149	160	192	225	331	420	438	1	1		2	. N.	1	1		*		2		
	Sa	18	185	203	221	302	311	329	346	436	453	462	1		105	120	132	138	144	156	182	217	325	343	433	14		×	3	39	-12		v	÷	*	9	29	
a	# Battery Strings	17	166	193	212	221	303	322	340	431	450	459	480	1990	66	109	126	133	139	152	165	208	318	337	429	480	10		1	350	-200	-	1	3		1	200	-
- 9 +	Batter	16	162	181	202	212	222	314	334	426	446	456	466		55	103	120	127	134	147	160	198	310	330	423	467	25		2	2	-				×	3		•
n ar dia	#	15	157	164	190	201	212	306	327	420	441	452	463	<i>x</i>	81	97	108	120	127	141	156	186	301	323	345	464	×	×	33. 	4	10	•	2	×	×	3	-	1
unit type n		14	152	159	167	189	201	224	318	341	436	447	459	1	26	90	102	108	120	135	150	165	219	314	338	460	2			3	-		•				3	-
(8.11BS model number diait 6 = P)		13	145	154	162	166	188	212	309	333	429	442	455	30	70	78	94	101	107	128	144	160	207	304	330	456	*	×	3	Э. 	2		×			×.	2	e.
IPC		12	138	147	156	161	165	199	226	324	422	436	450	14	69	72	81	83	100	113	137	154	194	221	320	451				120	1	1	•				100	1
18.1	5	п	130	139	149	154	159	183	212	313	342	429	444		52	64	74	79	16	105	128	147	167	207	309	445	35	40	45	47	20	64	79	104	136	151	165	339
		10	4 120	3 130	141	7 146	3 152	5 163	7 196	2 300	9 332	7 420	8 437	- 0	48	52	66	2 72	44 8	96	3 112	9 139	2 160	4 191	7 224	9 438	5 28	35	41	94	46	52	11	95 95	0 126	-	1 159	6 329
		8	3 10	102 113	113 131	125 137	132 143	145 155	159 167	192 212	304 319	324 337	345 428	52 480	39 44	44 48	8 52	51 62	3 68	1 80	1 103	111 129	143 152	156 164	187 207	346 42	22 26	26 30	30 36	33 39	37 42	44 48	50 62	70 79	99 110	120 133	141 151	300 316
		7 8	76 93	83 10	100 11	106 12	112 13	133 14	148 15	163 15	212 30	307 32	331 34	455 462	32 3	38 4	43 48	46 5	48 53	53 71	74 91	98 11	130 14	145 15	161 18	333 34	18 2	22 21	-	27 3:	30 3.	38 4	45 5(53 7(80 9:	102 12	128 14	207 30
		9	62	71 8	80 1	1 16	98 1	111 1	134 1	152 1	185 2	212 3	312 3	444 4	26 3	30	36 4	39 4	42 4	48	61 7	78 9	109 1	131 1	149 1	314 3.	15 1	18 2	21 2	22 2	25	30 3	39 4	47 5	68 89	81 10	107 1	180 2
		5	48	52	59	70	76	94	110	136	157	180 2	214	430 4	21	33	27	80	33	40	48	G	91 1	107 1	133 1	216 3	11	14	16	18	19	23	28	40	50	66	83 1	155 1
		4	39	64	48	50	52	69	83	108	138	152	166	337	16	18	21	22	25	28	38	47	67	80	105	167		10	12	n	14	18	22	28	42		65	136
			26	28	35	38	41	47	53	76	104	125		301	10	12	14	16	17	20	26	34	46	52	73	145	5	9	00	60	6	12	15	20	28	36	45	102
		2	16	18	20	22	25	28	37	46	62	76	66		ŝ	9	60	60	6	11	15	20	27	35	44	100	3		ġ.	16	4			(3))	2	ġ.	16	6
		1	5	9	2	00	6	11	14	19	26	32	42	91		j.	30	æ	2	20	0 2 0	.0	8			10	×	2	a	2	i.	1	æ	a a	a	2	a.	
	54 X200 AD	Load Level	100% (4.5kw)	90% (4.05kw)	80% (3.6kw)	75% (3.375kw)	7096 (3.15kw)	60% (2.7kw)	5096 (2.25kw)	40% (1.8kw)	30% (1.35kw)	25% (1.125kw)	20% (0.9kw)	10% (0.45kw)	100% (9kw)	90% (8.1kw)	80% (7.2kw)	75% (6.75kw)	70% (6.3kw)	60% (5.4kw)	50% (4.5kw)	40% (3.6kw)	30% (2.7kw)	25% (2.25kw)	20% (1.8kw)	10% (0.9kw)	100% (13.5kw)	90% (12.15kw)	80% (10.8kw)	75% (10.125kw)	70% (9.45kw)	60% (8.1kw)	5096 (6.75kw)	40% (5.4kw)	30% (4.05kw)	25% (3.375kw)	2096 (2.7kw)	10% (1.35kw)
		UPS Rating				N	NN :	5.4	/ \	KA	s			10				^	KN	6 /	AV	X 0	T							M	s	ET .	/ 4	κ۸	ST			

Figure 8.18 10-bay, 2-phase, no transformer unit Type R (UPS model-number digit 6 = R)

VERTIV.

											8	UPS	U	Unit type B del number	ber d	Unit type B (& UPS model number digit 6 = B)	= B)														
	land back															# Bat	# Battery Strings	rings													
UPS Rating	TOAU LEVEL	1	2	3	4	5	9	7	8	6	10 1	11 1	12 1	13 1	14 1	15 16	16 17	7 18	8 19	9 20	21	22	23	24	25	26	27	28	29	30	31
	100% (4.5kw)		5	15	26	39	48	62	75	92 1	104 11	113 1:	129 13	138 14	145 15	151 157	7 161	1 165	5 184	4 194	4 203	8 211	218	225	303	309	314	319	323	327	331
	90% (4.05kw)		9	18	28	43	52	11	83 1	103 1	113 13	130 13	139 14	147 15	154 15	159 164	4 182	193	3 203	3 212	2 220	0 227	305	311	317	322	327	331	335	339	342
	80% (3.6kw)	•	7	20	36	48	66	81 1	101 1	113 1	132 14	142 19	150 15	157 16	162 16	167 192	203	3 213	3 222	2 301	1 309	315	321	326	331	336	340	344	347	422	426
~	75% (3.375kw)	3.0	60	22	39	20	71	92 2	107 1	126 1	138 14	147 19	155 16	161 16	167 19	191 203	3 213	3 223	3 303	3 310	317	7 323	329	334	338	342	346	422	425	428	431
N 2	70% (3.15kw)		6	25	42	23	17	66	113 1	133 1	144 15	153 1(160 16	166 19	190 20	203 214	4 224	4 305	5 312	2 319	9 325	5 331	336	341	345	421	425	428	431	434	437
5.14	60% (2.7kw)		11	28	48	11	96	113	135 1	147 1	156 16	164 18	187 20	203 21	216 22	227 308	8 317	7 324	4 331	1 337	7 342	2 347	423	427	431	434	438	440	643	446	448
/ \	50% (2.25kw)	×	15	38	61	91	112	137 1	150 1	161 1	182 20	201 2	217 30	302 31	313 32	322 330	10 337	7 343	3 421	1 426	6 430	0 434	438	442	445	447	450	452	455	457	459
KN	40% (1.8kw)	×	20	47	79	111	139	155	166 1	199 2	218 30	305 33	318 32	328 337		345 423	3 429	9 434	4 439	9 443	3 446	6 450	453	455	458	460	462	464	466	480	4
s	30% (1.35kw)		27	67	109	143	161	195 2	220 3	311 3	326 33	337 34	347 42	427 43	434 44	440 445	15 449	9 453	3 457	7 460	0 462	2 465	467	480			19		1.	18	4
	25% (1.125kw)	•	36	81	132	157	192	222	315 3	331 3	344 42	426 43	434 44	441 446	451 451	51 456	6 459	9 463	3 466	6 480	'		•		2	3X 	0	9		a.	1
	2096 (0.9kw)	3	45	106	150	188	225	321 3	339 4	424 4	434 44	442 44	449 45	454 459	69 463	63 467	7 480	•		- 23	1	12	1	1	- 6	8	1.	2		1	6
	10% (0.45kw)		101	167	314	347	438	451 4	460 4	467 4	480		2	1	-			2	5	1	-	*	47	1) - 2	1	10	0	4		1	10
	100% (9kw)	•		5	-00	11	15	18	22	26 2	28 3	35 35	39 4	42 4	45 41	48 50	0 53	3 62	2 67	12 1	75	62	82	92	26	101	104	107	111	113	123
-	90% (8.1kw)	3.4		9	10	14	18	21	26	28	35 4	40 4	43 4	47 49	49 5.	52 61	1 67	7 71	1 76	80	83	94	99	103	107	110	113	123	127	131	134
	80% (7.2kw)	e.	5	00	12	16	21	26	M	36 4	41 4	45 4	48 5	51 6	60 61	66 72	2 77	7 81	1 92	16 1	102	2 106	110	120	124	128	132	136	139	142	145
^	75% (6.75kw)	•			13	18	22	27	33	39 4	44 4	47 5	51 5	53 6	66 7:	72 77	7 82	2 93	86 88	103	8 108	8 112	122	127	131	135	139	142	145	148	151
NN I	70% (6.3kw)	8		6	14	19	25	30	37	42 4	46 5	50 5	53 6	65 7	72 77	7 82	2 94	4 100	0 105	5 110	0 120	0 125	130	134	138	141	145	148	151	153	156
6 /	6096 (5.4kw)	×	4	12	18	23	30	38	44	48	52 6	64 7	72 7	78 90		97 104	109	9 120	0 126	6 131	1 136	5 140	144	148	151	154	157	160	162	165	167
AV	50% (4.5kw)			16	22	30	39	46	SI	62	72 7	79 9	93 10	101 10	108 12	120 127	133	3 138	8 143	3 148	8 152	2 155	159	162	165	167	185	192	198	204	209
н о к	40% (3.6kw)			20	28	40	48	53	12	80 5	96 10	105 1:	113 12	128 13	135 14	141 147	152	2 156	6 160	0 164	4 167	7 187	195	203	209	216	221	227	304	308	313
τ	3096 (2.7kw)	24	1	28	43	51	70	82 2	101 1	112 1	129 13	138 14	146 15	152 15	158 16	163 167	150	0 200	0 209	9 217	7 224	4 303	309	315	320	325	329	333	337	341	344
	25% (2.25kw)		1.1	37	49	69	83	104	123 1	135 1	145 15	153 19	159 16	165 18	185 19	198 209	9 218	8 227	7 306	6 313	319	9 325	330	335	339	343	347	422	426	429	431
	2096 (1.8kw)			46	67	92	109	131 1	143 1	153 1	161 16	167 19	195 20	209 22	220 30	302 311	1 319	9 326	6 332	2 338	8 343	347	423	427	431	434	437	440	649	445	447
	10% (0.9kw)		.L	106	140	158	188	214 3	306 3	321 3	333 34	343 42	424 43	431 43	437 44	442 447	17 451	454	4 458	8 460	9 463	3 465	480		-	*	2	4		141	

Figure 8.19 10-bay, 2-phase, no transformer unit Type B (UPS model-number digit 6 = B)

																					l						
						2	& UP	S mod	Unit i del nu	Unit type F del number	Unit type F (& UPS model number digit 6 = F)	6 = F	-														
											#8	# Battery Strings	String	s													
4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	29 30	0 31	1 32
26	39	48	62	76	69	104	120	130	138	145	152	157	162	166	185	195	204	212	219 2	226	304	309	314 3	319 3	324 32	328 332	2
28	43	52	14	83	102	113	130	139	147	154	159	164	181	193	203	211	219	227	305 3	311	317	322	327 3	331 3	335 339	9 342	-
35	48	65	80	100	113	131	141	149	156	162	167	190	202	212	221	301	308	314	320 3	325	330	335	339 3	343 3	346 422	2 425	5
38	20	70	16	106	125	137	146	154	161	166	189	201	212	221	302	309	316	322	327 3	332	337	341	345 4	421 4	424 427	7 430	0
41	52	76	98	112	132	143	152	159	165	188	201	212	222	303	311	318	324	330	335 3	340	344	420	424 4	427 4	430 433	3 436	9
47	69	94	III	133	145	155	163	183	199	212	224	306	314	322	329	335	340	345	421 4	426	429	433	436 4	439 4	442 444	4 447	
23	8	110	134	148	159	167	196	212	226	309	318	327	334	340	346	423	428	432	436 4	439	443	445	448 4	451 4	453 455	5 457	7
76	108	136	152	163	192	212	300	313	324	333	341	420	426	431	436	440	444	447	450 4	453	456	458	460 4	462 4	464 466	6 480	-
104	138	157	185	212	304	319	332	342	422	429	436	441	446	450	453	457	460	462	465 4	467	480						123
125	152	180	212	307	324	337	420	429	436	442	447	452	456	459	462	465	480	a		,	14		4				<u>.</u>
99 144	166	214	312	331	345	428	437	444	450	455	459	463	466	480	,	34			-			1.0	34	1999 1994			
160 301	337	430	444	455	462	480	1	8	34	32		2	14	0	3		2	18			23	20		34 24		33. 	51
10	16	21	26	32	39	44	48	52	63	70	92	81	93	66	105	109	120	125	130 1	135	139	142	146 1	149 1	152 15	155 157	
12	18	23	30	38	44	48	52	64	72	78	90	57	103	109	120	126	131	136	140 1	144	148	151	154 1	157 1	160 16	162 165	2
14	21	27	36	43	48	52	99	74	81	94	102	108	120	126	132	137	142	146	150 1	154	157	160	163 1	165 1	180 187	7 193	m
16	22	30	39	46	51	62	72	79	93	101	108	120	127	133	138	143	148	152	155 1	159	162	164	167 1	185 1	192 198	8 204	4
17	25	33	42	48	53	68	77	16	100	107	120	127	134	139	144	149	153	157	160 1	163	166	183	191 1	197 2	204 20	209 215	-
11 20	28	40	48	53	71	80	96	105	113	128	135	141	147	152	156	160	164	167	187 1	195	203	209	216 2	221 2	227 30	304 308	
15 26	38	48	61	74	16	103	112	128	137	144	150	156	160	165	182	192	201	209	216	223	301	307	312 3	317 3	322 326	6 330	-
34	47	8	78	86	111	129	139	147	154	160	165	186	198	208	217	225	305	311	317 3	323	328	332	337 3	341 3	344 420	0 423	
46	67	91	109	130	143	152	160	167	194	207	219	301	3:10	318	325	331	337	342	346 4	423	427	430	433 4	436 4	439 442	2 444	4
35 52	80	107	131	145	156	164	191	207	221	304	314	323	330	337	343	420	425	429	433 4	437	440	443	446 4	448 4	451 453	3 455	-
44 73	105	133	149	161	187	207	224	309	320	330	338	345	423	429	433	438	442	445	448 4	451	454	456	459 4	461 4	463 465	5 466	
100 145	167	216	314	333	346	429	438	445	451	456	460	464	467	480		<i>x</i>		4	•								10

Figure 8.20 10-bay, 2-phase, no transformer unit Type F (UPS model-number digit 6 = F)

8.6 Estimated Battery Run Times: Model-number Digits 1-3 = AS6 or ASF Figure 8.21 16-bay, 2-phase, no transformer unit Type N (UPS model-number digit 6 = N)

RJ 25 мя г.я. \ аvуг Wи е \ аvу от Wи г.г. \ аvуг W/	Load Level Load Level 1006 (45.8w) 906 (6.65.w) 906 (5.64.w) 906 (3.258.w) 756 (3.258.w) 756 (3.258.w) 756 (3.258.w) 306 (1.218.w) 306 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 906 (1.218.w) 1006 (1.218.w) 906 (1.218	• • • • • • • • • • • • • • • • • • •	N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	· · · · · · · · · · · · · · · · · · ·	4 25 25 25 25 25 25 25 25 25 25 21 25 21 25 21 25 25 25 25 25 25 25 25 25 25 25 25 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			8 8 3 3 5 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 <th< th=""><th>1 1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11</th><th>Annual Annual Annual<</th><th>Initi type B Initi type B Initi type B Initi type B 2 3 4 5 3 3 4 5 4 1 1 3 4 5 1 1 1 3 14 5 13 14 1 1 3 14 5 14 5 12 233 233 3 14 15 12 233 233 233 233 233 233 233 233 233 234 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233</th><th>Unit type R def number def number def number l 15 15 15 15 15 15 15 15 15 15 15 15 15</th><th>Npee B mber 15 10 157 10 157 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 11 120 12 120 13 120 14 120 15 120 16 120 17 120 18 120 19 120 10 120 11 120 120 120 120 120</th><th>digit 1 digit 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1</th><th>6 6 9 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 106 105 105 107 105 105 108 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105</th><th>9016 6 1 Battery Stattery 1 Battery Stattery 1 Battery Stattery 1 Stattery Stattery 1 Stattery Stattery 1 Stattery Stattery 1 Stattery Stattery 233 333 333 333 333 333 334 433 433 433 434 435 433 433 434 435 433 434 433 435 433 434 433 435 440 434 435 436 440 434 433 436 440 434 436 435 440 434 436 436 440 434 436 436 440 436 436 436 440 436 436 436 <</th><th>20 2134 2134 2134 2134 2134 2135 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 21 21 21 21 21 21 21 21 21 2</th><th>Image: interpretatione and interpretatinteratinte and interpretatione and interpretatione and interpret</th><th>22 23 2315 2315 2313 3315 3315 3315 2316 450 450 450 450 451 1155 1155 1155 1155</th><th></th><th>24 255 2155 2155 2156 2156 2156 455 455 455 455 455 455 455 455 156 156 156 156 156 156 156 156 156 1</th><th>25 25 303 303 303 314 314 45 45 45 45 45 45 45 45 45 45 45 45 45</th><th>26 29 309 305 332 332 40 40 40 40 40 40 40 40 40 40 40 40 40</th><th>27 27 3334 3327 346 465 465 465 465 465 465 465 465 465 4</th><th>28 3319 3319 3319 3319 3319 3319 460 460 460 460 460 3329 3329 3329 3329 3329 3329 461 113 1133 1133 1133 1133 1133 1133 1</th><th>233 233 3335 3475 4435 4443 4443 4444 1159 1159 1159 1159 1159 1159 1159</th><th>30 30 31 31 31 31 31 31 31 31 31 31 31 31 31</th><th>31 1 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24<th></th><th>33 33 33 33 34 35 35 34 36 36 36 36 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36</th><th>3. 2013 2013 2013 2013 2013 2013 2013 2013</th><th>35 35 45 45 45 45 45 45 45 45 45 45 45 45 45</th></th></th<>	1 1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	Annual Annual<	Initi type B Initi type B Initi type B Initi type B 2 3 4 5 3 3 4 5 4 1 1 3 4 5 1 1 1 3 14 5 13 14 1 1 3 14 5 14 5 12 233 233 3 14 15 12 233 233 233 233 233 233 233 233 233 234 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233 233	Unit type R def number def number def number l 15 15 15 15 15 15 15 15 15 15 15 15 15	Npee B mber 15 10 157 10 157 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 10 120 11 120 12 120 13 120 14 120 15 120 16 120 17 120 18 120 19 120 10 120 11 120 120 120 120 120	digit 1 digit 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1	6 6 9 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 106 105 105 107 105 105 108 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105 109 105 105	9016 6 1 Battery Stattery 1 Battery Stattery 1 Battery Stattery 1 Stattery Stattery 1 Stattery Stattery 1 Stattery Stattery 1 Stattery Stattery 233 333 333 333 333 333 334 433 433 433 434 435 433 433 434 435 433 434 433 435 433 434 433 435 440 434 435 436 440 434 433 436 440 434 436 435 440 434 436 436 440 434 436 436 440 436 436 436 440 436 436 436 <	20 2134 2134 2134 2134 2134 2135 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 2131 21 21 21 21 21 21 21 21 21 2	Image: interpretatione and interpretatinteratinte and interpretatione and interpretatione and interpret	22 23 2315 2315 2313 3315 3315 3315 2316 450 450 450 450 451 1155 1155 1155 1155		24 255 2155 2155 2156 2156 2156 455 455 455 455 455 455 455 455 156 156 156 156 156 156 156 156 156 1	25 25 303 303 303 314 314 45 45 45 45 45 45 45 45 45 45 45 45 45	26 29 309 305 332 332 40 40 40 40 40 40 40 40 40 40 40 40 40	27 27 3334 3327 346 465 465 465 465 465 465 465 465 465 4	28 3319 3319 3319 3319 3319 3319 460 460 460 460 460 3329 3329 3329 3329 3329 3329 461 113 1133 1133 1133 1133 1133 1133 1	233 233 3335 3475 4435 4443 4443 4444 1159 1159 1159 1159 1159 1159 1159	30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	31 1 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 <th></th> <th>33 33 33 33 34 35 35 34 36 36 36 36 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36</th> <th>3. 2013 2013 2013 2013 2013 2013 2013 2013</th> <th>35 35 45 45 45 45 45 45 45 45 45 45 45 45 45</th>		33 33 33 33 34 35 35 34 36 36 36 36 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	3. 2013 2013 2013 2013 2013 2013 2013 2013	35 35 45 45 45 45 45 45 45 45 45 45 45 45 45
	70% (12.6kw) 60% (10.8kw) 60% (10.8kw) 40% (7.2kw) 30% (5.4kw) 22% (4.5kw) 20% (3.6kw) 10% (1.8kw)					9 12 16 21 23 28 38 38 46 46 105	13 16 21 27 27 40 40 40 62 53 133	17 21 26 36 48 48 60 60 77 77 149	20 20 26 26 25 32 43 53 53 73 73 161 161 1	25 25 33 33 33 448 488 488 488 488 488 488 48	28 3 36 4 44 4 52 6 80 9 102 1 127 1 127 1 207 2 207 2	33 33 3 41 44 44 48 5 48 48 5 5 66 7 5 55 10 11 111 103 14 113 138 14 138 14 30	38 42 45 48 52 63 74 81 74 81 74 81 74 81 74 81 74 81 74 81 74 81 74 81 74 81 74 81 75 136 105 112 146 153 309 320	45 45 48 51 83 70 81 94 12 127 12 127 36 143 36 143 330 20 330	48 60 60 60 76 60 76 102 102 102 102 102 102 102 102 102 102	51 66 81 81 108 108 1141 141 141 141 184 5 5355 5355	53 72 93 120 146 160 160 196	63 77 99 126 151 164 206 206 226	68 81 105 132 132 132 156 156 156 180 215 215	73 92 110 137 137 160 160 190 223 438	77 97 120 142 163 163 163 199 303 442	81 102 125 146 167 167 207 310 445	90 106 130 150 150 214 316 316 448	95 110 135 154 154 221 321 451	99 120 139 157 201 300 326 454	103 124 142 160 208 305 331 456	107 128 146 146 163 214 214 311 315 315 459	110 132 149 149 149 149 220 316 316 339 461	113 136 152 152 180 180 225 320 343 463	123 139 155 155 302 324 324 337 464	127 1 142 1 157 1 192 1 192 1 307 3 328 3 286 4 466 4	130 1 145 1 145 1 160 1 198 2 312 3 332 3 332 3 480 4	133 148 162 204 204 316 336 428 428		

Figure 8.22 16-bay, 2-phase, no transformer unit Type R (UPS model-number digit 6 = R)

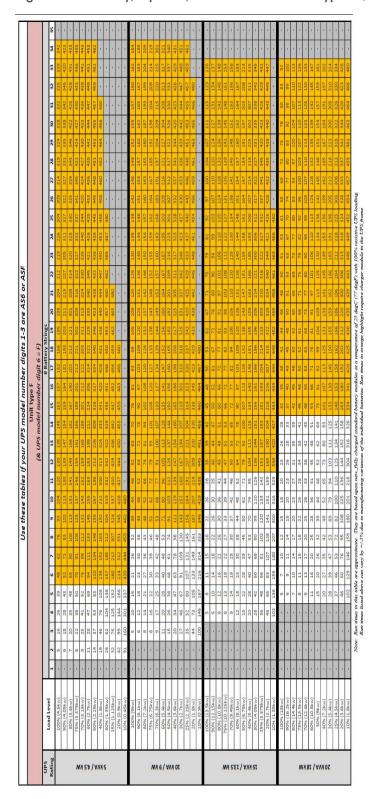


Figure 8.23 16-bay, 2-phase, no transformer unit Type B (UPS model-number digit 6 = B)

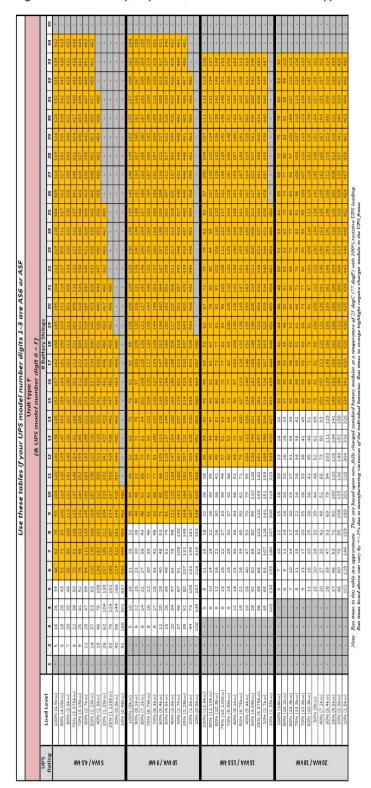


Figure 8.24 16-bay, 2-phase, no transformer unit Type F (UPS model-number digit 6 = F)

Connect with Vertiv on Social Media

https://www.facebook.com/vertiv/

https://www.instagram.com/vertiv/

https://www.twitter.com/Vertiv/

Vertiv.com | Vertiv Headquarters, 1050 Dearborn Drive, Columbus, OH, 43085, USA

© 2021 Vertiv Group Corp. All rights reserved. Vertiv and the Vertiv logo are trademarks or registered trademarks of Vertiv Group Corp. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness here, Vertiv Group Corp. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions. Specifications, rebates and other promotional offers are subject to change at Vertiv's sole discretion upon notice