

Liebert Challenger™ 3000

Technical Data Manual - Floor Mounted Systems, Nominal 3 & 5 Ton Systems, Air Cooled, Water/Glycol Cooled, GLYCOOL, Chilled Water, Split Systems, 50 & 60 Hz

PRODUCT NOMENCLATURE

NOTE

Tables i, **ii** and **iii** show nomenclature for the complete range of all available product options. Not all combinations are possible. For assistance, contact your local dealer, Liebert representative or call 1-800-543-2778.

Table i Product model information

В	F	042	Α	— А	Α	E	I
Challenger 3000	E = Downflow with Econ-O-Coil	Nominal capacity in thousand BTUH	A-=Air Cooled	A = 460/60/3	A = Advanced Microprocessor	0 = No Reheat	0 = No Humidifier
	F = Downflow		C-= Chilled Water	B = 575/60/3	G = Advanced Microprocessor w/Graphics	E = Electric Reheat	I = Infrared Humidifier
	K = Upflow with Econ-O-Coil		E- = Evaporator	C = 208/60/3		H = Hot Water Reheat	S = Steam Generating Humidifier
	U = Upflow		G-= GLYCOOL	D = 230/60/3		G = Hot Gas Reheat	
			WG = Water Cooled/Glycol Cooled	2 = 380/60/3		S = SCR Reheat	
				J = 200/50/3			
				H = 230/50/3			
				M = 380/415/50/3			

Table ii Split system configurations

			Condensing Units							
Capacity	Evapo	orator	Air Cooled Prop Fan Condensing Unit	Air Cooled Centrifugal Condensing Unit	Water/Glycol Condensing Unit					
3 Tons	60 Hz (50 Hz)	B*036E (B*035E)	PFH_42A (PFH_41A)	MC_40A (MC_39A)	MC_44W (MC_43W)					
5 Tons	60 Hz (50 Hz)	B*060E (B*059E)	PFH_67A (PFH_66A)	MC_65A (MC_64A)	MC_69W (MC_68W)					
*	F = Downflow	U = Upflow								

Table iii Self-contained system configurations

			Rer	mote Equipment	
	Capacity	Indoor Unit	Air Cooled Condenser	Drycooler/Pump	System Type
	60 Hz (50 Hz)	B*042A (B*040A)	CS@083		Air Cooled
3 Ton	60 Hz (50 Hz)	B*046WG (B*045WG)		DSF069 3/4 HP Pump 1-1/2 HP Pump 50 Hz	Glycol-Cooled or Self- Contained - Water Cooled
	60 Hz (50 Hz)	B*068C (B*072C)			Self-Contained - Chilled Water
	60 Hz (50 Hz)	B*067A (B*065A)	CS@083		Air Cooled
5 Ton	60 Hz (50 Hz)	B*071WG (B*070WG)		DSF109 3/4 HP Pump 60 Hz 1-1/2 HP Pump 50 Hz	Glycol-Cooled or Self- Contained - Water Cooled
3 1011	60 Hz (50 Hz)	B#061G (B#058G)		DSO109 1-1/2 HP Pump	GLYCOOL™
	60 Hz (50 Hz)	B*102C (B*101C)			Self-Contained - Chilled Water

TABLE OF CONTENTS

PRODUCT NOMENCLATURE	.2
DEDICATED, PRECISE ENVIRONMENTAL CONTROL—ESSENTIAL FOR SENSITIVE ELECTRONICS	.1
PRECISION ENVIRONMENTAL CONTROL FOR INDUSTRIAL, TELECOMMUNICATIONS, MEDICAL AND DATA PROCESSING EQUIPMENT	.2
LOCAL MONITORING SYSTEMS	.4
STANDARD FEATURES—ALL SYSTEMS	.6
CHILLED WATER SYSTEM—STANDARD & OPTIONAL FEATURES	.7
REFRIGERATION SYSTEMS	.8
AIR COOLED SYSTEM—STANDARD AND OPTIONAL FEATURES	10
WATER/GLYCOL COOLED SYSTEMS—STANDARD AND OPTIONAL FEATURES	12
GLYCOOL SYSTEMS—STANDARD AND OPTIONAL FEATURES	13
OPTIONAL EQUIPMENT—ALL SYSTEMS	14
COMPREHENSIVE MONITORING SYSTEMS—OPTIONAL	16
COMPREHENSIVE MONITORING SOLUTIONS—OPTIONAL	17
AIR COOLED DATA—60 Hz	18
AIR COOLED DATA—50 Hz	20
WATER COOLED DATA—60 Hz	22
WATER COOLED DATA—50 Hz	24
GLYCOL COOLED/GLYCOOL DATA—60 Hz	26
GLYCOL COOLED/GLYCOOL DATA—50 Hz	28
CHILLED WATER DATA—60 Hz	30
CHILLED WATER DATA—50 Hz	31
DIMENSIONAL DRAWINGS	32
ELECTRICAL DATA—60 Hz	38
ELECTRICAL DATA—50 Hz	41
GUIDE SPECIFICATIONS—NOMINAL 3 OR 5 TON ENVIRONMENTAL CONTROL SYSTEM	43
1.0 GENERAL	43
2.0 PRODUCT	43
3.0 EXECUTION	51

Figures

Figure 1	Unit configurations	. 2
Figure 2	Unit configurations, continued	. 3
Figure 3	Microprocessor control systems	. 5
Figure 4	Optional Views With Advanced Graphics	. 5
Figure 5	Upflow GLYCOOL Challenger 3000 with front return	6
Figure 6	Chilled water Challenger 3000 downflow with top return	. 7
Figure 7	Air cooled condenser with Lee-Temp	10
Figure 8	Outdoor propeller fan condensing unit	11
Figure 9	Upflow GLYCOOL Challenger 3000	13
Figure 10	Cabinet and floor planning dimensional data—Upflow (BU/BK) models	32
Figure 11	Cabinet and floor planning dimensional data—Downflow (BF/BE) models	33
Figure 12	Cabinet and floor planning dimensional data—3-ton centrifugal fan condensing unit	34
Figure 13	Cabinet and floor planning dimensional data—Split system—5-ton centrifugal fan	
	0	34
Figure 14	Cabinet and floor planning dimensional data—Split system—3-ton water/glycol cooled condensing unit	35
Figure 15	Cabinet and floor planning dimensional data—Split system—5-ton water/glycol cooled condensing unit	35
Figure 16	Cabinet and floor planning dimensional data—Split System—Propeller fan condensing unit	36
Figure 17	Cabinet and floor planning dimensional data—Propeller fan condensing modules—Vertical	
Figure 18	Cabinet and floor planning dimensional data—Self-contained system—Air cooled condenser	37
Figure 19	Cabinet and floor planning dimensional data—Piggyback condenser	37

Tables

Table i	Product model information	Inside Front Cover
Table ii	Split system configurations	Inside Front Cover
Table iii	Self-contained system configurations	Inside Front Cover
Table 1	Condensate pump capacity	14
Table 2	Challenger 3000 air cooled data—60 Hz	
Table 3	Air cooled data—50 Hz	20
Table 4	Water cooled data—60 Hz	
Table 5	Water cooled data—50 Hz	
Table 6	Glycol Cooled/GLYCOOL Data—60 Hz	26
Table 7	Challenger 3000 electrical data—60 Hz ¹	
Table 8	Self-contained with SCR reheat *	
Table 9	Scroll compressor and main fan (for comparison purposes only) *	
Table 10	Outdoor condensing units	
Table 11	Indoor condensing units, air cooled *	40
Table 12	Indoor condensing units, water cooled *	
Table 13	Fan speed control condensers *	40
Table 14	Lee-Temp condensers *	40
Table 15	Lee-Temp receiver heater pads for use w/CSL condensers	40
Table 16	Drycooler & pump package - 95°F (35°C) ambient *	40
Table 17	Drycooler only - 95°F (35°C) ambient *	40
Table 18	Pumps *	40
Table 19	Challenger 3000 electrical data—50 Hz	41
Table 20	Scroll compressor and main fan (for comparison purposes only)	42
Table 21	Outdoor condensing units	42
Table 22	Indoor condensing units air cooled	42
Table 23	Self-contained with SCR reheat	42
Table 24	Indoor condensing units water cooled	42
Table 25	Fan speed control condensers	42
Table 26	Lee-Temp condensers	42
Table 27	Lee-Temp receiver heater pads; for use w/CSL condensers	42
Table 28	Drycooler & pump package - 35°C (95°F) ambient	42
Table 29	Drycooler only - 35°C (95°F) ambient	42
Table 30	Pumns	42

DEDICATED, PRECISE ENVIRONMENTAL CONTROL—ESSENTIAL FOR SENSITIVE ELECTRONICS

For sensitive electronics, environmental control is more than simple cooling. "Comfort" air conditioning systems are designed for the comfort of people and simply cannot provide the kind of environment required by high performance computer or communication equipment.

Temperature Control

The high density heat load in a computer room or other similar application is beyond the capacity of ordinary air conditioning systems.

Sensitive electronics are best maintained in a stable environment of $72^{\circ}F \pm 2^{\circ}F$ ($22.2^{\circ}C \pm 1^{\circ}C$). Because computers and communications equipment generate large quantities of heat in small areas, six to 10 times the heat density of normal office space, the air conditioning system must have more than just enough cooling capacity. It must have the precision to react quickly to a drastic change in heat load and prevent wide temperature fluctuations—something a large building system cannot do.

Humidity Control

The electronic equipment must be protected from both internal condensation and static electricity discharges.

Maintaining the correct humidity level in the room is just as important as maintaining proper temperature. When humidity is too high, condensation may form inside electronic equipment and damage it. If humidity is too low, static electricity could disrupt operation or even shut down the electronic system. An ordinary building system cannot normally control the environment within these boundaries.

Air Volume

Computers and other sensitive electronics require greater air volumes than ordinary air conditioning can provide. Typical comfort systems are designed to provide between 300 and 400 CFM (cubic feet per minute), (500–700 CMH) per ton of cooling. Computer systems require between 500 and 600 CFM (850–1020 CMH) per ton. The high density heat load in a relatively small space requires more changes of air than a less dense "comfort" application.

While a normal office space requires only two air changes per hour, a room filled with electronic equipment requires up to 30 changes per hour. Without proper air volume, hot spots and temperature fluctuations could develop within the room. Also, greater air volumes provide the higher sensible heat ratios required by electronic computer equipment.

Air Filtration

A clean environment of properly filtered air is essential. Build-up of dust and fibers attracted by operating electronics can cause faults and impair the operation of electromechanical devices, such as switches and disk drives.

In short, today's electronics need the same precision environmental control that mainframe computers need. The difference is that instead of one large computer room there are several small, often crowded rooms, widely dispersed throughout a building, plant or campus. Conditions and requirements can vary widely.

Year Round Operation

Comfort conditioning systems cannot be relied upon 24 hours per day 365 days per year. They are typically designed to operate 10 hours per day, from spring to autumn. Many "comfort" systems have no provision for winter operation. A precision environmental control system is designed for operation at temperatures down to -30°F (-34.4°C).

Agency Listed

Standard 60 Hz units are UL listed and CSA (NRTL-C) certified. NRTL-C meets both U.S. and Canadian

government safety requirements, providing fast, hassle-free inspection and building code approvals. The units are also MEA listed for New York City applications.

PRECISION ENVIRONMENTAL CONTROL FOR INDUSTRIAL, TELECOMMUNICATIONS, MEDICAL AND DATA PROCESSING EQUIPMENT

Data processing power is moving from the specialized environment of the computer room to the office and the factory floor.

At the same time, the applications are growing exponentially. From yesterday's spreadsheets and word processors, micro- to mid-range computers control LANs and WANs, manage complex telecommunications systems, optimize manufacturing processes and facilitate sophisticated testing and laboratory functions.

Computers and sensitive electronics tend to be grouped, often in specialized rooms. This makes operation and service easier, but it also creates the need for precision environmental control—the coordinated management of temperature, humidity and air filtration.

Challenger 3000

Challenger 3000 provides the precision and flexibility required by a broad range of applications.

- Microprocessor-based controls (with a choice of monitoring systems based on your needs) allow you to select temperature and humidity ranges.
- A-frame coil (oriented to airflow) provides a large cooling surface area, and more precise control of temperature and humidity.

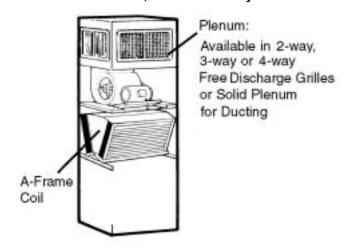
Multiple Configurations to Fit a Variety of Spaces

Though electronic equipment rooms share some common protection requirements, their application requirements can vary greatly. The room may or may not have a raised floor or an existing heat rejection loop. Budget and space requirements may limit the options a contractor has.

The Challenger 3000 is available in 10 different configurations, with upflow and downflow air distribution options.

Efficiency in Economic Terms

The Challenger 3000 occupies 7 square feet (.65 square meters) of floor space. It can be located in a corner of the room or against a wall, as all service access is from the front of the unit. With room floor space valued at a premium per square foot, the small footprint of the Challenger 3000 makes economic good sense.


GLYCOOL

GLYCOOL is a patented Liebert process that can significantly reduce energy costs during periods of low outdoor ambient temperatures.

The GLYCOOL system is a normal glycol system with the addition of a second cooling coil in the air handling unit and a three-way valve. During colder months, the glycol solution returning from the outdoor drycooler is routed to the second coil, and becomes the primary source of cooling for the room. At ambient temperatures below $35^{\circ}F$ (1.6°C), the cooling capacity is sufficient to handle the total cooling needs of the room. As the compressor is responsible for the majority of the power consumption of the air conditioning unit, a GLYCOOL system can substantially reduce energy costs.

Figure 1 Unit configurations

Chilled Water, Self-Contained System

Water Cooled, Self-Contained System

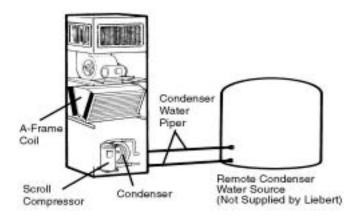
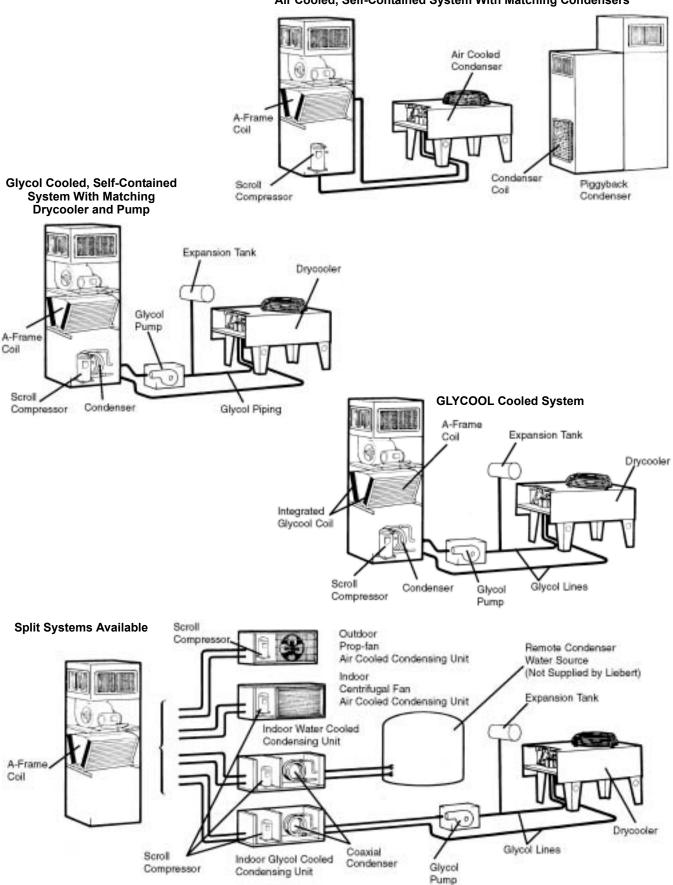



Figure 2 Unit configurations, continued

Air Cooled, Self-Contained System With Matching Condensers

LOCAL MONITORING SYSTEMS

Two levels of microprocessor control systems are available providing precise control and monitoring of the critical space.

The **Advanced Microprocessor** is standard, and the **Advanced Microprocessor with Graphics** is optional. The main control functions are similar for both controls.

Control

The user must enter a three-digit password before making changes.

- Temperature Setpoint 65-85°F (18-29°C)*
- Temperature Sensitivity +1-10°F (0.6-5.6°C)
- Humidity Setpoint 20-80% RH*
- Humidity Sensitivity 1-30% RH
- High Temperature Alarm 35-90°F (2-32°C)
- Low Temperature Alarm 35-90°F (2-32°C)
- High Humidity Alarm 15-85% RH
- Low Humidity Alarm 15-85% RH
- * The microprocessor may be set within these ranges; however, the unit may not be able to control to extreme combinations of temperature and humidity.

Control Type

Factory set-up for Intelligent Control which uses "fuzzy logic" and "expert systems" methods. Proportional and Tunable PID are user selectable options.

Internal System Control

- Compressor short cycle control: Prevents compressor short-cycling and needless compressor wear.
- **System auto restart:** The auto restart feature will automatically restart the system after a power failure. Time delay is programmable.
- Sequential Load Activation: On initial start-up or restart after power failure, each operational load is sequenced to minimize total inrush current.
- Hot Water / Econ-O-Coil Flush Cycles: Hot water reheat coils and Econ-O-Coils are periodically flushed to prevent a build-up of contaminants.
- Temperature/Humidity Sensor Calibration:
 The sensors may be calibrated from the front monitor panel to insure that all units in the room are similarly calibrated, assuring greater precision.

Monitoring

- Normal display: Includes present room temperature and humidity, active functions (cooling, heating, dehumidifying), and any alarms.
- Operating status: Displays each control operation in percent.
- Read analog inputs function: Displays the present values of up to four analog inputs.

Diagnostics

- **Input diagnostics:** Reviews inputs to the control system.
- Control board diagnostics: Initiates a self-test of the control system.
- Output diagnostics: Tests major components by turning them on and off from the control panel. Includes: main fan, compressor, liquid line solenoid valve, hot gas bypass valve, chilled water or chilled GLYCOOL valve, R-5 relay, reheat, hot water reheat valve, humidifier, humidifier make-up valve, and common alarm.

Logging

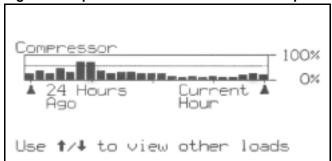
- Alarm history log: The Advanced Microprocessor displays the 10 most recent alarms. The
 Advanced Microprocessor with Graphics displays the most recent 60 alarms. Both provide a time and date stamp for each event
- Run time log: Displays run time and hours for major components (also allows reset of run hours) including compressors, GLYCOOL, fan, humidifier, and reheat.

Alarms

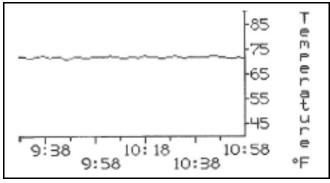
- Humidifier problem
- High head pressure
- Change filter
- Loss of air flow
- High temperature
- Low temperature
- High humidityLow humidity
- Compressor overload (opt)
- Main fan overload (opt)
- Low suction pressure
- Short cycle
- Loss of power
- Custom alarm (choose up to 4)
 - Water under floor
 - Smoke detected
 - Standby GC pump on
 - Loss of water flow
 - · Standby unit on
 - User customized text

Figure 3 Microprocessor control systems

Advanced Microprocessor Control System. Backlit 4 x 20 Liquid Crystal Display.


Advanced Microprocessor w/Graphics Control System—Optional. Backlit 240 x 128 dot matrix graphics display.

Graphical Displays (Advanced Graphic Control Only)


- Individual plots of temperature, humidity and the four analog inputs.
- Bar graph plots of individual component run history by hour.
- Floor plan of optional water detection system layout including on alarm.

Status indication of operating modes with current temperature and humidity.

Figure 4 Optional Views With Advanced Graphics

The runtime screen provides data in either tabular or easy-to-read graphic formats.

Histograms-historical depictions-of temperature or humidity can be displayed on the screen for analysis. This is especially helpful in tracking the environmental factors of an alarm.

STANDARD FEATURES—ALL SYSTEMS

Cabinet and Frame

The frame, 14 gauge, MIG welded tubular and formed steel, provides maximum support while 1" (25.4mm) deep steel panels with 1-1/2 lb. (.68 kg) insulation protect and quiet the system. The front door can be opened for service without shutting off the system. All components are accessible for service/maintenance through the front of the unit.

Liebert enhances the Challenger 3000's resistance to corrosion by applying a black, powder-coat finish to all frame components. Exterior panels are similarly protected with durable powder-coating.

Electrical Panel

The high voltage compartment contains the contactors, transformers and overloads and all other high-voltage components.

Each high voltage component is protected by a separate overcurrent protective device. The entire high voltage panel is enclosed by a safety lock dead front panel. When the front door is opened by operating personnel, the high voltage components remain enclosed for operator safety.

Fan Section

The Challenger 3000 features a quiet, low speed fan assembly with double inlet blower, lifetime lubrication and self-aligning ball bearings. The motor and variable pitch drive are mounted on an adjustable base. The entire blower/ motor assembly is mounted on vibration isolators for smoother operation.

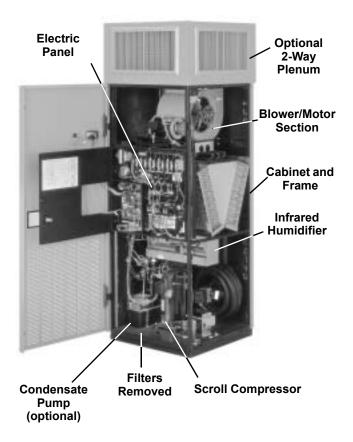
The draw-through design of the fan section provides even air distribution across the coil, controlled air for bypass humidification, elimination of air bypass around the filters and low internal cabinet pressure drop.

Infrared Humidifier

High-intensity quartz lamps over the stainless steel humidifier pan permit clean, particle-free vapor to be added to the air within 5 to 6 seconds of the electronic call from the microprocessor control.

The quartz lamps provide radiant energy that evaporates water in a pure state, without solids.

The Infrared Humidifier is equipped with an automatic water supply system that significantly reduces cleaning maintenance. This system has an adjustable water over-feed to prevent mineral precipitation. A drain valve is provided to easily empty the humidifier pan prior to inspection or servicing. A control valve regulates flow at water pressures between 5 and 150 psig (34.5 and 1034 kPa) and includes a Y-strainer.


Electric Reheat

The two-stage 304 stainless steel reheat elements are a rigid, fin-tubular design that have extended operation life. The reheat has ample capacity to maintain room dry-bulb conditions during a system call for dehumidification. The two stages give an accurate, controlled response to the requirements of the computer room. The low watt density, electrically enclosed elements are surrounded by the tube and fins, reducing sheath temperatures and eliminating ionization.

Filters

The standard pleated 2" (51mm) filter with an efficiency of 20% (based on ASHRAE 52.1) can be changed quickly and easily through the front of the unit.

Figure 5 Upflow GLYCOOL Challenger 3000 with front return

CHILLED WATER SYSTEM—STANDARD & OPTIONAL FEATURES

Chilled Water System—Standard Features Cooling Coil

The chilled water cooling coil is designed for closed-loop applications using properly maintained water. It is constructed of copper tubes and aluminum fins. A-frame coils are used on downflow units and V-frame coils are used on upflow units. To ensure quality, the coil is manufactured to the highest standards in the industry.

Modulating Motor

The flow of chilled water through the cooling coil is controlled by an electronic modulating motor. The microprocessor control will activate the motor when a need for cooling or dehumidification exists. The motor will position the valve to precisely match the needs of the conditioned space.

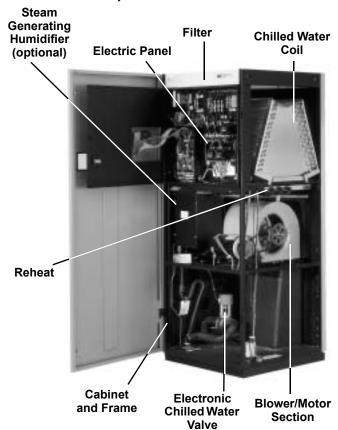
Line Insulation

All chilled water piping within the Challenger 3000 is fully insulated to assure full system capacity and prevent condensation.

Three-Way Control Valve

The fully insulated control valve gives the conditioned space the precise cooling needed by electronic equipment. Its unique design requires no overtravel linkages and never requires adjustment.

Chilled Water System—Optional Features


Chilled Water Flow Switch

The flow switch will activate the alarm system and/ or shut down the system should the chilled water supply be interrupted. The switch is factory wired and mounted in the chilled water valve compartment.

High Pressure

For special applications, a high pressure, modulating 3-way or 2-way valve can be provided. The valve is designed for 400 psig (2758 kPa) water pressure.

Figure 6 Chilled water Challenger 3000 downflow with top return

REFRIGERATION SYSTEMS

Two versions are available:

- 1. Self-Contained Systems
- 2. Split Systems

Self-Contained Systems

These systems feature a scroll compressor and controls, expansion valve, hot gas bypass and evaporator coil in the room unit.

Air Cooled models also include a crankcase heater on the compressor and require field connection to remote air cooled condenser.

Water, Glycol and GLYCOOL models also include a coaxial condenser with field connections required to the water or glycol coolant loop.

Water/Glycol models have 2-way WRV with bypass. GLYCOOL models have 3-way WRV.

Split Systems

These pre-charged systems feature the evaporator coil and expansion valve in the room unit, with the scroll compressor, and the condensing equipment located in one of several different types of condensing units. Pre-charged line sets are available on 3-ton systems.

Refrigeration System Components— Standard Features

Compressor

The heart of the refrigeration system is the compressor.

All self-contained evaporator units and split system condensing units contain a high efficiency, quiet operating scroll compressor. The compressors have internal vibration isolating mountings, pressure safety controls and built-in overload protection.

Evaporator Coil

The evaporator coil is designed for the high sensible heat ratio required by electronic equipment applications. The copper tube, aluminum fin coils are configured as A-frame coils on downflow units and V-frame coils on upflow units for smooth air flow through the unit.

Safety Control

Every Challenger compressor has a high pressure switch with an exclusive manual reset after high pressure cut-out. This prevents cycling the compressor at high pressure, resulting in greater efficiency and longer compressor life.

Expansion Valve

The externally equalized thermostatic expansion valve smoothly controls the flow of refrigerant through the coil and provides precise control of superheat.

AIR COOLED SYSTEM—STANDARD AND OPTIONAL FEATURES

Air Cooled, Self-Contained Systems— Standard Features

Pump Down Control

The compressor pump-down control is accomplished by a liquid-line solenoid valve used in conjunction with a low pressure switch.

Condenser

The Liebert manufactured low profile, direct drive propeller fan type air cooled condenser provides quiet, efficient operation.

It is constructed of aluminum with a copper tube and aluminum fin coil for corrosion resistance. An integral, factory wired and tested control panel reduces installation time.

Fan Speed Control

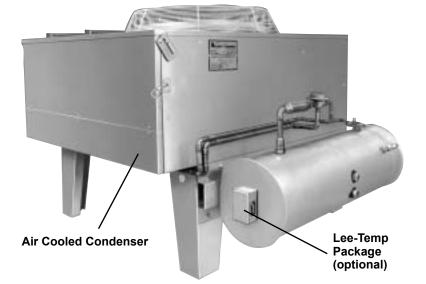
The winter control system features a variable speed motor and a specially designed solid-state fan speed control transducer.

The transducer senses refrigerant pressure and varies the speed of the fan motor to maintain constant condensing temperature and system capacity. This system permits operation at ambient temperatures as low as -20°F (-29°C).

Figure 7 Air cooled condenser with Lee-Temp

Air Cooled, Self-Contained Systems— Optional Features

Lee-Temp Winter Control Condenser


The Lee-Temp winter control system's heated receivers permit startup and positive head pressure control at ambient temperatures as low as -30°F (-34.4°C). The Lee-Temp package includes insulated receiver, a pressure relief valve, three-way head pressure control valves, and rotalock valves (see **Figure 7** below).

Series PB Condenser

The Series PB condenser converts the Challenger 3000/Lee-Temp system into a self-contained package when an outdoor location is not practical.

Quiet-Line Condensers

Quiet-Line Condensers can help your facility meet the strictest noise codes, and do so at less cost than traditional condensers with acoustical shielding.

Air Cooled Split Systems—Standard Features

Centrifugal Fan, Condensing Unit

The centrifugal condensing unit may be connected to the evaporator section by means of pre-charged refrigeration lines (3 ton only). This greatly simplifies installation and keeps installation costs low. The copper-tube, aluminum-fin coil is equipped with low temperature controls to assure year-round operation to -20°F (-29°C). The condensing unit is completely factory wired, charged and tested and is ready for final connections.

The centrifugal fan condensing unit includes scroll compressor, condenser coil, centrifugal blower assembly, high-pressure switch, Lee-Temp head pressure control.

Condensing unit has hot gas bypass standard feature which bypasses hot gas around the compressor directly to the suction side of the compressor to provide capacity control and reduce compressor cycling. System includes liquid injection valve to maintain proper suction superheat.

Unit must be mounted indoors. Duct flanges are provided.

Propeller Fan Condensing Unit

The air cooled condensing unit can be mounted on the roof or a ground level site. The condensing unit housing is manufactured of galvanized steel with a powder coat finish. The copper-tube, aluminum-fin coil is equipped with low temperature controls to assure year-round operation to -30°F (-34.4°C). The condensing unit is completely factory wired, charged and tested and is ready for final connections. (See illustration below)

The standard prop fan condensing unit includes scroll compressor, prop fan, high head pressure switch, hot gas bypass and Lee-temp head pressure control (for operation down to -30°F (-39°C) ambient.)

Figure 8 Outdoor propeller fan condensing unit

Propeller Fan Condensing Unit Options

This unit is available in these optional configurations:

- 105°F (40°C) ambient for high ambient conditions.
- 95°F (35°C) ambient Quiet-Line for low noise level conditions below 58 dBa.

Air Cooled Split Systems—Optional Features

Factory installed non-fused disconnect switch allows unit to be turned off for maintenance. Disconnect switch is available on indoor condensing units only.

Pre-Charged Line Sets

(3 ton only): Consists of one pre-charged liquid line and one pre-charged insulated suction line of soft copper tubing. Each line has one male quick-connect coupling and one female quick-connect coupling with an access valve connection.

Available in 15 ft. (4.6m) and 30 ft. (9.1m) lengths for interconnection of remote located condenser module. Maximum recommended distance between evaporator and condenser modules with pre-charged line sets is 45 ft. (13.7m). For longer runs, use sweat adapter kit.

Refrigerant-Line Sweat Adapter Kit

(3 ton only): Contains two suction and two liquid line compatible fittings that allow field-supplied interconnecting refrigerant lines to be used.

WATER/GLYCOL COOLED SYSTEMS—STANDARD AND OPTIONAL FEATURES

Water/Glycol Self-Contained Systems— Standard Features

Liquid Cooled Condensers

A co-axial condenser provides ample capacity to handle the heat rejection needs of the system while using a minimum of liquid and low total pressure drop.

Regulating Valves

Head pressure operated regulating valves accurately control the condensing temperature and maintain system capacity for various entering liquid flow rates and temperatures. Two-way valves with bypass are standard.

Water/Glycol Cooled, Self-Contained System—Optional Features

Three-way Regulating Valves

Three-way valves provide accurate control of condensing temperature and thus maintain constant system capacity while also keeping the condenser water flow rate constant.

High Pressure

The high pressure option for the condenser circuit consists of a regulating valve and a condenser rated at 350 psig (2413 kPa) water-pressure. This option is required in applications with large static head pressures.

Compressor Crankcase Heater

A compressor crankcase heater is available to prevent the migration of refrigerant to the compressor during off cycles.

Hot Gas Reheat

The hot gas reheat assembly consists of a 3-way directional solenoid operated valve and a hot gas reclaim coil.

Water/Glycol Split System—Standard Features

Water/Glycol Cooled Condensing Units

Factory charged and sealed, the water cooled condensing unit is ready to be installed quickly and easily. The counter-flow coaxial condenser with two-way or three-way regulating valve designed for 150 psi (1034.3 kPa) is matched to the heat rejection requirements of the compressor for a variety of flow rates and fluid temperatures.

Condensing unit has a hot gas bypass standard feature that bypasses hot gas around the compressor directly to the suction side of the compressor to provide capacity control and reduce compressor cycling. System includes liquid injection valve to maintain proper suction superheat.

Water/Glycol Cooled, Split System— Optional Features

High Pressure

The high pressure option for the condenser circuit consists of a 2-way or 3-way water regulating valve and condenser rated at 350 psig (2413 kPa) water pressure. This option is required in applications with large static heads.

Factory Installed Non-Fused Disconnect Switch

Allows unit to be turned off for maintenance. Disconnect switch is available on indoor condensing units only.

Pre-Charged Line Sets—3 Ton Only

Consists of one pre-charged liquid line and one precharged insulated suction line of soft copper tubing. Each line has one male quick-connect coupling and one female quick-connect coupling with an access valve connection.

Available in 15 ft. (4.6m) and 30 ft. (9.1m) lengths for interconnection of remote located condenser module. Maximum recommended distance between evaporator and condenser with pre-charged line sets is 45 ft. (13.7m). For longer runs, use sweat adapter kit.

Refrigerant-Line Sweat Adapter Kit

(3 ton only) - contains two suction and two liquid line compatible fittings that allow field-supplied interconnecting refrigerant lines to be used.

Glycol Cooled System—Heat Rejection Devices

Self-Contained and Split Systems

Fan Speed Control Drycooler

The Liebert manufactured Fan Speed Control dry-cooler is constructed of aluminum and features copper tubes and aluminum fin design. It is low profile, propeller fan type and provides quiet, trouble free heat rejection. The drycooler features a variable speed fan motor and a specially engineered solid state fan speed transducer. The transducer senses the temperature of the leaving glycol and modulates the speed of the fan to maintain proper glycol temperatures. An integral, factory-wired and tested control panel reduces installation time.

Glycol Pump

The glycol system includes a matching centrifugal glycol pump. It is mounted in a vented, weatherproof enclosure.

Optional Equipment—See page 13.

GLYCOOL SYSTEMS—STANDARD AND OPTIONAL FEATURES

GLYCOOL (Self-Contained Models Only)

The Liebert GLYCOOL free-cooling system is integrated with a glycol cooled Challenger 3000.

At outdoor temperatures below 35°F (1.6°C), the GLYCOOL coil is capable of providing total system capacity. At outdoor temperatures between 35° and 65°F (1.6° and 18.3°C), the unique modulating valve permits partial cooling of the space by the GLY-COOL coil with the DX system picking up the rest of the load. Above 65°F (18.3°C) the unit functions as a glycol unit and all the cooling is accomplished by the DX system. When cooling is required, the three-way modulating valve and water regulating valve direct glycol (from the heat rejection loop) to the Econ-O-Coil located upstream of the evaporator coil, to the condenser, or to both.

The GLYCOOL system contains all the standard features of a glycol cooled system plus the following.

GLYCOOL System—Standard Features

Comparative Temperature Monitor

A solid-state temperature monitor compares the room air temperature and entering glycol temperature. When air temperature is higher than glycol temperature, the monitor communicates to the microprocessor control that "free-cooling" is available.

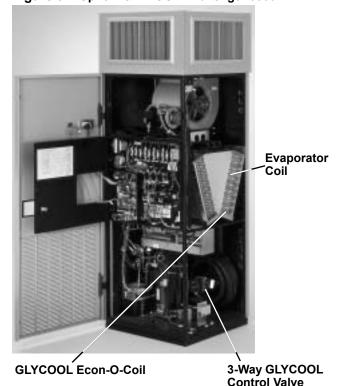
GLYCOOL Coil

The GLYCOOL coil is strategically located in the return air stream of the environmental control system. This coil is designed for closed-loop applications using properly treated glycol solutions.

The air is first filtered before entering the coil and then is either precooled or totally cooled before entering the refrigeration coil. The glycol flow to the coil is controlled by a pre-piped modulating three-way valve. When supplied with a 45°F (7.2°C) glycol solution, the coil is sufficiently sized to offer the identical cooling capacity as is obtained during the refrigeration cycle of the compressor.

GLYCOOL Three-Way Control Valve

The GLYCOOL Three-Way Control Valve opens full anytime the temperature of the glycol solution is below room temperature, to take full advantage of all possible free cooling. As the outdoor ambient drops, the three-way control valve modulates the flow to the GLYCOOL coil. It maintains constant temperature in the room and includes operating linkage and electronic motor. Unlike other valves of this nature, there is no over travel linkage or end switches to be adjusted.


Glycol-Regulating Valve

A head pressure operated glycol regulating valve accurately controls the condensing temperature and system capacity for various entering glycol temperatures. The valve has three-way action.

Drycooler

The Liebert manufactured drycooler is constructed of aluminum with a copper tube aluminum fin coil. The low profile design features multiple direct drive propeller type fans, balanced to the heat rejection load. An integral, factory wired and tested control panel reduces installation time.

Figure 9 Upflow GLYCOOL Challenger 3000

Glycol & GLYCOOL Cooled—Optional Equipment

High Pressure

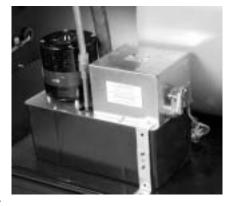
For high pressure applications, the GLYCOOL system can be equipped with components rated at 300 psig (2069 kPa).

Dual Pump Package

The dual pump package features two full size glycol pumps, each capable of providing sufficient flow for system operation. A flow switch will sense the loss of flow, should the lead pump fail, and automatically command the standby pump to start. The complete system includes dual pump housing, pumps, lead-lag switch and flow switch (for field installation). The dual pump package provides redundancy, protecting against costly downtime in the computer room.

Quiet-Line Drycoolers

Quiet-Line Drycoolers can help your facility meet the strictest noise codes, and do so at less cost than traditional drycoolers with acoustical shielding.


OPTIONAL EQUIPMENT—ALL SYSTEMS

Condensate Pump

The condensate pump, mounted in the bottom of most units, is used for condensate water only.

Complete with sump, motor and pump assembly and automatic control.

Standard model has single float. A dual float condensate pump which includes connections to unit, common alarm, unit shut-

down and one customer N/O contact is also available.

Table 1 Condensate pump capacity

		Cap	acity	Head	Pressure
Voltage	Hz	GPH	(I/s)	ft.	(kPa)
200/230	50	50	(189)	10	(30)
208/230	60	50	(189)	17	(51)
380/415	50	200	(757)	26	(78)
460	60	200	(757)	43	(128)

Steam Generating Humidifier

Clean, pure steam is generated in a disposable canister that is complete with supply and drain valves, electronic controls and steam distributor. The humidifier is provided with an automatic flush cycle to lengthen service life. An indicator on the Challenger 3000 monitor panel is activated when the canister should be changed.

Remote Temperature/ Humidity Sensors

The remote temperature/ humidity sensors permit monitoring room conditions from an external source. They are encased in an attractive case and are provided with a plug compatible shielded cable in virtually any length.

Disconnect Switch—Non-Locking

The disconnect operating handle protrudes through the front of the system for easy access. Meets NEC codes.

Disconnect Switch— Locking Type

The locking disconnect switch, mounted in the electrical panel, is connected to the safety lock dead front panel of the system and is interlocked mechanically. In



Disconnect Switch (Locking & Non-Locking)

this way the panel can't be opened until the switch is in the off position. And it complies with local codes as well as those of the NEC.

Adjustable Floor Stand

Available in heights from 9" to 24" (228.6 to 609.6mm) in 3" (76.2mm) increments, adjustable +1-1/2" (38.1mm). Allows for installation and connection of the Challenger 3000 prior to installation of the raised floor. A modular, field-installed turning vane can be added to the floor stand.

NOTE

Some options or combinations of options may result in reduced air flow. Consult factory for recommendations.

SCR Reheat

This reheat uses stainless steel elements and also includes the necessary sensors and controls to provide variable heat output to help maintain tighter control of room conditions, especially in lightly loaded applications. (Contact factory for available voltages.) Direct expansion units only.

High Efficiency Filter

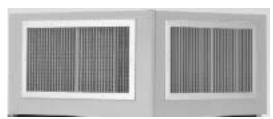
Four optional filters are available in lieu of standard package. A 4" (102mm) 20%, 30%, 40%-45% or 60%-65% filter may be specified. (Efficiency based on ASHRAE 52.1). 2" (51mm) 20% pre-filters may also be specified.

Heavy Gauge Industrial Panels

These 16 ga. panels include heavy duty gaskets to provide satisfactory system operation when located outside the conditioned space in less-than desirable environments.

High External Static Blowers

These blower/motor packages are available on upflow models where external static pressures are up to 2.0 inches (500 Pa) on 60 Hz units, and up to 1.5 inches (370 Pa) on 50 Hz units. These blowers are rigidly mounted for ducting directly to the blower housing.


(Consult the factory for specific applications.)

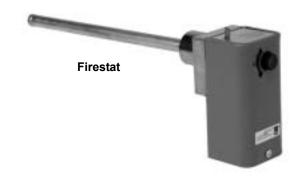
High Efficiency Motors

These motors replace the standard efficiency motors to provide increased energy savings during operation (consult factory for specific efficiencies).

Plenums

Standard height of 18" (457mm) with top duct connection or 2-way, 3-way or 4-way grille discharge styles available.

Plenum With Two-Way Grille


Smoke Detector

The smoke detector senses the return air, shuts down the unit upon detection, and sends visual and audible alarm. Dry contacts are available for a remote customer alarm. This smoke detector is not intended to function as or replace any room smoke detection system that may be required by local or national codes.

Supervised smoke detectors are also available as an option. Consult factory.

Firestat

The firestat senses return air temperature of the system. Upon sensing high temperatures, the environmental control system is shut down. Required by codes in certain areas.

Hot Water Reheat

Controlled by a 2-way solenoid valve from the microprocessor control panel, these economical reheats have the capacity to maintain dry bulb conditions when the system is calling for dehumidification. The system is completely pre-piped and includes a control valve and Y-strainer. The reheat coil is constructed of copper tubes and aluminum fins.

COMPREHENSIVE MONITORING SYSTEMS—OPTIONAL

You will find a full range of monitoring and control systems, communications modules designed to interface Liebert equipment with a variety of building management systems, plus stand-alone monitoring, control and leak detection devices.

Enterprise Monitoring Systems

SiteScan Web is a comprehensive critical systems monitoring solution dedicated to ensuring reliability through graphics, event management and data extrapolation. The standard Web interface allows users easy access from anywhere at anytime.

- Single- and multi-site applications.
- · Event management and unit control.
- Trend and historical data captures and reporting.
- Full ASHRAE BACnet compatibility.
- Java based.
- Windows 2000 and XP compatible.

SiteLink

Connectivity to building management systems using Modbus and BACnet.

Site I/O

Integrates sensors and contacts.

Site TPI

• Integrates non-Liebert equipment.

Network Monitoring Systems

The OpenComms $^{\text{TM}}$ family of products leverages one-to-one unit connections and your existing network for a comprehensive monitoring solution for distributed equipment.

OpenComms NIC

- Monitoring option available for Liebert precision air conditioning units.
- · Web interface for viewing and control.
- Modbus interface for building management systems.
- SNMP interface for network management systems.

OpenComms Nform

- Centralized monitoring of all Liebert SNMP enabled devices.
- Event and alarm management.
- Adaptable and configurable graphical user interface.
- Integration of third-party SNMP enabled devices through custom Liebert services.
- Windows NT, 2000 and XP compatible.

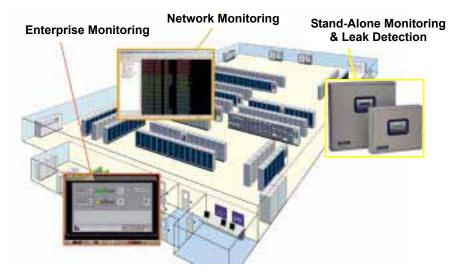
Stand-Alone Monitoring and Leak Detection Solutions

Autonomous microprocessor controlled modules are available to provide supervision, control and remote notification of Liebert equipment. These stand-alone devices include:

Contact Closure Alarm Panels

 Continuously monitor critical support equipment and instantly notify on alarm condition.

Autochangeover Control Panels


Sequence the operation of multiple environmental units.

Leak Detection Modules

 Provide quick detection and location of hazardous fluid leaks.

Discrete Output Interface Card

 Straightforward way to tie environmental units to a building management system or alarm panel.

COMPREHENSIVE MONITORING SOLUTIONS—OPTIONAL

SiteScan Web

SiteScan Web is a monitoring solution for critical environments that utilize a facility-view approach. The system enables communications from Liebert environmental and power units—as well as many other pieces of analog or digital equipment to a front end software package that provides monitoring, control and alarm management.

SiteScan monitoring gives you decision making power to effectively manage the equipment that is critical to your business. Designed with flexibility for large, complex systems as well as smaller, single-site facilities, the Liebert SiteScan line of products can provide real-time status and alarms.

SiteLink

The microprocessor-based module provides two-way communication between an existing building management system and up to 12 Liebert units via MOD-Bus or BACnet.

OpenComms Nform

OpenComms Nform centralizes the management of your distributed Liebert network equipment. Open-Comms Nform software solution combines full-scale monitoring with the use of the existing network infrastructure—so the cost of dedicated, out-of-band communications cabling is eliminated. It is both scalable and adaptable so it can grow as your systems expand and needs change. OpenComms Nform will monitor any Liebert SNMP device that supports a network interface, such as the OpenComms Web Card and the OpenComms Network Interface Card. Authenticated alarm management and event notification ensures that alarms are detected and acted upon, which allows problems to be quickly resolved.

OpenComms-NIC & OpenComms Web Card

The OpenComms Network Interface Card (OC-NIC) and OpenComms Web Card (OC-Web Card) provide Ethernet connectivity for Liebert equipment. Operating status and alarms are communicated via the network to external systems utilizing industry standard open protocols.

Environmental Discrete Outputs Card

The Environmental Discrete Outputs Card (ENV-DO) provides 16 discrete outputs, corresponding to status and major alarm conditions. These Form-C contact closures provide a straightforward means to connect Liebert Environmental units to Building Management Systems (BMS), I/O or alarm panels.

Remote Contact Monitor (RCM4)

LEDs display customized alarm indication for any dry contact input including alarms for Liebert environmental, power and UPS systems. The RCM4 monitors and displays four dry contact points.

Auto-Changeover Control

Auto-Changeover - RAC2-8

Up to eight environmental units can be automatically and centrally controlled for emergency switching and to balance unit runtime. The AC3 controls two or three units. The RAC2-8 controls two through eight units and has the ability to provide alarm notification to pagers.

Universal Monitor

Universal Monitor Large and Small Enclosures

The Universal Monitor keeps personnel on-site and at remote locations apprised of the status of equipment through local alarming and remote paging services. The panel will interface with anything that closes an electrical contact and any device

with a 4-20mA signal. To improve process efficiency and troubleshooting, the panel tracks data in an alarm log, an event log and a trend log. The Universal Monitor has a local LCD interface and a remote dial-up interface.

Leak Detection

Zone Leak Detection

Area Leak Detection

Zone detectors with cable or single point detectors provide fast and accurate indication of water in you critical space. These systems communicate with your

unit or with a separate monitoring system. Area water detection cable with distance measurement and monitoring protects your entire room. This system quickly and accurately calculates and displays the location of water on the cable, allowing you to promptly fin and correct a leak.

Temperature and Humidity Recorder

A seven-day temperature and humidity recorder permits close examination of computer room environment condition and can be used as a permanent record of the environmental control system's operation efficiency. The system includes pens, 100

recording charts; two bottles of recording ink (1 red ink and 1 blue ink).

AIR COOLED DATA-60 HZ

Table 2 Challenger 3000 air cooled data—60 Hz

System Type					Split Systems							
BU = Upflow BF = Downflow		Self-Co	ntained	l			r Prop-F sing Un		w/Indoor 0 Condens			
Indoor Unit	BF/BU	042A	BF/BU	067A	BF/BU	036E	BF/BU	060E	BF/BU			
* Net Capacity Data - Standard Air Volume	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW
80°F DB, 67°F WB (26.7°C DB, 19.4°C WB)	50% RH		1		1		ı		1		1	
Total	41,800	12.2	64,700	19.0	40,900	12.0	62,600	18.3	41,500	12.2	63,800	18.7
Sensible	34,400	10.1	53,800	15.8	34,100	10.0	53,000	15.5	38,500	11.3	53,400	15.6
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WE) 50% R	RH.									<u> </u>	
Total	38,900	11.4	60,500	17.7	38,200	11.2	58,300	17.1	40,100	11.7	59,600	17.5
Sensible	33,300	9.8	52,100	15.3	33,000	9.7	51,300	15.0	40,100	11.7	51,800	15.2
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB)	45% RH										<u> </u>	
Total	37,900	11.1	60,400	17.7	38,700	11.3	58,500	17.1	40,100	11.7	59,600	17.5
Sensible	35,700	10.5	60,400	17.7	38,700	11.3	58,500	17.1	40,100	11.7	59,600	17.5
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB)	50% RH										<u> </u>	
	37,300		58,100	17.0	36,700	10.8	55,900	16.4	38,800	11.4	57,200	16.8
Sensible	32,600	9.6	51,100	15.0	32,400	9.5	50,200	14.7	38,800	11.4	50,700	14.9
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WE) 45% R	H										
Total	37,900	11.1	58,300	17.1	37,300	10.9	56,400	16.5	38,800	11.4	57,500	16.8
Sensible	37,900	11.1	58,300	17.1	37,300	10.9	56,400	16.5	38,800	11.4	57,500	16.8
* Net Capacity Data - Optional Air Volume											<u> </u>	
80°F DB, 67°F WB (26.7°C DB, 19.4°C WB)	50% RH											
Total	42,400	12.4	64,000	18.8	41,500	12.2	61,800	18.1	41,100	12.0	63,000	18.5
Sensible	38,800	11.4	54,700	16.0	38,500	11.3	53,900	15.8	38,400	11.3	54,400	15.9
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WE	3) 50% R	RH.	1									
Total	40,900	12.0	59,700	17.5	40,100	11.7	57,700	16.9	39,800	11.7	58,800	17.2
Sensible	40,900	12.0	52,900	15.5	40,100	11.7	52,100	15.3	39,800	11.7	52,600	15.4
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB)	45% RH		1 - 1				, ,		, ,		1 ' 1	
	40,900	12.0	60,100	17.6	40,100	11.7	58,200	17.1	39,800	11.7	59,300	17.4
Sensible	40,900	12.0	60,100	17.6	40,100	11.7	58,200	17.1	39,800	11.7	59,300	17.4
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB)	50% RH		1									
Total	39,400	11.5	57,300	16.8	38,800	11.4	55,100	16.1	38,400	11.3	56,400	16.5
Sensible	39,400	11.5	51,800	15.2	38,800	11.4	50,900	14.9	38,400	11.3	51,500	15.1
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WE) 45% R	RH.	l .		1						<u>. </u>	
Total	39,400	11.5	57,900	17.0	38,800	11.4	56,000	16.4	38,400	11.3	57,100	16.7
Sensible	39,400	11.5	57,900	17.0	38,800	11.4	56,000	16.4	38,400	11.3	57,100	16.7
Fan Data (Blower A12x9AT)**			l .		1						<u>. </u>	
Std Air CFM (CMH)	1800 (3060)	2800 (4760)	1800 (3060)	2800 (4760)	1800 (3060)	2800 (4	4760)
Std Fan Motor HP (kW)	3/4 (.56)	1-1/2	(1.1)	3/4 (.56)	1-1/2	(1.1)	3/4 (.56)	1-1/2	(1.1)
Opt Air CFM (CMH)	2300 (3910)	3000 (2300 (3910)	3000 (5100)	2300 (3910)	3000 (5100)
Opt Fan Motor HP (kW)	1 (.	75)	2 (1		1 (.	75)	2 (1	.5)	1 (.	75)	2 (1	
Ext Static in. WG (Pa)	.3 (.3 (.3 (.3 (.3 (.3 (7	,
Evaporator Coil (BF: A-Frame; BU: V-FRAM	ΛE)	-			. `	-		-				
Face Area, ft. ² (m ²)	6.67	(.62)	6.67	(.62)	6.67	(.62)	6.67	(.62)	6.67	(.62)	6.67 ((.62)
Rows	3	• •	4	• •	3		4	, ,	3	• •	4	` '
Face Velocity - FPM (m/s)	255 ((1.3)	405 ((2.1)	255 ((1.3)	405 (2.1)	255 ((1.3)	405 (2.1)
Electric Reheat 2 Stage (Stainless Steel, Fi				. ,	,,	. ,	\	,	, ,	. ,	(,
Capacity - BTU/H (kW) (includes motor heat)	33,40		56,200) (15)	33,40	0 (9)	56,200) (15)	33,40	0 (9)	56,200	(15)
Hot Water Reheat 180°F (82.2°C) E.W.T., 60		• •	•			_ ` ′				_ ` /		` '
Capacity - BTU/H (kW) (includes motor heat)			102,112				102,112		82,019		102,112	
Flow Rate - GPM (I/s)	5.0 (5.0 (5.0 (5.0 (5.0 (5.0 (.	
Pressure drop, ft (kPa)	19.1 (19.2 (19.1 (19.2 (19.1 (19.2 (
* The not canacity data has fan meter heat fa	•				,							

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 72°F (22.2°C) & 50% RH is the standard rating for ASHRAE 127-2001.

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

Table 2 Challenger 3000 air cooled data—60 Hz (continued)

System Type			Split Systems						
BU = Upflow BF = Downflow		ntained	w/Outdoor Condens	Prop-Fan Sing Unit	w/Indoor Centrifugal Condensing Unit				
Indoor Unit	BF/BU 042A	BF/BU 067A	BF/BU 036E	BF/BU 060E	BF/BU 036E	BF/BU 060E			
Infrared Humidifier - Standard									
Capacity - lbs/hr (kg/hr)	11 (5)	11 (5)	11 (5)	11 (5)	11 (5)	11 (5)			
kW	4.8	4.8	4.8	4.8	4.8	4.8			
Steam Generating Humidifier - Optional									
Capacity - lbs/hr (kg/hr)	11 (5)	11 (5)	11 (5)	11 (5)	11 (5)	11 (5)			
kW	3.9	3.9	3.9	3.9	3.9	3.9			
Filter Section - Efficiencies per ASHRAE 5	2.1 - Disposabl	е Туре							
20% Eff. available in 2" (51mm) - Standard, or other Optional 4" (102mm) Eff. are: 30%, 40-4	Optional 4" (102 5%, 60-65%	2mm) Depths							
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5			
Nominal Size - mm	724 x 749	724 x 749	724 x 749	724 x 749	724 x 749	724 x 749			
Effective Surface Area, ft ² (m ²)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)			
Connection Sizes Challenger 3000 Unit									
Liquid Line	3/8 OD CU	1/2 OD CU	5/8 - 18 Female #6 QC	1/2 OD CU	5/8 - 18 Female #6 QC	1/2 OD CU			
Hot Gas Line	5/8 OD CU	7/8 OD CU	N/A	N/A	N/A	N/A			
Suction Line	N/A	N/A	1-1/8 - 12 Female #11 QC	1-1/8 OD CU	1-1/8 - 12 Female #11 QC	1-1/8 OD CU			
Humidifier Supply Line	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU			
Condensate Drain Line	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT			
Condenser Air 95°F (35°C) Ambient									
Model	CS_083	CS_083	PFH_42A	PFH_67A	MC_40A	MC_65A			
Motor HP (kW)	3/4 (.56)	3/4 (.56)	1/5 (.15)	1/2 (.37)	1 (.75)	2 (1.5)			
Face Area, ft ² (m ²)	11.1 (1.03)	11.1 (1.03)	7.7 (0.72)	10.5 (0.98)	4.6 (0.43)	7.3 (0.68)			
Rows	2	2	2	3	3	4			
Ext. Static in. WG (Pa)	N/A	N/A	N/A	N/A	0.5 (125)	0.5 (125)			
CFM (CMH)	6650 (11298)	6650 (11298)	3000 (5097)	4200 (7136)	2000 (3398)	3500 (5947)			
Liquid Line Connection	5/8 OD CU	5/8 OD CU	5/8 - 18 Male #6 QC 1/2 OD CU 5/8 - 18 Male #6 QC		1/2 OD CU				
Hot Gas Connection	7/8 OD CU	7/8 OD CU	N/A	N/A	N/A	N/A			
Suction Line Connection	N/A	N/A	1-1/8 - 12 Male #11 QC	1-1/8 OD CU	1-1/8 - 12 Male #11 QC	1-1/8 OD CU			

AIR COOLED DATA-50 HZ

Table 3 Air cooled data—50 Hz

System Type								Split Sy	/stems	;		
BF = Downflow BU = Upflow		Self-Contained				Outdoor				Indoor C		
•						Condensing Unit			Condens BF/BU 035E			
Indoor Unit		J 040A		J 065A		J 035E						J 059E
* Net Capacity Data - Standard Air Volume		BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H
26.7°C DB, 19.4°C WB (80°F DB, 67°F WB)			40.0	100.000	44.0	40.000	10.1	04 700	44.0	00 700	40.0	00.400
Total		42,400		62,600		40,200	18.1	61,700	11.6	39,700	18.3	62,400
Sensible	10.0	34,200	14.9	51,000	9.8	33,400	14.9	50,700	9.7	33,200	14.9	50,900
23.9°C DB, 16.9°C WB (75°F DB, 62.5°F WB			47.4	I50 400	44.0	07.500	40.0	I50 700	40.0	00000	47.0	50.400
Total		39,500		58,400		37,500	16.6	56,700	10.8	36,900	17.0	58,100
Sensible		33,100	14.5	49,400	9.5	32,300	14.3	48,700	9.4	32,100	14.4	49,300
23.9°C DB, 16.1°C WB (75°F DB, 61°F WB)			40.7	F7 000	44.4	00 000	40.0	I50 000	44.0	07.400	40.0	F0 700
		38,500		57,000		38,000	16.6	56,600	11.0	37,400	16.6	56,700
Sensible		35,600	15.6	53,100	11.1	38,000	16.6	56,600	11.0	37,400	15.5	53,000
22.2°C DB, 15.5°C WB (72°F DB, 60°F WB)			16.4	FC 000	10 F	25 000	15.0	E2 000	10.2	25 200	16.0	EE 700
Total Sensible		37,800	16.4	56,000	10.5 9.3	35,900 31.700	15.8 13.9	53,900 47,500	10.3 9.2	35,200	16.3	55,700
	9.5	32,500	14.2	48,400	9.3	31,700	13.9	47,500	9.2	31,400	14.2	48,300
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F WB Total		36,900	16.4	56,000	10.7	36,600	15.9	54,200	10.5	36.000	16.3	55,700
	10.0	34,800	16.4	56.000	10.7	36,600	15.9	54,200	10.5	36,000	16.3	55,700
Sensible		34,000	10.4	36,000	10.7	30,000	15.9	54,200	10.5	36,000	10.3	55,700
* Net Capacity Data - Optional Air Volum 26.7°C DB, 19.4°C WB (80°F DB, 67°F WB)												
Total		N/A	18.2	62,000	N/A	N/A	17.9	61,200	N/A	N/A	18.1	61.700
Sensible	N/A	N/A	15.2	52,000	N/A	N/A	15.1	51,700	N/A	N/A	15.2	51,700
23.9°C DB. 16.9°C WB (75°F DB. 62.5°F WB			15.2	52,000	IN/A	IN/A	15.1	51,700	IN/A	IN/A	15.2	51,900
Total	,	N/A	16.9	57,700	N/A	N/A	16.4	56,100	N/A	N/A	16.8	57,400
Sensible	N/A	N/A	14.7	50,300		N/A	14.5	49,600	N/A	N/A	14.7	50,200
23.9°C DB, 16.1°C WB (75°F DB, 61°F WB)			17.7	30,300	IN/A	111/7	17.5	+3,000	14/74	111/7	17.7	30,200
Total		N/A	17.0	57,900	N/A	N/A	16.6	56,500	N/A	N/A	16.9	57,600
Sensible	N/A	N/A	17.0	57,900	N/A	N/A	16.6	56,500	N/A	N/A	16.9	57,600
22.2°C DB, 15.5°C WB (72°F DB, 60°F WB)			17.0	37,300	IN/A	111/7	10.0	30,300	14/74	111/7	10.3	37,000
Total		N/A	16.2	55,300	N/A	N/A	15.6	53,300	N/A	N/A	16.1	55,000
Sensible		N/A	14.4	49,200	N/A	N/A	14.2	48,400	N/A	N/A	14.4	49,100
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F WB			1 1.1	10,200	14// (14// (17.2	10,100	14// \	14// (10,100
Total	•	N/A	16.3	55,700	N/A	N/A	15.9	54,100	N/A	N/A	16.3	55,500
Sensible	N/A	N/A	16.3	55,700	N/A	N/A	15.9	54,100	N/A	N/A	16.3	55,500
Fan Data (Blower A12x9AT)**		1 477	10.0	00,700	14,7 (1 1,7,1	10.0	01,100	1 477 1	1 07 1	10.0	00,000
Std Air CMH (CFM)	3060	(1800)	4420	(2600)	3060	(1800)	4420	(2600)	3060	(1800)	4420	(2600)
Std Fan Motor kW (HP)		(1)		1-1/2)		(1000)		1-1/2)		5 (1)		1-1/2)
Opt Air CMH (CFM)		/A		(2800)		/A		(2800)		/A		(2800)
Opt Fan Motor kW (HP)		/A		5 (2)		/A		5 (2)		I/A		5 (2)
Ext Static Pa (in. WG)		(.3)		(.3)		(.3)		(.3)		(.3)		(.3)
Evaporator Coil (BF: A-Frame; BU: V-FR		(.0)	70	(.0)	70	(.0)	- 10	(.0)	- 10	(.0)	- 10	(.0)
Face Area m ² (ft ²)		6.67)	62 ((6.67)	62 (6.67)	62	(6.67)	62 ((6.67)	62 ((6.67)
Rows		3		4		3		4		3		4
Face Velocity - m/s (FPM)		(255)		(375)		-				-		(375)
Electric Reheat 2 Stage (Stainless Steel,				, ,	1.3	(255)	1.8	(375)	1.3	(255)	1.8	(3/3)
- :					0 (3/	100)	15 /5	6 200)	0 /2/	1 100)	15 /5	6 200)
Capacity-kW (BTU/H), includes motor heat Hot Water Reheat 82.2°C (180°F) E.W.T., 1		,100)		6,200) Options		(,100)		6,200)	•	1,100)		6,200)
Capacity-kW (BTU/H), includes motor heat												
Flow Rate - I/s (GPM)		(5.0)		(5.0)		(5.0)		(5.0)		(5.0)		(5.0)
Pressure drop - kPa (ft.)		(3.0)		(19.2)		(3.0)		(19.2)		(19.1)		(19.2)
* The net canacity data has fan motor heat fa		` ′		` '		` '		, ,		, ,		, ,

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 22.2°C (72°F) & 50% RH is the standard rating for ASHRAE 127-2001.

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

Table 3 Air cooled data—50 Hz (continued)

System Type			Split Systems						
BF = Downflow BU = Upflow		ntained		r Prop-Fan sing Unit		Centrifugal sing Unit			
Indoor Unit	BF/BU 040A	BF/BU 065A	BF/BU 035E	BF/BU 059E	BF/BU 035E	BF/BU 059E			
Infrared Humidifier - Standard									
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)			
kW	4.8	4.8	4.8	3 4.8 4.8		4.8			
Steam Generating Humidifier - Optional			•		•				
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)			
kW	3.9	3.9	3.9	3.9	3.9	3.9			
Filter Section - Efficiencies per ASHRAE	52.1 - Dispos	able Type							
20% Eff. available in 51mm (2") - Standard, other Optional 102mm (4") Eff. are: 30%, 40	or Optional 10 0-45%, 60-65%	2mm (4") Depth	ıs						
Nominal Size - mm	724 x 749	724 x 749	724 x 749	724 x 749	724 x 749	724 x 749			
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5			
Effective Surface Area - m ² (ft ²)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)			
Connection Sizes Challenger 3000 Unit			<u> </u>		<u> </u>				
Liquid Line	3/8 OD CU	1/2 OD CU	5/8 - 18 Female #6 QC	1/2 OD CU	5/8 - 18 Female #6 QC	1/2 OD CU			
Hot Gas Line	5/8 OD CU	7/8 OD CU	N/A	N/A	N/A	N/A			
Suction Line	N/A	N/A	1-1/8 -12 Female #11 QC	1-1/8 OD CU	1-1/8 -12 Female #11 QC	1-1/8 OD CU			
Humidifier Supply Line	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU			
Condensate Drain Line	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT			
Condenser Air 35°C (95°F) Ambient									
Model	CS_083	CS_083	PFH_41A	PFH_66A	MC_39A	MC_64A			
Motor kW (HP)	.56 (3/4)	.56 (3/4)	.15 (1/5)	.37 (1/2)	.75 (1)	1.5 (2)			
Face Area m ² (ft ²)	1.03 (11.1)	1.03 (11.1)	0.72 (7.7)	0.98 (10.5)	0.43 (4.6)	0.68 (7.3)			
Rows	2	2	2	3	3	4			
Ext. Static Pa (in. WG)	N/A	N/A	N/A	N/A	125 (0.5)	125 (0.5)			
CMH (CFM)	9429 (5550)	9429 (5550)	4248 (2500)	6116 (3600)	2800 (1650)	5947 (3500)			
Liquid Line Connection	5/8 OD CU	5/8 OD CU	5/8 - 18 Male #6 QC	1/2 OD CU	5/8 - 18 Male #6 QC	1/2 OD CU			
Hot Gas Connection	7/8 OD CU	7/8 OD CU	N/A	N/A	N/A	N/A			
Suction Line Connection	N/A	N/A	1-1/8 - 12 Male #11 QC	1-1/8 OD CU	1-1/8 - 12 Male #11 QC	1-1/8 OD CU			

WATER COOLED DATA-60 Hz

Table 4 Water cooled data—60 Hz

lable 4 Water cooled data—60 Hz								
System Type								
BF = Downflow BU = Upflow		Self-Co	ntained			Split S	ystems	
Indoor Unit	RF/RII	046WG	BF/BU	071WG	BF/BU		BF/BU	060F
* Net Capacity Data - Standard Air Volume	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW
80°F DB, 67°F WB (26.7°C DB, 19.4°C WB)			D 10/11		D.0///		D. 10/11	
	43,200	12.7	69,900	20.5	42,400	12.4	67,600	19.8
Sensible		10.2	55,700	16.3	34,600	10.1	54,900	16.1
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WB			00,100		- 1,000		0 1,000	
, , ,	40,100	11.7	65,200	19.1	39,300	11.5	63,100	18.5
Sensible	33,800	9.9	54,000	15.8	33,400	9.8	53,200	15.6
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB)	15% RH							
	39,000	11.4	63,600	18.6	38,200	11.2	61,500	18.0
Sensible		10.6	58,000	17.0	35,900	10.5	57,100	16.7
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB)								
	38,300	11.2	62,500	18.3	37,500	11.0	60,500	17.7
Sensible		9.7	53,000	15.5	32,700	9.6	52,100	15.3
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WB			04.400	47.0	1 00 000	44.0	F0.000	47.0
	37,400	11.0	61,100	17.9	38,200	11.2	59,200	17.3
Sensible	35,300	10.3	56,700	16.6	38,200	11.2	55,900	16.4
* Net Capacity Data - Optional Air Volume 80°F DB, 67°F WB (26.7°C DB, 19.4°C WB)	500/ DU							
, , , , , , , , , , , , , , , , , , , ,	44,000	12.9	69,200	20.3	43,100	12.6	67,100	19.7
Sensible		11.5	56,600	16.6	39,100	11.5	55,800	16.3
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WB		11.0	50,000	10.0	00,100	11.0	00,000	10.0
	40,900	12.0	64,600	18.9	40,000	11.7	62,500	18.3
Sensible	38,000	11.1	54,900	16.1	37,600	11.0	54,000	15.8
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB)			, , , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , ,	
	42,200	12.4	62,900	18.4	41,400	12.1	62,500	18.3
Sensible	42,200	12.4	59,000	17.3	41,400	12.1	62,500	18.3
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB)	50% RH							
	40,600	11.9	61,800	18.1	39,800	11.7	59,800	17.5
Sensible		11.9	53,700	15.7	39,800	11.7	52,900	15.5
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WB								
	40,600	11.9	61,900	18.1	39,800	11.7	60,100	17.6
Sensible	40,600	11.9	61,900	18.1	39,800	11.7	60,100	17.6
Fan Data (Blower A12x9AT)** Std Air CFM (CMH)	1000	30607	2000 /	4760\	1000	30607	2000 /	4760\
Std Fan Motor HP (kW)	1800 (3/4 (,	2800 (1-1/2		1800 (3/4 (2800 (4 1-1/2	
OptAir CFM (CMH)	2300 (3000 (2300 (3000 (
Opt Fan Motor HP (kW)	1 (.	,	2 (1		1 (.	,	2 (1	
Ext Static in. WG (Pa)	.3 (.3 (.3 (.3 (7	
Evaporator Coil (BF: A-Frame; BU: V-Frame		,	(,	.5 (,	(1	/
Face Area. ft. ² (m ²)	6.67	(.62)	6.67	(.62)	6.67	(.62)	6.67 ((.62)
Rows	3		4	• ,	3	-	4	. ,
Face Velocity - FPM (m/s)	255		405 (255		405 (
Electric Reheat 2 Stage (Stainless Steel, Fi		` '					`	•
Capacity - BTU/H (kW) (includes motor heat)	33,40	00 (9)	56,200		33,40		56,200	
Hot Water Reheat 180°F (82.2°C) E.W.T., 60°	°F (15.5°C) E.A.T	Optional	(Includes	s standard	air volu	me & optio	onal fan
motor HP)					_			
Capacity - BTU/H (kW) (includes motor heat)	82,019		102,112		82,019		102,112	,
Flow Rate - GPM (I/s)	5.0 (5.0 (5.0 (5.0 (
Pressure drop, ft (kPa)	19.1 (19.2 (19.1 (57.1)	19.2 (57.4)
Hot Gas Reheat - Optional (Includes standa					40.000	(40.5)	E4 000	(40.4)
Capacity - BTU/H (kW) (includes motor heat) * The net capacity data has fan motor heat factored	42,600	, ,	54,900	. ,	42,600		54,900	

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 72°F (22.2°C) & 50% RH is the standard rating for ASHRAE 127-2001.

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

Table 4 Water cooled data—60 Hz (continued)

System Type				
BF = Downflow BU = Upflow			Split Sy	rstems
Indoor Unit	BF/BU 046WG	BF/BU 071WG	BF/BU 036E	BF/BU 060E
Infrared Humidifier - Standard	21720010110	2.7200.110	21720 0002	2.720 0002
Capacity - Ibs/hr (kg/hr)	11 (5)	11 (5)	11 (5)	11 (5)
kW	4.8	4.8	4.8	4.8
Steam Generating Humidifier - Optional				
Capacity - lbs/hr (kg/hr)	11 (5)	11 (5)	11 (5)	11 (5)
kW	3.9	3.9	3.9	3.9
Filter Section - Efficiencies per ASHRAE 52				
20% Eff. available in 2" (51mm) - Standard, or other Optional 4" (102mm) Eff. are: 30%, 40-45	Optional 4" (102mm			
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5
Nominal Size - mm	724 x 749	724 x 749	724 x 749	724 x 749
Effective Surface Area, ft ² (m ²)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)	24.1 (2.2)
Water Regulating Valve ¹			L.	
Size - In	3/4	1	3/4	1
Water Requirements (Coaxial Condenser)	-	-	MC_44W	MC_69W
THR - BTU/H (kW) @ 75°F (22.2°C), 50% RH	51,000 (14.9)	82,000 (24.0)	50,500 (14.8)	81100 (23.8)
65°F (18.3°C) EWT - 105°F (40.6°C) Cond Ten		0=,000 (=)	33,333 (1.1.5)	01.00 (20.0)
Flow Rate GPM (I/s)	2.0 (.13)	5.5 (.35)	2.0 (.13)	5.4 (.34)
Pressure Drop ft (kPa)	0.7 (2.1)	2.0 (6.0)	0.8 (2.4)	2.7 (8.1)
75°F (23.9°C) EWT - 105°F (40.6°C) Cond Ten		- ()	()	(- /
Flow Rate GPM (I/s)	3.8 (.24)	7.8 (.49)	3.7 (.24)	7.6 (.48)
Pressure Drop ft (kPa)	1.9 (5.7)	3.8 (11.3)	2.3 (6.9)	5.1 (15.2)
85°F (29.4°C) EWT - 110°F (43.3°C) Cond Ten	np			
Flow Rate GPM (I/s)	5.4 (.34)	10.1 (.64)	5.3 (.33)	9.7 (.61)
Pressure Drop ft (kPa)	3.5 (10.4)	5.9 (17.6)	4.4 (13.1)	8.1 (24.2)
Connection Sizes Challenger 3000 Unit				
Condenser Supply	7/8 OD CU	1-1/8 OD CU	-	-
Condenser Return	7/8 OD CU	1-1/8 OD CU	-	-
Liquid Line	-	-	5/8 - 18 Female #6 QC	1/2 OD CU
Suction Line	-	-	1-1/8 - 12 Female #11 QC	1-1/8 OD CU
Humidifier Supply Line	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU
Condensate Drain Line	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT
Connection Sizes Condensing Unit				
Condenser Supply	-	ı	7/8 OD CU	1-1/8 OD CU
Condenser Return	-	-	7/8 OD CU	1-1/8 OD CU
Liquid Line	-	-	5/8 - 18 Male #6 QC	1/2 OD CU
Suction Line	-	-	1-1/8 - 12 Male #11 QC	1-1/8 OD CU

¹⁾ Self-contained unit pressure drops based on 2-way valve with bypass. Split system unit pressure drops based on 2- or 3-way valve.

WATER COOLED DATA-50 Hz

Table 5 Water cooled data—50 Hz

Table 5 Water cooled data—50 Hz								
System Type		-	-					-
BF = Downflow								
BU = Upflow							LOFOE	
Indoor Unit * Net Capacity Data - Standard Air Volume	kW	BTU/H	BF/BU 070WG		kW BTU/H			J 059E
26.7°C DB, 19.4°C WB (80°F DB, 67°F WB) 5		вто/п	kW	BTU/H	KVV	Б10/П	kW	BTU/H
Total	13.0	44,300	20.0	68,400	12.4	42,300	19.4	66,100
Sensible	10.2	34,900	15.6	53,100	10.0	34,200	15.3	52,300
23.9°C DB, 16.9°C WB (75°F DB, 62.5°F WB)			10.0	55,100	10.0	34,200	10.0	32,300
Total	12.1	41,200	18.6	63,500	11.4	38,900	18.0	61,400
Sensible	9.9	33,800	15.1	51,500	9.6	32,900	14.8	50,600
23.9°C DB, 16.1°C WB (75°F DB, 61°F WB) 4		,		, , , , , , ,		- ,		,
Total	11.7	40,000	18.1	61,800	11.0	37,700	17.5	59,800
Sensible	10.6	36,200	16.1	55,100	10.3	35,300	15.9	54,300
22.2°C DB, 15.5°C WB (72°F DB, 60°F WB) 5								
Total	11.5	39,300	17.8	60,700	10.8	37,000	17.2	58,700
Sensible	9.7	33,100	14.8	50,400	9.4	32,100	14.5	49,600
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F WB			4=0	T 50 000 T	44.0		40.0	
Total	11.2	38,300	17.3	59,200	11.0	37,700	16.8	57,400
Sensible * Net Capacity Data - Optional Air Volume	10.4	35,400	15.8	53,900	11.0	37,700	15.6	53,100
26.7°C DB, 19.4°C WB (80°F DB, 67°F WB) 5	:00/. DU							
Total	N/A	N/A	19.8	67,700	N/A	N/A	19.2	65,400
Sensible	N/A	N/A	15.0	54,100	N/A	N/A	15.6	53,200
23.9°C DB, 16.9°C WB (75°F DB, 62.5°F WB)			10.0	01,100	1071	1 1,7 1	10.0	00,200
Total	N/A	N/A	18.4	62,900	N/A	N/A	17.8	60,800
Sensible	N/A	N/A	15.4	52,400	N/A	N/A	15.1	51,500
23.9°C DB, 16.1°C WB (75°F DB, 61°F WB)			I.	1				
Total	N/A	N/A	17.9	61,200	N/A	N/A	17.3	59,200
Sensible	N/A	N/A	16.5	56,200	N/A	N/A	16.2	55,400
22.2°C DB, 15.5°C WB (72°F DB, 60°F WB) 5								
Total	N/A	N/A	17.6	60,100	N/A	N/A	17.0	58,100
Sensible	N/A	N/A	15.0	51,200	N/A	N/A	14.8	50,400
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F WB)			17.2	E0 700	N/A	N/A	17 1	E0 200
Total Sensible	N/A N/A	N/A N/A	16.1	58,700 55,000	N/A N/A	N/A N/A	17.1 17.1	58,200 58,200
Fan Data (Blower A12x9AT)**	IN/A	IN/A	10.1	33,000	IN/A	IN/A	17.1	30,200
Std Air CMH (CFM)	3060	(1800)	4420	(2600)	3060	(1800)	4420	(2600)
Std Fan Motor kW (HP)		3060 (1800) 4420 (2600) .75 (1) 1.1 (1-1/2)			.75 (1)		1.1 (1-1/2)	
OptAir CMH (CFM)		N/A 4760 (2800)		N/A		4760 (2800)		
Opt Fan Motor kW (HP)	N	N/A 1.5 (2)		N/A		1.5 (2)		
Ext Static Pa (in. WG)		(.3)	75	(.3)	75	(.3)	75	(.3)
Evaporator Coil (BF: A-Frame; BU: V-Frame								
Face Area m ² (ft ²)	.62 (6.67)	.62 ((6.67)	.62 (6.67)	.62 (6.67)
Rows	3 4		4	3		4		
Face Velocity - m/s (FPM)	1.3 (255) 1.9 (375)		1.3 (255)		1.9	(375)		
Electric Reheat 2 Stage (Stainless Steel, Fig.								
Capacity - kW (BTU/H) (includes motor heat)		,100)		6,200)		1,100)		6,200)
Hot Water Reheat 82.2°C (180°F) E.W.T., 15. motor HP)	5°C (60°F	F) E.A.T	Optional	l (Includes	standar	d air volui	ne & opt	ional fan
Capacity - kW (BTU/H) (includes motor heat)	24.1 (8	32,019)	29.4 (1	00,539)	24.1 (8	32,019)	29.4 (1	00,539)
Flow Rate - I/s (GPM)		(5.0)		(5.0)	.32 (5.0)		.32 (5.0)	
Pressure drop - kPa (ft.)		(19.1)		(19.2)	57.1 (19.1)			(19.2)
Hot Gas Reheat - Optional (Includes standa	rd air vo	lume & o						
Capacity - kW (BTU/H) (includes motor heat)		12,600)	,	51,300)		12,600)		51,300)
* The net capacity data has fan motor heat factored	in for all ra	tings and th	e enterina	air condition	of 22 2°C	(72°F) & 50°	% RH is th	e standard

The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 22.2°C (72°F) & 50% RH is the standard rating for ASHRAE 127-2001.

^{*} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

Table 5 Water cooled data—50 Hz (continued)

System Type	<u> </u>					
BF = Downflow BU = Upflow	Self-Co	ntained	Split Systems			
Indoor Unit	BF/BU 045WG	BF/BU 045WG BF/BU 070WG		BF/BU 059E		
Infrared Humidifier - Standard		<u> </u>	<u>'</u>			
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)		
kW	4.8	4.8	4.8	4.8		
Steam Generating Humidifier - Optional		•	1			
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)		
kW	3.9	3.9	3.9	3.9		
Filter Section - Efficiencies per ASHRAE 52	.1 - Disposable Ty	/ре				
20% Eff. available in 51mm (2") - Standard, or other Optional 102mm (4") Eff. are: 30%, 40-45	Optional 102mm (4' %, 60-65%) Depths				
Nominal Size - mm	724 x 749	724 x 749	724 x 749	724 x 749		
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5		
Effective Surface Area - m ² (ft ²)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)		
Water Regulating Valve ¹		l	1.			
Size - In	3/4	1	3/4	1		
Water Requirements (Coaxial Condenser)			MC 43W	MC 68W		
THR - kW (BTU/H) @ 22.2°C (75°F), 50% RH	15.4 (52,400)	23.8 (81,200)	15.0 (51100)	23.2 (79,200)		
18.3°C (65°F) EWT - 40.6°C (105°F) Cond Tem		20.0 (01,200)	10.0 (01100)	20.2 (70,200)		
Flow Rate I/s (GPM)	.14 (2.2)	.34 (5.4)	.13 (2.0)	.33 (5.2)		
Pressure Drop kPa (ft)	2.4 (0.8)	5.7 (1.9)	2.4 (0.8)	7.8 (2.6)		
23.9°F (75°F) EWT - 40.6°C (105°F) Cond Tem		o ()	(0.0)	(=)		
Flow Rate I/s (GPM)	.25 (4.0)	.48 (7.6)	.24 (3.8)	.47 (7.4)		
Pressure Drop kPa (ft)	6.3 (2.1)	10.7 (3.6)	7.2 (2.4)	14.3 (4.8)		
29.4°C (85°F) EWT - 43.3°C (110°F) Cond Tem		- (/	, ,	- (- /		
Flow Rate I/s (GPM)	.36 (5.7)	.61 (9.7)	.34 (5.4)	.59 (9.4)		
Pressure Drop kPa (ft)	11.3 (3.8)	16.7 (5.6)	13.7 (4.6)	22.7 (7.6)		
Connection Sizes Challenger 3000 Unit	· ·	, ,		, ,		
Condenser Supply	7/8 OD CU	1-1/8 OD CU	-	-		
Condenser Return	7/8 OD CU	1-1/8 OD CU	-	-		
Liquid Line	-	-	5/8 - 18 Female #6 QC	1/2 OD CU		
Suction Line	-	-	1-1/8 - 12 Female #11 QC	1-1/8 OD CU		
Humidifier Supply Line	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU		
Condensate Drain Line	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT		
Connection Sizes Condensing Unit						
Condenser Supply	-	-	7/8 OD CU	1-1/8 OD CU		
Condenser Return	-	-	7/8 OD CU	1-1/8 OD CU		
Liquid Line	-	-	5/8 - 18 Male #6 QC	1/2 OD CU		
Suction Line	-	-	1-1/8 - 12 Male #11 QC	1-1/8 OD CU		

¹⁾ Self-contained unit pressure drops based on 2-way valve with bypass. Split system unit pressure drops based on 2- or 3-way valve.

GLYCOL COOLED/GLYCOOL DATA-60 Hz

Table 6 Glycol Cooled/GLYCOOL Data—60 Hz

System Type	Glycol Cooled GLYCOOL							OOL		
BF or BE = Downflow BU or BK = Upflow		Self-Contained Split Systems						Sel Conta		
Indoor Unit	BF/BU 0			71WG			BF/BU	060E	BE/BK	
* Net Capacity Data - Standard Air Volume	BTU/H	kW	BTU/H	kW	BTU/H		BTU/H	kW	BTU/H	
80°F DB, 67°F WB (26.7°C DB, 19.4°C WB) 50°		1								
Total		11.2	62,300	18.3	37,900	11.1	60,900	17.8	59,300	17.4
Sensible		9.7	52,900	15.5	33,000	9.7	52,400	15.4	51,000	14.9
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WB) 5				1						
Total	35,800	10.5	58,300	17.1	35,400	10.4	57,100	16.7	55,400	16.2
Sensible	,	9.4	51,300	15.0	31,900	9.3	50,800	14.9	49,300	14.4
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB) 45°										
Total	,	10.7	58,500	17.1	36,100	10.6	57,300	16.8		16.0
Sensible	,	10.7	58,500	17.1	36,100	10.6	57,300	16.8	54,500	16.0
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB) 50°		1400	FC 000	1 40 4	22.000		F 4 700	40.0	F0 400	1450
Total	,	10.0	56,000	16.4	33,900	9.9	54,700	16.0	53,100	15.6
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WB) 4	31,400	9.2	50,200	14.7	31,200	9.1	49,700	14.6	48,300	14.2
	35,200	10.3	56,500	16.6	34,800	10.2	55,300	16.2	52.500	15.4
Sensible		10.3	56,500	16.6	34,800	10.2	55,300	16.2	52,500	15.4
* Net Capacity Data - Optional Air Volume	55,200	1 10.0	55,500	10.0	5 7,000		55,555	. 0.2	52,000	1.0.7
80°F DB, 67°F WB (26.7°C DB, 19.4°C WB) 50°	% RH									
	40,100	11.7	61,600	18.0	39,900	11.7	60,100	17.6	N/A	N/A
Sensible	40,100	11.7	53,800	15.8	39,900	11.7	53,300	15.6	N/A	N/A
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WB) 5						•				
Total	,	11.0	57,600	16.9	37,400	11.0	56,200	16.5	N/A	N/A
	37,700	11.0	52,100	15.3	37,400	11.0	51,600	15.1	N/A	N/A
75°F DB, 61°F WB (23.9°C DB, 16.1°C WB) 45°										
Total	- ,	11.0	58,100	17.0	37,400	11.0	56,900	16.7	N/A	N/A
Sensible		11.0	58,100	17.0	37,400	11.0	56,900	16.7	N/A	N/A
72°F DB, 60°F WB (22.2°C DB, 15.5°C WB) 50°		10.6	55,200	16.2	35,900	10.5	53,900	15.8	N/A	N/A
Total Sensible		10.6	50,900	14.9	35,900	10.5	50,400	14.8	N/A	N/A
72°F DB, 58.6°F WB (22.2°C DB, 14.8°C WB) 4		10.0	30,900	14.5	33,900	10.5	30,400	14.0	IN/A	IN/A
Total		10.6	56,000	16.4	35,900	10.5	54,900	16.1	N/A	N/A
Sensible		10.6	56,000	16.4	35,900	10.5	54,900	16.1	N/A	N/A
GLYCOOL Coil Sensible Capacity	,	1	,		,		- ,	-		
75°F DB, 62.5°F WB (23.9°C DB, 16.9°C WB) 4	5°F (10°C) EGT							42,100	12.3
Fan Data (Blower A12x9AT)**								L. C.		
Std Air CFM (CMH)	1800 (3		2800 (4		1800 (3		2800 (4		2800 (4	
Std Fan Motor HP (kW)	3/4 (.		1-1/2 (3/4 (.		1-1/2 (2 (1.	
Opt Air CFM (CMH)	2300 (3		3000 (5		2300 (3		3000 (5	,	N/A	
Opt Fan Motor HP (kW)	1 (.7		2 (1.		1 (.7		2 (1.		N/A	
Ext Static in. WG (Pa)	.3 (7	5)	.3 (7	5)	.3 (7	5)	.3 (7	٥)	.3 (7	5)
Evaporator Coil (BF: A-Frame; BU: V-FRAME)	6.67 (62)	6.67 (.	62)	6.67 (.	62)	6.67 (.	62)	6.67 (62)
Face Area, ft ² (m ²)				.02)	-	.02)	·	02)		.02)
Rows	3		405 () 1\	3	1.2)	405 (3	11)	405 () 1\
Face Velocity - FPM (m/s) 255 (1.3) 405 (2.1) 255 (1.3) 405 (2.1) 405 (2.1) Electric Reheat 2 Stage (Stainless Steel, Fin Tubular) - Standard										
Capacity - BTU/H (kW) (includes motor heat)	33,400		56,200	(15)	33,400) (9)	56,200	(15)	57,700	(15)
Hot Water Reheat 180°F (82.2°C) E.W.T., 60°F (15.5°C) E.A.T Optional (Includes standard air volume & optional fan motor HP)										
Capacity - BTU/H (kW) (includes motor heat)	82,019	(24.1)	102,112	(29.9)	82,019 ((24.1)	102,112	(29.9)	N/A	١
Flow Rate - GPM (I/s)	5.0 (.		5.0 (.3		5.0 (.3		5.0 (.3		N/A	
Pressure drop, ft (kPa)	19.1 (5		19.2 (5		19.1 (5	7.1)	19.2 (5	7.4)	N/A	4
Hot Gas Reheat - Optional (Includes standard										
Capacity - BTU/H (kW) (includes motor heat)	42,600	<u> </u>	54,900 (42,600 (<u> </u>	54,900 (N/A	
 The net capacity data has fan motor heat factored 	in for all ra	tings on	d tha antari	na air ca	ndition of	72°⊑ /2	2 2°C \ 8 E	00/2 DL	ic the etc	ndard

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 72°F (22.2°C) & 50% RH is the standard rating for ASHRAE 127-1988.

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

All above data is based on 40% ethylene glycol solution.

Table 6 Glycol Cooled/GLYCOOL Data—60 Hz (continued)

Infrared Humidifier - Standard Capacity - Ibs/hr (kg/hr)	LYCOOL
Inflator Unit	Self-
Infrared Humidifier - Standard	ontained
Capacity - Ibs/hr (kg/hr)	E/BK 061G
Steam Generating Humidifier - Optional 11 (5)	
Steam Generating Humidifier - Optional Capacity - Ibs/hr (kg/hr) 11 (5) 11 (11 (5)
Capacity - Ibs/hr (kg/hr)	4.8
Size - In	
Second S	11 (5)
20% Eff. available in 2" (51mm) - Standard, or Optional 4" (102mm) Depths other Optional 4" (102mm) Eff. are: 30%, 40-45%, 60-65% Nominal Size - inches 28.5 x 29.5 28.5 x 29.	3.9
20% Eff. available in 2" (51mm) - Standard, or Optional 4" (102mm) Depths other Optional 4" (102mm) Eff. are: 30%, 40-45%, 60-65% Nominal Size - inches 28.5 x 29.5 28.5 x 29.	
Other Optional 4" (102mm) Eff. are: 30%, 40-45%, 60-65% Nominal Size - inches 28.5 x 29.5	
Nominal Size - mm	
Effective Surface Area, ft² (m²) Glycol Regulating Valve Size - In Cv	8.5 x 29.5
Size - In 3/4 1 3/4 1	724 x 749
Size - In 3/4 1 3/4 1	24.1 (2.2)
Size - In 3/4 1 3/4 1 1	· /
Size - In	1
Size - In	'
CV	1
System Data*	13.9
Flow Rate GPM (I/s)	13.8
Unit Volume Gallons (I)	17 5 (1 1)
Pressure Drop, ft (kPa)	17.5 (1.1)
Drycooler 95°F (35°C) Ambient* DSF069-3PH DSF109-3PH DSF109-3P	4.0 (15.0)
Model Number	1.1 (152.5)
Volume Gallons (Liters) 2.4 (9.0) 4.9 (18.4) 2.4 (9.0) 4.9 (18.4) 4 Pressure Drop, ft (kPa) 2.6 (7.8) 2.3 (6.9) 3.3 (9.8) 2.4 (7.2) 3 Fan HP (kW) 3/4 (.56) <t< td=""><td>0400 001</td></t<>	0400 001
Pressure Drop, ft (kPa) 2.6 (7.8) 2.3 (6.9) 3.3 (9.8) 2.4 (7.2) 2.5 (7.8) 2.3 (6.9) 3.3 (9.8) 2.4 (7.2) 2.7 (7.2) </td <td></td>	
Fan HP (kW) Symbol Symbol	4.9 (18.4)
Expansion Tank Capacity - Gal (I) Glycol Pump HP - 3 phase (kW) 3/4 (.56)	2.3 (6.9)
Glycol Pump HP - 3 phase (kW) Head, ft (kPa) Drycooler Connections FPT Connection Sizes Challenger 3000 Unit Condenser Supply Condenser Return T/8 OD CU 1-1/8 OD CU	3/4 (.56)
Head, ft (kPa) 72 (214.8) 69 (205.9) 72 (214.8) 69 (205.9) 8	3.8 (33.1)
Drycooler Connections FPT	1.5 (1.1)
Connection Sizes Challenger 3000 Unit Condenser Supply 7/8 OD CU 1-1/8 OD CU - - 1-1 Condenser Return 7/8 OD CU 1-1/8 OD CU - - 1-1 Liquid Line - 5/8 - 18 Female 1/2 OD CU #6 QC - 1-1/8 - 12 - 1-1/8 - 12	88 (262.6)
Condenser Supply	2
Condenser Return 7/8 OD CU 1-1/8 OD CU 1-1/8 Liquid Line	
Liquid Line - 5/8 - 18 Female #6 QC - 1-1/8 - 12	1/8 OD CU
Liquid Line Female #6 QC - 1-1/8 - 12	1/8 OD CU
#6 QC - 1-1/8 - 12	-
- 1-1/8 - 12	
Suction Line Female 1-1/8 OD CLL	-
#11 QC	
	/4 OD CU
	3/4 FPT
Connection Sizes Condensing Unit	
Condenser Supply 7/8 OD CU 1-1/8 OD CU	-
Condenser Return 7/8 OD CU 1-1/8 OD CU	-
Liquid Line - 5/8 - 18 Male 1/2 OD CU	-
'	
- 1-1/8 - 12	-
Suction Line Male 1-1/8 OD CU	
* All above data is based on 40% ethylene glycol solution.	

^{*} All above data is based on 40% ethylene glycol solution.

GLYCOL COOLED/GLYCOOL DATA-50 Hz

System Type	Glycol Cooled GLYCOOL									
BF or BE = Downflo		on.								
BU or BK = Upflo		Self-Co				Split S				ained
Indoor Unit	BF/BU	045WG	BF/BU	070WG	BF/BI	U 035E	BF/B	U 059E	BE/B	₹ 058G
* Net Capacity Data - Standard Air Volum	e kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H	kW	BTU/H
26.7°C DB, 19.4°C WB (80°F DB, 67°F WB	50% RH									
Tot	al 11.3	38,400	17.7	60,400	10.9	37,200	17.3	59,000	16.8	57,400
Sensib		32,800	14.7	50,200	9.5	32,300	14.6	49,700	14.1	48,100
23.9°C DB, 16.9°C WB (75°F DB, 62.5°F V										
Tot		36,000	16.5	56,400	10.1	34,500	16.1	55,100	15.7	53,500
Sensib		31,800	14.2	48,600	9.1	31,200	14.1	48,100	13.7	46,600
23.9°C DB, 16.1°C WB (75°F DB, 61°F WI			40.5	1=0.000	100	105.000	10.0	1== 000	450	1=0.000
Tot		36,600	16.5	56,300	10.3	35,300	16.2	55,200	15.3	52,200
Sensib		36,600	16.5	56,300	10.3	35,300	16.2	55,200	15.3	52,200
22.2°C DB, 15.5°C WB (72°F DB, 60°F WI	•		15.0	I E 4 100	0.6	122.000	15.5	152 000	15.0	E4 200
Tot Sensib	_	34,500	15.9 13.9	54,100	9.6 8.9	32,900	15.5 13.8	52,800 47,100	15.0 13.4	51,300
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F V		31,100	13.9	47,600	0.9	30,400	13.0	47,100	13.4	45,600
Tot		35,300	15.9	54,300	9.9	33,900	15.6	53,200	14.7	50,300
Sensib		35,300	15.9	54,300	9.9	33,900	15.6	53,200	14.7	50,300
* Net Capacity Data - Optional Air Volum		100,000	. 5.5	0 .,000	1 0.0	00,000	. 5.5	100,200		30,000
26.7°C DB, 19.4°C WB (80°F DB, 67°F WI		Н								
Tot		N/A	17.5	59,700	N/A	N/A	17.1	58,300	N/A	N/A
Sensib		N/A	15.0	51,200	N/A	N/A	14.9	50,700	N/A	N/A
23.9°C DB, 16.9°C WB (75°F DB, 62.5°F \				, , , , ,	<u>l</u>			1 ,		Ţ
Tot		N/A	16.3	55,600	N/A	N/A	15.9	54,400	N/A	N/A
Sensib	e N/A	N/A	14.5	49,500	N/A	N/A	14.4	49,000	N/A	N/A
23.9°C DB, 16.1°C WB (75°F DB, 61°F WI	3) 45% R	H								
Tot		N/A	16.4	56,100	N/A	N/A	16.1	54,900	N/A	N/A
Sensib		N/A	16.4	56,100	N/A	N/A	16.1	54,900	N/A	N/A
22.2°C DB, 15.5°C WB (72°F DB, 60°F WI				_						
Tot		N/A	15.6	53,300	N/A	N/A	15.3	52,100	N/A	N/A
Sensib		N/A	14.2	48,400	N/A	N/A	14.0	47,900	N/A	N/A
22.2°C DB, 14.8°C WB (72°F DB, 58.6°F \			45.0	154.000	N1/A	1 N1/A	45.5	150,000	N1/A	N1/A
Tot		N/A	15.8	54,000	N/A	N/A	15.5	52,900	N/A	N/A
Sensib	e N/A	N/A	15.8	54,000	N/A	N/A	15.5	52,900	N/A	N/A
GLYCOOL Coil Sensible Capacity 23.9°C DB, 16.9°C WB (75°F DB, 62.5°C V	VD\ 40°C	/4E°E\ E	СТ						40,700	110
Fan Data (Blower A12x9AT)**	יוו נפיע	(45 F) E	G I						40,700	11.9
Std Air CMH (CFM)	3060	(1800)	4420	(2600)	3060	(1800)	4420	(2600)	4420	(2600)
Std Fan Motor kW (HP)		5 (1)		1-1/2)		5 (1)		(2000)		(2000) 5 (2)
Opt Air CMH (CFM)		I/A		(2800)		J/A		(2800)		/ <u>(2)</u> //A
Opt Fan Motor kW (HP)		I/A		5 (2)		I/A		5 (2)		//A
Ext Static Pa (in. WG)		(.3)		(.3)		(.3)		(.3)		(.3)
Evaporator Coil (BF: A-Frame; BU: V-Frame;		(- /		(- /		(- /		(- /		(- /
Face Area m ² (ft ²)		(6.67)	.62	(6.67)	.62	(6.67)	.62	(6.67)	.62 ((6.67)
Rows	+	3		4		3		4		4
Face Velocity - m/s (FPM)	1.3	(255)		(375)		(255)		(375)		(375)
Electric Reheat 2 Stage (Stainless Steel, Fin Tubular) - Standard										
Capacity - kW (BTU/H) (includes motor hear		1,100)		6,200)	9 (34	1,100)	15 (5	6,200)	15 (5	6,200)
Hot Water Reheat 82.2°C (180°F) E.W.T., motor HP)										
Capacity - kW (BTU/H) (includes motor hear) 24.1 (82,019)	29.4 (1	00,539)	24.1 (82,019)	29.4 (1	00,539)	N	/A
Flow Rate - I/s (GPM)	, ,	(5.0)		(5.0)		(5.0)		(5.0)		//A
Pressure drop - kPa (ft.)		(19.1)		(19.2)		(19.1)		(19.2)		/A
Hot Gas Reheat - Optional (Includes sta						/		·/		
Capacity - kW (BTU/H) (includes motor hea		42,600)		51,300)		42,600)	15.0 (51,300)	N	I/A
* The net capacity data has fan motor heat fact				•	,	,				

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 22.2°C (72°F) & 50% RH is the standard rating for ASHRAE 127-2001.

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

All above data is based on 40% ethylene glycol solution.

System Type		GLYCOOL					
BF or BE = Downflow				Self-			
BU or BK = Upflow	Jon Jontanioa			ystems	Contained		
Indoor Unit	BF/BU 045WG	BF/BU 070WG	BF/BU 035E	BF/BU 059E	BE/BK 058G		
Infrared Humidifier - Standard							
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)		
kW	4.8	4.8	4.8	4.8	4.8		
Steam Generating Humidifier - Optional							
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)	5 (11)	5 (11)	5 (11)		
kW	3.9	3.9	3.9	3.9	3.9		
Filter Section - Efficiencies per ASHRAE							
20% Eff. available in 51mm (2") - Standard, of	or Optional 102m	ım (4") Depths					
other Optional 102mm (4") Eff. are: 30%, 40-							
Nominal Size - mm	724 x 749	724 x 749	724 x 749	724 x 749	724 x 749		
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5	28.5 x 29.5		
Effective Surface Area - m ² (ft ²)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)	2.2 (24.1)		
Glycol Regulating Valve	l.				I		
Size - In	3/4	1	3/4	1	1		
Econo-Valve	-				l.		
Size - In	-	-	-	-	1		
Cv	_	-	-	-	13.9		
System Data*	_	-	MC 43WG	MC 68WG	-		
Flow Rate L/S (GPM)	.63 (10)	1.1 (17.5)	.71 (11.3)	1.3 (20)	1.1 (17.5)		
Unit Volume Liters (Gallons)	4.5 (1.2)	7.5 (2.0)	4.5 (1.2)	7.5 (2.0)	15.0 (4.0)		
Pressure Drop kPa (ft.)	42.4 (14.2)	56.4 (18.9)	66.8 (22.4)	111.9 (37.5)	152.5 (51.1)		
Drycooler 35°C (95°F) Ambient*	()	3311 (1313)	00:0 (==::)	(0)	10210 (0111)		
Model Number	DSF069-3PH	DSF109-3PH	DSF069-3PH	DSF109-3PH	DSO109-3PH		
Volume Liters (Gallons)	9.0 (2.4)	18.4 (4.9)	9.0 (2.4)	18.4 (4.9)	18.4 (4.9)		
Pressure Drop kPa (ft.)	8.7 (2.9)	6.9 (2.3)	10.7 (3.6)	8.7 (2.9)	6.9 (2.3)		
Fan kW (HP)	.56 (3/4)	.56 (3/4)	.56 (3/4)	.56 (3/4)	.56 (3/4)		
Expansion Tank Capacity Liters (Gallons)	33.1 (8.8)	33.1 (8.8)	33.1 (8.8)	33.1 (8.8)	33.1 (8.8)		
Glycol Pump kW - 3 phase (HP)	1.1 (1.5)	1.1 (1.5)	1.1 (1.5)	1.1 (1.5)	1.1 (1.5)		
Head kPa (ft.)	268.6 (90.0)	262.6 (88.0)	268.6 (90.0)	262.6 (88.0)	262.6 (88.0)		
Pump Suction & Discharge FPT	1-1/4 & 3/4	1-1/4 & 3/4	1-1/4 & 3/4	1-1/4 & 3/4	1-1/4 & 3/4		
Drycooler Connections FPT	1-1/4	2	1-1/4	2	2		
Connection Sizes Challenger 3000 Unit	1 1/-		1 1/4				
Condenser Supply	7/8 OD CU	1-1/8 OD CU		_	1-1/8 OD CU		
Condenser Return	7/8 OD CU	1-1/8 OD CU		_	1-1/8 OD CU		
Condenser Retain	170 00 00	1 1/0 02 00	5/8 - 18		- 170 05 00		
Liquid Line	_	_	Female	1/2 OD CU			
Liquid Linio			#6 QC	172 02 00			
			1-1/8 - 12		-		
Suction Line	_	_	Female	1-1/8 OD CU			
			#11 QC				
Humidifier Supply Line	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU	1/4 OD CU		
Condensate Drain Line	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT		
Connection Sizes Condensing Unit	1						
Condenser Supply	_	7/8 OD CU	1-1/8 OD CU	-	-		
Condenser Return	_	7/8 OD CU	1-1/8 OD CU	_	-		
	_	5/8 - 18 Male		_	_		
Liquid Line		#6 QC	1/2 OD CU				
Overtices Lines	-	1-1/8 - 12 Male	4 4/0 05 01:	-	-		
Suction Line		#11 QC	1-1/8 OD CU				
* All above data is based on 40% ethylene divod				ı	1		

^{*} All above data is based on 40% ethylene glycol solution.

CHILLED WATER DATA—60 Hz

Capacity Data BTU/H (kW) @ 45°F (7.2°C) EWT * Net Capacity Data - Standard Air Volume						
	andard Air Voi	ume				
Indoor Unit BF = Downflow						
BU = Upflow	BF/BU 068C	BF/BU 102C				
80°F DB, 67°F WB (26.7		VB) 50% RH				
Total BTU/H (kW)	56,800 (16.6)	98,100 (28.7)				
Sensible BTU/H (kW)	4,300 (1.3)	71,500 (20.9)				
Flow Rate GPM (L/S)	11.5 (0.7)	19.7 (1.2)				
Pressure Drop ft (kPa)	7.1 (21.2)	22.1 (65.9)				
75°F DB, 62.5°F WB (23						
Total BTU/H (kW)	41,300 (12.1)	72,900 (21.4)				
Sensible BTU/H (kW)	36,300 (10.6)	61,000 (17.9)				
Flow Rate GPM (L/S)	8.6 (0.5)	14.7 (0.9)				
Pressure Drop ft (kPa)	4.1 (12.2)	12.8 (38.2)				
75°F DB, 61°F WB (23.9						
Total BTU/H (kW)	40,100 (11.7)	68,200 (20.0)				
Sensible BTU/H (kW)	38,200 (11.2)	63,100 (18.5)				
Flow Rate GPM (L/S)	8.6 (0.5)	13.3 (0.8)				
Pressure Drop ft (kPa)	4.1 (12.2)	10.6 (31.6)				
72°F DB, 60°F WB (22.2	°C DB, 15.5°C \	NB) 50% RH				
Total BTU/H (kW)	33,700 (9.9)	59,900 (17.6)				
Sensible BTU/H (kW)	32,000 (9.4)	54,400 (15.9)				
Flow Rate GPM (L/S)	7.0 (0.4)	12.0 (0.8)				
Pressure Drop ft (kPa)	2.8 (8.4)	8.8 (26.3)				
72°F DB, 58.6°F WB (22	.2°C DB, 14.8°C	WB) 45% RH				
Total BTU/H (kW)	32,100 (9.4)	56,200 (16.5)				
Sensible BTU/H (kW)	32,100 (9.4)	55,300 (16.2)				
Flow Rate GPM (L/S)	6.6 (0.4)	11.1 (0.7)				
Pressure Drop ft (kPa)	2.5 (7.5)	7.6 (22.7)				
*Net Capacity - Optiona	I Air Volume					
80°F DB, 67°F WB (26.7	°C DB, 19.4°C \	NB) 50% RH				
Total BTU/H (kW)	68,500 (20.1)	102,300 (30.0)				
Sensible BTU/H (kW)	53,100 (15.6)	74,800 (21.9)				
Flow Rate GPM (L/S)	14.0 (0.9)	20.9 (1.3)				
Pressure Drop ft (kPa)	10.3 (30.7)	24.6 (73.4)				
75°F DB, 62.5°F WB (23)	.9°C DB, 16.9°C					
Total BTU/H (kW)	48,100 (14.1)	75,900 (22.2)				
Sensible BTU/H (kW)	43,700 (12.8)	63,700 (18.7)				
Flow Rate GPM (L/S)	9.5 (0.6)	15.5 (1.0)				
Pressure Drop ft (kPa)	4.9 (14.6)	14.1 (42.1)				
75°F DB, 61°F WB (23.9°	°C DB, 16.1°C \	NB) 45% RH				
Total BTU/H (kW)	47,300 (13.9)	71,200 (20.9)				
Sensible BTU/H (kW)	45,800 (13.4)	66,100 (19.4)				
Flow Rate GPM (L/S)	9.3 (0.6)	14.1 (0.9)				
Pressure Drop ft (kPa)	4.9 (14.6)	11.8 (35.2)				
72°F DB, 60°F WB (22.2°	°C DB, 15.5°C \	NB) 50% RH				
Total BTU/H (kW)	40,800 (12.0)	62,300 (18.3)				
Sensible BTU/H (kW)	39,200 (11.5)	56,800 (16.6)				
Flow Rate GPM (L/S)	8.5 (0.5)	12.7 (0.8)				
Pressure Drop ft (kPa)	4.0 (27.6)	9.8 (67.6)				
72°F DB, 58.6°F WB (22						
Total BTU/H (kW)	39,200 (11.5)	58,500 (17.1)				
Sensible BTU/H (kW)	39,200 (11.5)	57,700 (16.9)				
Flow Rate GPM (L/S)	8.1 (0.5)	11.7 (0.7)				
Pressure Drop ft (kPa)	3.7 (25.5)	8.4 (57.9)				
* The net capacity data has	fan motor heat fa	ctored in for all				

^{*} The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 72°F (22.2°C), 50% RH is the standard rating condition for ASHRAE 127-2001.

Indoor Unit							
BF = Downflo							
	ow BF/BU 068C	BF/BU 102C					
Fan Data (Blower A12x9AT							
Std Air CFM (CMH)	1800 (3060)	2800 (4760)					
Std Fan Motor HP (kW)	3/4 (.56)	1-1/2 (1.1)					
Opt Air CFM (CMH)	2300 (3910)	3000 (5100)					
Opt Fan Motor HP (kW)	1 (.75)	2 (1.5)					
Ext Static in. WG (Pa)	.3 (75)	.3 (75)					
Chilled Water Coil (BF: A-F	rame; BU: V-Fram	1e)					
Face Area, ft ² (m ²)	6.67 (.62)	6.67 (.62)					
Rows	3	4					
Face Velocity - FPM (m/s)	255 (1.3)	405 (2.1)					
Electric Reheat 2 Stage (St Standard	ainless Steel, Fin	Tubular) -					
Capacity - BTU/H (kW)		I					
(includes motor heat)	33,400 (9)	56,200 (15)					
Hot Water Reheat 180°F (82	2°C\ E.W.T. 60°I	 = (15.5°C)					
E.A.T. Optional (Includes s							
fan motor HP)							
Capacity - BTU/H (kW) (includes motor heat)	82,019 (24.1)	102,112 (29.9)					
Flow Rate - GPM (I/s)	5.0 (0.32)	5.0 (0.32)					
Pressure drop, ft (kPa)	19.1 (57.1)	19.2 (57.4)					
Infrared Humidifier - Standa		19.2 (37.4)					
Capacity - lbs/hr (kg/hr)	11 (5)	11 (5)					
kW	4.8	4.8					
Steam Generating Humidifi		4.0					
Capacity - lbs/hr (kg/hr)	11 (5)	11 (5)					
kW	3.9	3.9					
Filter Section - Efficiencies							
Type	pei Adilital 32.	i - Disposable					
20% Eff. available in 2" (51mr	m) Standard or O	ntional 4"					
(102mm) Depths; other Optio							
45%, 60-65%		. arc. 00 70, 40					
Nominal Size - inches	28.5 x 29.5	28.5 x 29.5					
Nominal Size - mm	724 x 749	724 x 749					
Effective Surface Area, ft2 (m	²) 24.1 (2.2)	24.1 (2.2)					
Connection Sizes Challeng	er 3000 Unit						
CW Supply	1-1/8 OD CU	1-1/8 OD CU					
CW Return	1-1/8 OD CU	1-1/8 OD CU					
Humidifier Supply	1/4 OD CU	1/4 OD CU					
Condensate Drain	3/4 FPT	3/4 FPT					
Control Valve							
Maximum design water pre	ssure 150 psi (10	34.3 kPa)					
Valve Actuator	Modulating	Modulating					
Sensors	Proportional	Proportional					
Valve Body	3-Way	3-Way					
Valve Size - inches	1	1					
Cv	11.6	11.6					
2-Way Valve (Optional) Close Off Pressure - PSI (kPa	86 (593)	86 (593)					
** NOTE: Data rated with 2" 20% ASHRAE filter. Some options or							

^{*} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

CHILLED WATER DATA-50 Hz

Capacity Data kW (BTU/H) @ 7.2°C (45°F) EWT						
* Net Capacity Data - Sta	ndard Air Volum	ie				
Indoor Unit						
BF = Downflow BU = Upflow	BF/BU 072C	BF/BU 101C				
26.7°C DB, 19.4°C WB (80						
Total kW (BTU/H)	16.6 (56,800)	27.5 (94,000)				
Sensible kW (BTU/H)	12.6 (43,000)	19.8 (67,500)				
Flow Rate L/S (GPM)	0.7 (11.5)	1.2 (19.7)				
Pressure Drop kPa (ft)	21.2 (7.1)	65.9 (22.1)				
23.9°C DB, 16.9°C WB (7						
Total kW (BTU/H)	12.1 (41,300)	20.4 (69,700)				
Sensible kW (BTU/H)	10.6 (36,300)	16.8 (57,500)				
Flow Rate L/S (GPM)	0.5 (8.6)	0.9 (14.7)				
Pressure Drop kPa (ft)	12.2 (4.1)	38.2 (12.8)				
23.9°C DB, 16.1°C WB (7						
Total kW (BTU/H)	11.3 (38,500)	19.0 (64,800)				
Sensible kW (BTU/H)	10.9 (37,100)	17.4 (59,500)				
Flow Rate L/S (GPM)	0.5 (7.6)	0.8 (13.3)				
Pressure Drop kPa (ft)	9.8 (3.3)	31.6 (10.6)				
22.2°C DB, 15.5°C WB (72						
Total kW (BTU/H)	9.9 (33,700)	16.7 (57,100)				
Sensible kW (BTU/H)	9.4 (32,000)	15.1 (51,400)				
Flow Rate L/S (GPM)	0.4 (7.0)	0.8 (12.0)				
Pressure Drop kPa (ft)	8.4 (2.8)	26.3 (8.8)				
22.2°C DB, 14.8°C WB (72	2°F DB 58 6°F W	/B) 45% RH				
Total kW (BTU/H)	9.4 (32,100)	15.7 (53,500)				
Sensible kW (BTU/H)	9.4 (32,100)	15.4 (52,400)				
Flow Rate L/S (GPM)	0.4 (6.6)	0.7 (11.1)				
Pressure Drop kPa (ft)	7.5 (2.5)	22.7 (7.6)				
*Net Capacity - Optional	Air Volume	()				
26.7°C DB, 19.4°C WB (80	O°F DB, 67°F WB) 50% RH				
Total kW (BTU/H)	N/A	28.8 (98,300)				
Sensible kW (BTU/H)	N/A	20.8 (70,900)				
Flow Rate L/S (GPM)	N/A	1.3 (20.9)				
Pressure Drop kPa (ft)	N/A	73.4 (24.6)				
23.9°C DB, 16.9°C WB (7						
Total kW (BTU/H)	N/A	21.3 (72,800)				
Sensible kW (BTU/H)	N/A	17.7 (60,300)				
Flow Rate L/S (GPM)	N/A	1.0 (15.5)				
Pressure Drop kPa (ft)	N/A	42.1 (14.1)				
23.9°C DB, 16.1°C WB (79	5°F DB, 61°F WB	3) 45% RH				
Total kW (BTU/H)	N/A	19.9 (67,900)				
Sensible kW (BTU/H)	N/A	18.3 (62,500)				
Flow Rate L/S (GPM)	N/A	0.9 (14.1)				
Pressure Drop kPa (ft)	N/A	35.2 (11.8)				
22.2°C DB, 15.5°C WB (72						
Total kW (BTU/H)	N/A	17.5 (59,600)				
Sensible kW (BTU/H)	N/A	15.8 (53,800)				
Flow Rate L/S (GPM)	N/A	0.8 (12.7)				
Pressure Drop kPa (ft)	N/A	29.2 (9.8)				
22.2°C DB, 14.8°C WB (72	2°F DB, 58.6°F W					
Total kW (BTU/H)	N/A	16.3 (55,800)				
Sensible kW (BTU/H)	N/A	16.1 (54,800)				
Flow Rate L/S (GPM)	N/A	0.7 (11.7)				
Pressure Drop kPa (ft)	N/A	25.1 (8.4)				
* The net capacity data has fa	an motor heat factor	ed in for all ratings				

The net capacity data has fan motor heat factored in for all ratings and the entering air condition of 22.2°C (72°F), 50% RH is the standard rating condition for ASHRAE 127-2001.

Indoor Unit		
BF = Downflow		
BU = Upflow		BF/BU 101C
Fan Data (Blower A12x9)		<u> </u>
Std Air CMH (CFM)	3060 (1800)	4420 (2600)
Std Fan Motor kW (HP)	.75 (1)	1.1 (1-1/2)
Opt Air CMH (CFM)	N/A	4760 (2800)
Opt Fan Motor kW (HP)	N/A	1.5 (2)
Ext Static Pa (in. WG)	75 (.3)	75 (.3)
Chilled Water Coil (BF: A	-Frame; BU: V-F	rame)
Face Area m ² (ft ²)	.62 (6.67)	.62 (6.67)
Rows	3	4
Face Velocity - m/s (FPM)		1.9 (375)
Electric Reheat 2 Stage (Stainless Steel,	Fin Tubular) -
Standard		
Capacity - kW (BTU/H)	9 (34,100)	15 (56,200)
(includes motor heat)	, , ,	
Hot Water Reheat 82.2°C		
E.A.T Optional (Include	es standard air v	olume &
optional fan motor HP)		
Capacity - BTU/H (kW)	24.1 (82,019)	29.4 (100,539)
(includes motor heat)		-
Flow Rate - I/s (GPM)	0.32 (5.0)	0.32 (5.0)
Pressure drop - kPa (ft.)	57.1 (19.1)	57.4 (19.2)
Infrared Humidifier - Star		E (44)
Capacity - kg/hr (lbs/hr)	5 (11)	5 (11)
kW	4.8	4.8
Steam Generating Humic		F (44)
Capacity - kg/hr (lbs/hr) kW	5 (11) 3.9	5 (11) 3.9
Filter Section - Efficienci		
Disposable Type	es pei ASHKAE	52.1 -
20% Eff. available in 51mm	(2") - Standard	or Ontional
102mm (4") Depths; other (Ontional 102mm (4	4") Fff are: 30%
40-45%, 60-65%	>puonai 10211111 (. , <u></u>
Nominal Size - mm	28.5 x 29.5	28.5 x 29.5
Nominal Size - inches	724 x 749	724 x 749
Effective Surface Area -		
m^2 (ft ²)	2.2 (24.1)	2.2 (24.1)
Connection Sizes Challe	nger 3000 Unit	
CW Supply	1-1/8 OD CU	1-1/8 OD CU
CW Return	1-1/8 OD CU	1-1/8 OD CU
Humidifier Supply	1/4 OD CU	1/4 OD CU
Condensate Drain	3/4 FPT	3/4 FPT
Control Valve	1	1
Maximum design water p	ressure 1034.4	kPa (150 PSI)
Valve Actuator	Modulating	Modulating
Sensors	Proportional	Proportional
Valve Body	3-WAY	3-WAY
Valve Size - inches	1	1
Cv	11.6	11.6
2-Way Valve (Optional)		
Close Off Pressure - kPa	593 (86)	593 (86)
(PSI)		

^{**} NOTE: Data rated with 2" 20% ASHRAE filter. Some options or combinations of options may result in reduced airflow. Consult factory for recommendations.

DIMENSIONAL DRAWINGS

Figure 10 Cabinet and floor planning dimensional data—Upflow (BU/BK) models

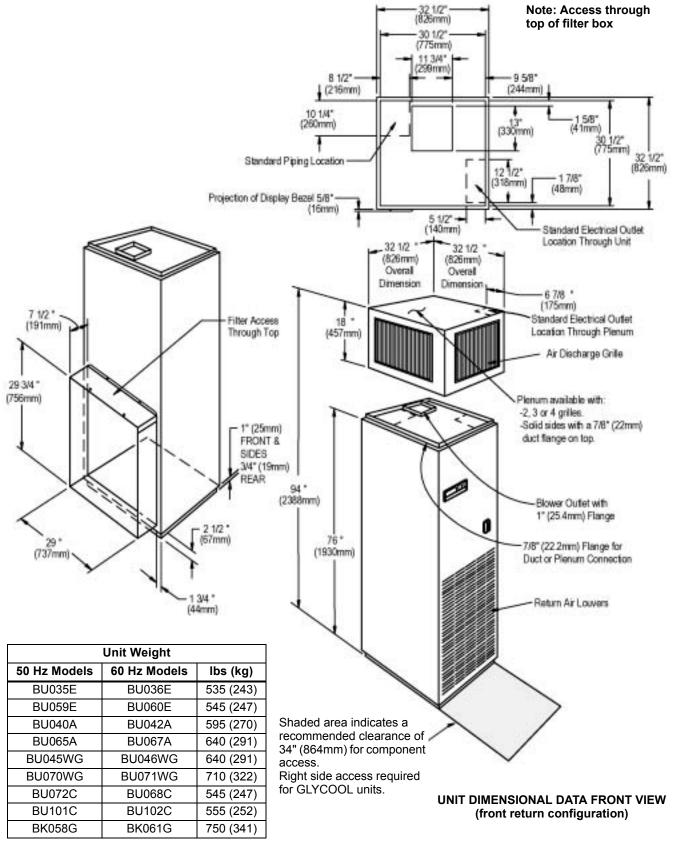
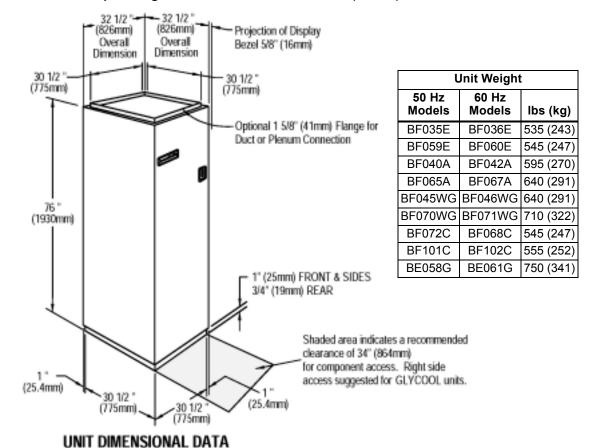
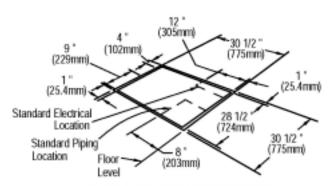
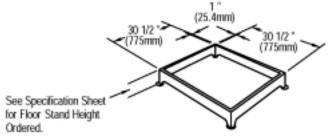





Figure 11 Cabinet and floor planning dimensional data—Downflow (BF/BE) models

FLOOR CUTOUT DIMENSIONS

OPTIONAL FLOOR STAND DIMENSIONAL DATA

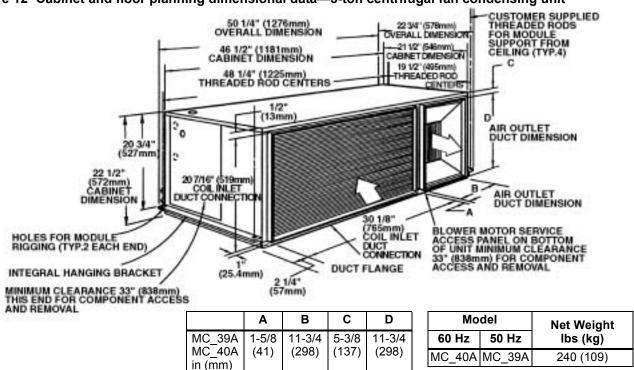


Figure 12 Cabinet and floor planning dimensional data—3-ton centrifugal fan condensing unit

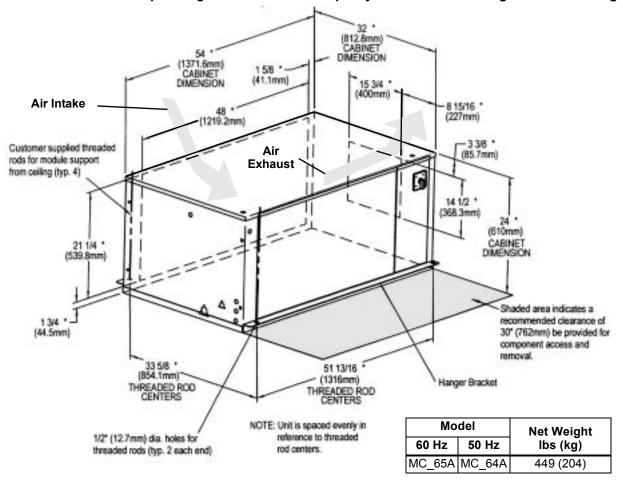
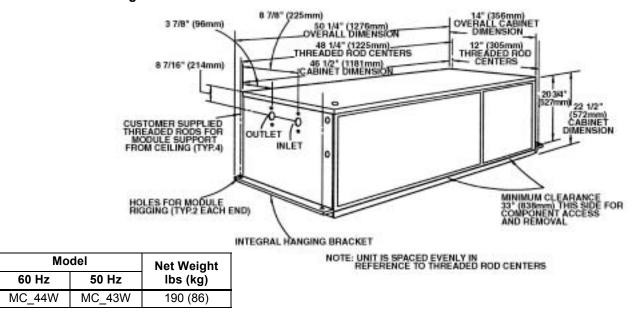
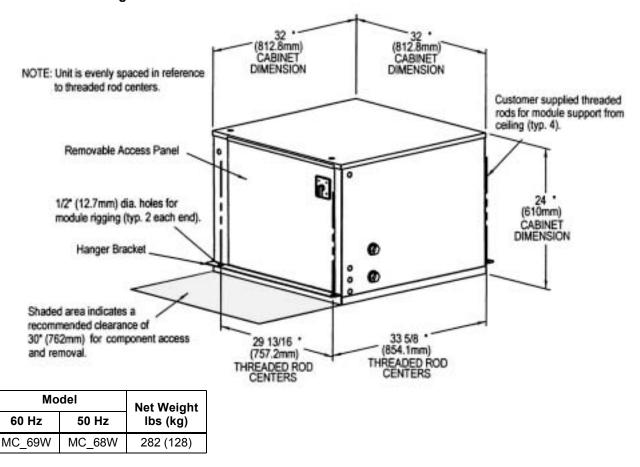
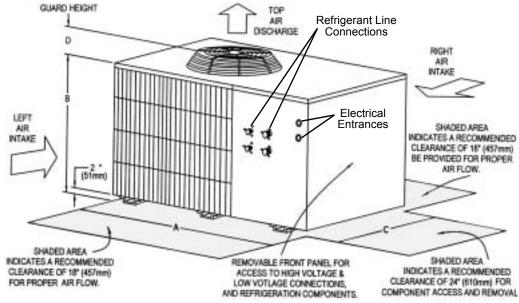


Figure 14 Cabinet and floor planning dimensional data—Split system—3-ton water/glycol cooled condensing unit


Figure 15 Cabinet and floor planning dimensional data—Split system—5-ton water/glycol cooled condensing unit

Fan Rotation CCW REMOVABLE (RIGHT) PANEL FOR ACCESS TO REFRIGERATION COMPONENT. Buff nide) RIGHT AIR DISCHARGE MR. INTAKE SHADED AREA INDICATES A MINIMUM CLEARANCE OF 18" (457mm) FOR PROPER AIR FLOW i de o SHADED AREA SHADED AREA INDICATES A MINIMUM CLEARWINGE OF 18" HISTORIE FOR PROPER AIR FLOW. NDICATES A RECOMMENDED CLEARANCE OF 20' (\$10mm) FOR COMPONENT ACCESS AND REMOVAL REMOVABLE (FRONT) PANEL FOR ACCESS TO HIGH VOLTAGE & LOW VOLTAGE CONNECTIONS. AND REPRICE NATION COMPONENTS. **Outdoor Propeller Fan Condensing Unit** Model Width (A) Depth (C) Height (B) **Net Weight** 60 Hz 50 Hz Dimensions - Inches (mm) lbs (kg) PFH042A-_L PFH041A-_L 48 (1219) 18 (457) 31 (787) 241 (109) PFH042A-_H PFH041A-_H 53 (1343) 18 (457) 36-1/4 (918) 351 (159) PFFZ42A-_L PFHZ41A-_L 53 (1343) 18 (457) 36-1/4 (918) 351 (159) PFH067A-_L | PFH066A-_L | 53 (1343) 18 (457) 36-1/4 (918) 351 (159)

Figure 16 Cabinet and floor planning dimensional data—Split System—Propeller fan condensing unit

Figure 17 Cabinet and floor planning dimensional data—Propeller fan condensing modules—Vertical air discharge

Model N	Dimen	sional [(mm)	Module Weight		
60 HZ	50 HZ	Α	В	С	D	lbs (kg) net.
	PFH066AH			38-1/2	5-1/2	488
PFHZ67AH	PFHZ66AL	(1343)	(918)	(978)	(140)	(222)

Figure 18 Cabinet and floor planning dimensional data—Self-contained system—Air cooled condenser or drycooler

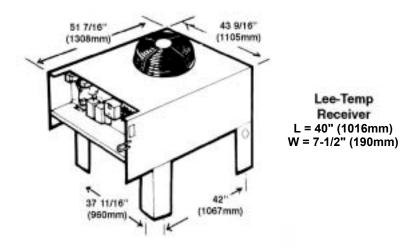
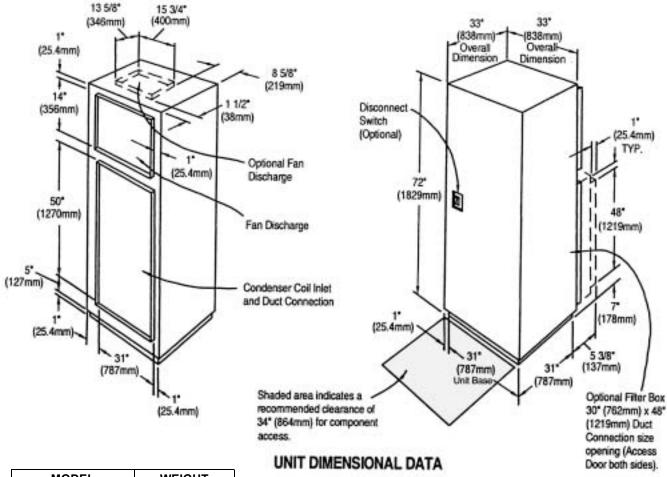



Figure 19 Cabinet and floor planning dimensional data—Piggyback condenser

 MODEL
 WEIGHT

 PB-224A; PB-280A; PB-332A; PB-378A
 540 lb (240 kg)

DISCONTINUED PRODUCT

ELECTRICAL DATA—60 HZ

Challenger 3000 electrical data—60 Hz¹ Table 7

	I					-Contain	ed			9	nlit Sv	stem E	vanor	ator o	r Chille	hcW ha	er
Model Ty	ype	3 To	n R*0/	2A, 040			в*067А,	071WG	061G			36E, 0			on B*0		
 		3 10	, ii b 04	-£A, U41	J11 G		oltages A							9 10	011 15 0	JUE, I	J20
Voltage		208	230	460	575	208	230	460	575	208	230	460	575	208	230	460	575
With Ele	ctric D						am Gener									,00	3.0
Motor	CUIC I			(.56 kW		u oi otea	1.5 HP (ole. See			(.56 kV			.5 HP	11 kV	٧١
WOLOI	FLA	42.0	40.3	19.6	17.5	68.0	65.0	32.3	24.6	41.4	37.5	19.0	17.5	60.6	55.4	28.1	24.6
	WSA	51.8	49.7	24.2	21.9	83.6	80.0	39.7	30.8	51.8	46.9	23.8	21.9	75.8	69.3	35.1	30.8
	OPD	50	50	25	20	90	90	40	30	60	50	25	25	80	70	40	35
Motor	0. 2			(.75 kW			2.0 HP (_				(.75 kV			.0 HP		
	FLA	42.9	41.1	20.0	17.8	69.8	66.6	33.1	25.2	42.3	38.3	19.4	17.8	62.4	57.0	28.9	25.2
	WSA	52.9	50.5	24.6	22.3	85.4	81.6	40.5	31.5	52.9	47.9	24.3	22.3	78.0	71.3	36.1	31.5
	OPD	60	50	25	20	90	90	45	30	60	50	25	25	80	80	40	35
Motor		1	1.5 HP	(1.1 kW	/)		3.0 HP (2.2 kW)		1	.5 HP	(1.1 kV	V)	3	.0 HP	2.2 kV	V)
	FLA	44.6	42.7	20.8	18.5	72.9	69.4	34.5	26.4	44.0	39.9	20.2	18.5	65.5	59.8	30.3	26.4
	WSA	55.0	52.1	25.4	23.1	88.5	84.4	41.9	33.0	55.0	49.9	25.3	23.1	81.9	74.8	37.9	33.0
	OPD	60	60	25	20	90	90	45	35	60	50	30	25	90	80	40	35
Humidifi	ier Onl					ating)											
Motor				(.56 kW	•		1.5 HP (,				(.56 kV			.5 HP	<u> </u>	
	FLA	30.3	27.8	13.6	13.9	39.7	37.0	18.4	16.9	16.4	13.9	7.2	8.5	19.0	16.3	8.4	9.5
	WSA	33.8	31.3	15.2	15.3	44.9	42.2	20.9	18.8	20.5	17.4	9.0	10.6	23.8	20.4	10.5	11.9
	OPD	45	45	20	20	60	60	30	25	25	15	15	15	25	20	15	15
Motor				(.75 kW	•		2.0 HP ((.75 kV			.0 HP		
	FLA	31.2	28.6	14.0	14.2	41.5	38.6	19.2	17.5	17.3	14.7	7.6	8.8	20.8	17.9	9.2	10.1
	WSA	34.7	32.1	15.6	15.6	46.7	43.8	21.7	19.4	21.6	18.4	9.5	11.0	26.0	22.4	11.5	12.6
M - 4	OPD	45	45	20	20	60	60	30	25	20	15	15	15	30	25	15	15
Motor	ГΙΛ			(1.1 kW	,	44.0	3.0 HP (40.7			(1.1 kV			.0 HP	`	
	FLA WSA	32.9	30.2	14.8 16.4	14.9 16.3	44.6 49.8	41.4 46.6	20.6	18.7 20.6	19.0 23.8	16.3 20.4	8.4 10.5	9.5	23.9	20.7	10.6 13.3	11.3
 	OPD	50.4	45	20	20	70	60	30	25	25.0	20.4	15	11.9 15	35	30	15.5	14.1 15
F1 4 :	_								_		20	13	15	33	30	13	15
	Renea					r Seit-co	ntained		CR rene		75 LID	/ FC I/A	^	- 4	5 LID	(4 4 1.)	
Motor	FLA	42.0		(.56 kW 19.6	15.5	68.0	1.5 HP (65.0	32.3	24.6	28.1	26.4	(. 56 kV 13.2	10.1	47.3	.5 HP 44.3	22.3	
 	WSA	51.7	40.3	24.2	19.1	83.6	80.0	39.7	24.6 30.2	35.1	33.0	16.5	12.6	59.1	55.4	27.9	17.2 21.5
<u> </u>	OPD	51.7	50	25	20	90	90	40	30.2	40	35.0	20	15	60	60	30	25
Motor	OFD			(.75 kW		30	2.0 HP (_	30	_		(.75 kV	-		.0 HP		
WIOLOI	FLA	42.9	41.1	20.0	15.8	69.8	66.6	33.1	25.2	29.0	27.2	13.6	10.4	49.1	45.9	23.1	17.8
	WSA	52.6	50.5	24.6	19.4	85.4	81.6	40.5	30.8	36.3	34.0	17.0	13.0	61.4	57.4	28.9	22.3
	OPD	60	50	25	20	90	90	45	30	40	35	20	15	70	60	30	25
Motor	0. 2			(1.1 kW			3.0 HP (_		-		(1.1 kV	_	_	.0 HP		
	FLA	44.6	42.7	20.8	16.5	72.9	69.4	34.5	26.4	30.7	28.8	14.4	11.1	52.2	48.7	24.5	
	WSA	54.3	52.1	25.4	20.1	88.5	84.4	41.9	32.0	38.4	36.0		13.9			30.6	
	OPD	60	60	25	20	90	90	45	35	40	40	20	15	60	70	35	20
Without	Electri	ic Rehe	eat & H	lumidifi	er												
Motor			75 HP	(.56 kW	/)		1.5 HP ((1.1 kW)		.7	75 HP	(.56 kV	/)	1	.5 HP	(1.1 kV	V)
	FLA	17.0	16.7	7.8	6.5	26.4	25.9	12.6	9.5	3.1	2.8	1.4	1.1	5.7	5.2	2.6	2.1
	WSA	20.5	20.2	9.4	7.9	31.6	31.1	15.1	11.4	3.9	3.5	1.8	1.4	7.1	6.5	3.3	2.6
	OPD	30	30	15	15	50	50	25	15	15	15	15	15	15	15	15	15
Motor				(.75 kW	•		2.0 HP ((.75 kV			.0 HP		
	FLA	17.9	17.5	8.2	6.8	28.2	27.5	13.4	10.1	4.0	3.6	1.8	1.4	7.5	6.8	3.4	2.7
	WSA	21.4	21.0	9.8	8.2	33.4	32.7	15.9	12.0	5.0	4.5	2.3	1.8	9.4	8.5	4.3	3.4
<u> </u>	OPD	35	30	15	15	50	50	25	15	15	15	15	15	15	15	15	15
Motor				(1.1 kW	•	0.4.5	3.0 HP (44.5			(1.1 kV	•		.0 HP		
	FLA	19.6	19.1	9.0	7.5	31.3	30.3	14.8	11.3	5.7	5.2	2.6	2.1	10.6	9.6	4.8	3.9
I	WSA	23.1	22.6	10.6	8.9	36.5	35.5	17.3	13.2	7.1	6.5	3.3	2.6	13.3	12.0	6.0	4.9
ļ	OPD	35	35	15	15	50	50	25	20	15	15	15	15	20	20	15	15

^{1.} Contact factory for 380-3-60 data.
2. For Split System Evaporators with SCR reheat, use the values above.
The above values were calculated per UL Standard 1995.
FLA= Full Load Amps (Input Amps); WSA= Wire Size Amps (Minimum Supply Circuit Ampacity); OPD= Maximum Overcurrent Protective Device Size RLA= Rated Load Amps; LRA= Locked Rotor Amps
* F= Downflow; U= Upflow; E= Downflow with Econ-O-Coil; K= Upflow with Econ-O-Coil

Table 8 Self-contained with SCR reheat *

	Jon Jonamou With Jon Tonout								
Model		3 T	on			5 To	on		
Voltage (3, 60 Hz)	208	230	460	575	208	230	460	575	
Electric Re Generatino		& Hu	midif	ier (l	Infrare	d or S	Stean	1	
Motor	.75	HP (.56 k	W)	1.5	HP (1	1.1 kV	V)	
FLA	55.3	51.4	25.4	N/A	81.3	76.1	38.1	N/A	
WSA	65.0	60.8	30.0	N/A	96.9	91.1	45.5	N/A	
OPD	70	60	30	N/A	100	100	50	N/A	
Motor	1.0	HP (.75 k	W)	2.0	HP (1	1.5 kV	V)	
FLA	56.2	52.2	25.8	N/A	83.1	77.7	38.9	N/A	
WSA	65.9	61.6	30.4	N/A	98.7	92.7	46.3	N/A	
OPD	70	60	30	N/A	100	100	50	N/A	
Motor	1.5	HP (1.1 k	W)	3.0 HP (2.2 kW)				
FLA	57.9	53.8	26.6	N/A	86.2	80.5	40.3	N/A	
WSA	67.6	63.2	31.2	N/A	101.8	95.5	47.7	N/A	
OPD	70	70	30	N/A	110	100	50	N/A	
Electric Re	heat	Only							
Motor	.75	HP (.56 k	W)	1.5	HP (1	1.1 kV	V)	
FLA	42.0	40.3	19.6	N/A	68.0	65.0	32.3	N/A	
WSA	51.7	49.7	24.2	N/A	83.6	80.0	39.7	N/A	
OPD	50	50	25	N/A	90	90	40	N/A	
Motor	1.0	HP (.75 k	W)	2.0	HP (1	1.5 kV	V)	
FLA	42.9	41.1	20.0	N/A	69.8	66.6	33.1	N/A	
WSA	52.6	50.5	24.6	N/A	85.4	81.6	40.5	N/A	
OPD	60	50	25	N/A	90	90	45	N/A	
Motor	1.5 HP (1.1 kW)		3.0	HP (2	2.2 kV	V)			
FLA	44.6	42.7	20.8	N/A	72.9	69.4	34.5	N/A	
WSA	54.3	52.1	25.4	N/A	88.5	84.4	41.9	N/A	
OPD	60	60	25	N/A	90	90	45	N/A	
Note: Compr	essor	ssor is locked on. Heater is same size as standar							

Note: Compressor is locked on. Heater is same size as standard. * Contact factory for 380-3-60 data.

Table 9 Scroll compressor and main fan (for comparison purposes only) *

Model	3 Ton			5 Ton				
Voltage (3, 60 Hz)	208	230	460	575	208	230	460	575
Scroll Cor	npres	ssor						
RLA	13.9	13.9	6.4	5.4	20.7	20.7	10.0	7.4
LRA	88.0	88.0	44.0	34.0	128.0	128.0	63.0	49.0
Main Fan	•	•	•	•			•	
Motor	.75	HP (.56 k	W)	1.5 HP (1.1 kW)			
RLA	3.1	2.8	1.4	1.1	5.7	5.2	2.6	2.1
LRA	19.0	16.8	8.4	6.6	35.9	31.2	15.6	12.6
Motor	1.0	HP (.75 k	W)	2.0	HP (1	.5 kV	V)
RLA	4.0	3.6	1.8	1.4	7.5	6.8	3.4	2.7
LRA	24.8	21.6	10.8	8.4	46.9	40.8	20.4	16.2
Motor	1.5 HP (1.1 kW)		3.0	HP (2	.2 kV	V)		
RLA	5.7	5.2	2.6	2.1	10.6	9.6	4.8	3.9
LRA	35.9	31.2	15.6	12.6	66.0	58.0	26.8	23.4

^{*} Contact factory for 380-3-60 data.

Table 10 Outdoor condensing units

Electrical Data 60 Hz 95°F (35°C) Ambient							
Voltage	Model	PFH042A_L	PFH067AL				
	FLA	15.3	24.1				
208/230-3-60	WSA	18.8	29.3				
	OPD	30.0	45.0				
	FLA	N/A	12.4				
380-3-60	WSA	N/A	15.1				
	OPD	N/A	25.0				
	FLA	7.1	11.7				
460-3-60	WSA	8.7	14.2				
	OPD	15.0	20.0				
	FLA	6.6	9.1				
575-3-60	WSA	8.0	11.1				
	OPD	15.0	15.0				
Electrical Data	60 Hz 10	5°F (40°C) Ambi	ent				
Voltage	Model	PFH042AH	PFH067AH				
	FLA	17.3	24.2				
208/230-3-60	WSA	20.8	29.4				
	OPD	30.0	50.0				
	FLA	N/A	12.4				
380-3-60	WSA	N/A	15.1				
	OPD	N/A	25.0				
	FLA	8.1	11.7				
460-3-60	WSA	9.7	14.2				
	OPD	15.0	20.0				
	FLA	6.6	9.3				
575-3-60	WSA	8.0	11.3				
	OPD	15.0	15.0				
Electrical Data	60 Hz Qı	uiet-Line 95°F (3	5°C)				
Voltage	Model	PFHZ42AL	PFHZ67AL				
	FLA	14.8	21.1				
208/230-3-60	WSA	18.3	25.9				
	OPD	30.0	45.0				
	FLA	N/A	12.5				
380-3-60	WSA	N/A	15.2				
	OPD	N/A	25.0				
	FLA	6.9	10.9				
460-3-60	WSA	8.5	13.4				
	OPD	15.0	20.0				
	FLA	5.9	8.8				
575-3-60	WSA	7.3	10.8				
	OPD	15.0	15.0				

Table 11 Indoor condensing units, air cooled *

Electrical Data 60 Hz 95°F (35°C) Ambient								
Voltage	Model	MC_40A	MC_65A					
	FLA	20.5	26.5					
208/230-3-60	WSA	24.0	31.7					
	OPD	35.0	50.0					
	FLA	9.7	12.9					
460-3-60	WSA	11.3	15.4					
	OPD	15.0	25.0					
	FLA	N/A	9.7					
575-3-60	WSA	N/A	11.6					
	OPD	N/A	15.0					

^{*} Contact factory for 380-3-60 data.

Table 12 Indoor condensing units, water cooled *

Voltage	Model	MC_44W	MC_69W
	FLA	13.9	20.7
208/230-3-60	WSA	17.4	25.9
	OPD	30.0	45.0
	FLA	6.4	10.0
460-3-60	WSA	8.0	12.5
	OPD	15.0	20.0
	FLA	n/a	7.4
575-3-60	WSA	n/a	9.3
	OPD	n/a	15.0

^{*} Contact factory for 380-3-60 data.

Table 13 Fan speed control condensers *

95°F (35°C) Ambient (1 Phase - 60 Hz)								
	CSF083/CSF104							
Voltage	Voltage 208 230 460 575							
FLA	4.8	4.8	2.5	1.9				
WSA 6.0 6.0 3.1 2.4								
OPD	15.0	15.0	15.0	15.0				

^{*} Contact factory for 380-3-60 data.

Table 14 Lee-Temp condensers *

95°F (35°C) Ambient (3 Phase - 60 Hz)								
	CSL083/CSL104							
Voltage 208 230 460 575								
FLA	4.8	4.8	2.5	1.4				
WSA 6.0 6.0 3.1 1.8								
OPD	OPD 15.0 15.0 15.0 15.0							

^{*} Contact factory for 380-3-60 data.

Table 15 Lee-Temp receiver heater pads for use w/CSL condensers

Volts	120	230
Watts/Pad	150	150
FLA	1.25	0.65
WSA	1.6	0.8
OPD	15	15

Separate electrical source required for continuous operation of single phase heater pads for Lee-Temp.

Table 16 Drycooler & pump package - 95°F (35°C) ambient *

Tonnage	3 Ton			5 Ton		
Voltage	208/230	460	575	208/230	460	575
Glycol	Drycoole	r & Pı	ımp			
DSF Model	069	069	069	109	109	109
Pump Hp	3/4	3/4	3/4	3/4	3/4	3/4
FLA	7.0	3.3	2.7	7.0	3.3	2.7
WSA	7.9	3.7	3.1	7.9	3.7	3.1
OPD	15	15.0	15.0	15	15.0	15.0
GLYCOOL	Drycoole	r & Pı	ımp			
DSO Model	-	-	-	109	109	109
Pump Hp	-	-	-	1-1/2	1-1/2	1-1/2
FLA	-	-	-	10.1	4.7	3.8
WSA	-	-	-	11.8	5.5	4.4
OPD	-	-	-	15	15	15

^{1.} Pump and drycooler powered from same 3 phase feeder.

Table 17 Drycooler only - 95°F (35°C) ambient *

Tonnage	3 Ton			5 Ton			
Voltage	208/230	460	575	208/230	460	575	
Glycol	Drycoole	Drycooler					
DSF Model	069	069	069	109	109	109	
FLA	4.8	2.4	1.9	4.8	2.4	1.9	
GLYCOOL	Drycoole	Drycooler					
DSO Model	-	-	-	109	109	109	
FLA	-	-	-	4.0	2.0	1.4	

^{*} Contact factory for 380-3-60 data.

Table 18 Pumps *

	Voltage (3 Phase - 60 Hz)					
HP		208	230	460	575	
3/4	FLA	3.5	3.2	1.6	1.3	
1-1/2	FLA	6.6	6	3	2.4	

^{*} Contact factory for 380-3-60 data.

^{*} Contact factory for 380-3-60 data.

ELECTRICAL DATA—50 HZ

Table 19 Challenger 3000 electrical data—50 Hz

		Self-Contained			Split System Evaporator or Chilled Water						
3 Ton	B*040	A, 045WG	5 Ton	B*065A,	070WG, 058G	3 To	n B*03	5E, 072C	5 To	n B*05	9E, 101C
					3 Phase, 50 I	Hz					
200	230	380/415	200	230	380/415	200	230	380/415	200	230	380/415
With Electric Reheat & Humidifier (Infrared or Steam Generating) (Note: See Table 20 for units w/SCR reheats.1)								eats. ¹)			
	N/A	4		1.1 kW (1	I.5 HP)		N/A	Α.	1.1	l kW (1.5 HP)
N/A	N/A	N/A	66.0	64.4	34.4	N/A	N/A	N/A	58.1	54.8	30.8
.7	5 kW (′	I.0 HP)		1.5 kW (2	2.0 HP)	.7	5 kW (1.0 HP)	1.8	5 kW (2	2.0 HP)
42.7	41.8	23.1	67.7	65.9	35.2	40.5	37.9	21.3	59.8	56.3	31.6
1.	1 kW (I.5 HP)		2.2 kW (3	3.0 HP)	1.1	1 kW (1.5 HP)	2.2	2 kW (3	3.0 HP)
44.3	43.2	23.9	70.8	68.6	36.8	42.1	39.3	22.1	62.9	59.0	33.2
ıly (Infi	rared o	r Steam Ge	nerating)							
	N/A	4		1.1 kW (1	I.5 HP)		N/A	4	1.1	l kW (ʻ	1.5 HP)
N/A	N/A	N/A	38.8	36.4	19.1	N/A	N/A	N/A	18.1	15.7	9.1
.7	5 kW (1.0 HP)		1.5 kW (2	2.0 HP)	.7	5 kW (1.0 HP)	1.5	5 kW (2	2.0 HP)
31.5	29.3	16.5	40.5	37.9	19.9	16.5	14.3	8.3	19.8	17.2	9.9
1.	1 kW (1.5 HP)		2.2 kW (3	3.0 HP)	1.1	l kW (1.5 HP)	2.2	2 kW (3	3.0 HP)
33.1	30.7	17.3	43.6	40.6	21.5	18.1	15.7	9.1	22.9	19.9	11.5
at Only	/ (Note	: See Table	20 for u	nits w/SC	R reheats. ¹)						
	N/A	4		1.1 kW (1	I.5 HP)		N/A	4	1.1	l kW (1.5 HP)
N/A	N/A	N/A	66.0	64.4	34.4	N/A	N/A	N/A	45.3	43.7	24.4
.7	5 kW (1.0 HP)		1.5 kW (2	2.0 HP)	.7	5 kW (1.0 HP)	1.5	5 kW (2	2.0 HP)
42.7	41.8	23.1	67.7	65.9	35.2	27.7	26.8	14.9	47.0	45.2	25.2
1.	1 kW (1.5 HP)		2.2 kW (3	3.0 HP)	1.1	l kW (1.5 HP)	2.2	2 kW (3	3.0 HP)
44.3	43.2	23.9	70.8	68.6	36.8	29.3	28.2	15.7	50.1	47.9	26.8
ric Rel	neat & l	Humidifier									
	N/A	4		1.1 kW (1	I.5 HP)		N/A	4	1.1	l kW (1.5 HP)
N/A	N/A	N/A	26.0	25.3	12.7	N/A	N/A	N/A	5.3	4.6	2.7
.7	5 kW (1.0 HP)		1.5 kW (2	2.0 HP)	.7	5 kW (1.0 HP)	1.5	5 kW (2	2.0 HP)
18.7	18.2	10.1	27.7	26.8	13.5	3.7	3.2	1.9	7.0	6.1	3.5
1.	1 kW (′	1.5 HP)		2.2 kW (3	3.0 HP)	1.1	l kW (1.5 HP)	2.2	2 kW (3	3.0 HP)
20.3	19.6	10.9	30.8	29.5	15.1	5.3	4.6	2.7	10.1	8.8	5.1
	200 Rehear N/A .7 42.7 1. 44.3 nly (Infi N/A .7 31.5 1. 33.1 at Only N/A .7 42.7 1. 44.3 ric Reh N/A .7 18.7 1. 20.3	200 230 Reheat & Hur N/A N/A N/A .75 kW (7 42.7 41.8 1.1 kW (7 44.3 43.2 N/A N/A .75 kW (7 31.5 29.3 1.1 kW (7 33.1 30.7 at Only (Note N/A N/A .75 kW (7 42.7 41.8 1.1 kW (7 42.7 4	3 Ton B*040A, 045WG 200 230 380/415 Reheat & Humidifier (Infr N/A N/A N/A N/A N/A .75 kW (1.0 HP) 42.7 41.8 23.1 1.1 kW (1.5 HP) 44.3 43.2 23.9 nly (Infrared or Steam Gen N/A N/A N/A N/A N/A .75 kW (1.0 HP) 31.5 29.3 16.5 1.1 kW (1.5 HP) 33.1 30.7 17.3 at Only (Note: See Table N/A N/A N/A N/A N/A .75 kW (1.0 HP) 42.7 41.8 23.1 1.1 kW (1.5 HP) 44.3 43.2 23.9 ric Reheat & Humidifier N/A N/A N/A N/A .75 kW (1.0 HP) 41.3 43.2 23.9 ric Reheat & Humidifier N/A N/A N/A N/A .75 kW (1.0 HP) 18.7 18.2 10.1 1.1 kW (1.5 HP) 20.3 19.6 10.9	3 Ton B*040A, 045WG 5 Ton 200 230 380/415 200 Reheat & Humidifier (Infrared or N/A N/A N/A 66.0 .75 kW (1.0 HP) 42.7 41.8 23.1 67.7 1.1 kW (1.5 HP) 44.3 43.2 23.9 70.8 N/A N/A N/A N/A 38.8 .75 kW (1.0 HP) 31.5 29.3 16.5 40.5 1.1 kW (1.5 HP) 33.1 30.7 17.3 43.6 at Only (Note: See Table 20 for u N/A N/A N/A N/A 66.0 .75 kW (1.0 HP) 42.7 41.8 23.1 67.7 1.1 kW (1.5 HP) 42.7 41.8 23.1 67.7 1.1 kW (1.5 HP) 44.3 43.2 23.9 70.8 ric Reheat & Humidifier N/A N/A N/A N/A N/A 26.0 .75 kW (1.0 HP) 18.7 18.2 10.1 27.7 1.1 kW (1.5 HP) 18.7 18.2 10.1 27.7 1.1 kW (1.5 HP) 20.3 19.6 10.9 30.8	200 230 380/415 200 230 Reheat & Humidifier (Infrared or Steam Grand N/A 1.1 kW (1.5 kW (1.0 HP) 1.5 kW (2.2 kW (3.4.3 3.2 23.9 70.8 68.6 kW (1.0 HP) 1.5 kW (2.3 kW (3.3 kW (1.0 HP) 1.5 kW (3.3 kW	3 Ton B*040A, 045WG 5 Ton B*065A, 070WG, 058G 3 Phase, 50 I 200 230 380/415 200 230 380/415 Reheat & Humidifier (Infrared or Steam Generating) (Not N/A N/A N/A N/A 66.0 64.4 34.4 .75 kW (1.0 HP) 1.5 kW (2.0 HP) 42.7 41.8 23.1 67.7 65.9 35.2 1.1 kW (1.5 HP) 2.2 kW (3.0 HP) 44.3 43.2 23.9 70.8 68.6 36.8 N/A N/A N/A 38.8 36.4 19.1 .75 kW (1.0 HP) 1.5 kW (2.0 HP) 31.5 29.3 16.5 40.5 37.9 19.9 1.1 kW (1.5 HP) 2.2 kW (3.0 HP) 33.1 30.7 17.3 43.6 40.6 21.5 at Only (Note: See Table 20 for units w/SCR reheats.¹) N/A N/A N/A 66.0 64.4 34.4 .75 kW (1.0 HP) 1.5 kW (2.0 HP) 42.7 41.8 23.1 67.7 65.9 35.2 1.1 kW (1.5 HP) 2.2 kW (3.0 HP) 42.7 41.8 23.1 67.7 65.9 35.2 1.1 kW (1.5 HP) 1.5 kW (2.0 HP) 44.3 43.2 23.9 70.8 68.6 36.8 ric Reheat & Humidifier N/A 1.1 kW (1.5 HP) N/A N/A N/A 26.0 25.3 12.7 .75 kW (1.0 HP) 1.5 kW (2.0 HP) 18.7 18.2 10.1 27.7 26.8 13.5 1.1 kW (1.5 HP) 2.2 kW (3.0 HP)	3 Ton B*040A, 045WG 5 Ton B*065A, 070WG, 058G 3 To 3 Phase, 50 Hz 200 230 380/415 200 230 380/415 200 Reheat & Humidifier (Infrared or Steam Generating) (Note: See N/A	3 Ton B*040A, 045WG 5 Ton B*065A, 070WG, 058G 3 Ton B*03 3 Phase, 50 Hz 200 230 380/415 200 230 380/415 200 230 Reheat & Humidifier (Infrared or Steam Generating) (Note: See Table N/A 1.1 kW (1.5 HP) N/A N/A N/A N/A 66.0 64.4 34.4 N/A N/A N/A .75 kW (1.0 HP) 1.5 kW (2.0 HP) .75 kW (4.7 41.8 23.1 67.7 65.9 35.2 40.5 37.9 1.1 kW (1.5 HP) 2.2 kW (3.0 HP) 1.1 kW (4.3 43.2 23.9 70.8 68.6 36.8 42.1 39.3 NJ (Infrared or Steam Generating) N/A 1.1 kW (1.5 HP) .75 kW (2.0 HP) .75 kW (3.0 HP) 1.1 kW (3.0 HP) 1	3 Ton B*040A, 045WG 5 Ton B*065A, 070WG, 058G 3 Ton B*035E, 072C 3 Phase, 50 Hz 200 230 380/415 200 230 380/415 200 230 380/415 Reheat & Humidifier (Infrared or Steam Generating) (Note: See Table 20 for unit N/A	3 Ton B*040A, 045WG	3 Ton B*040A, 045WG 5 Ton B*065A, 070WG, 058G 3 Ton B*035E, 072C 5 Ton B*05E 3 Phase, 50 Hz 200 230 380/415 200 230 380/415 200 230 380/415 200 230 Reheat & Humidifier (Infrared or Steam Generating) (Note: See Table 20 for units w/SCR reh N/A 1.1 kW (1.5 HP) N/A 1.1 kW (1.5 HP) N/A N/A N/A 66.0 64.4 34.4 N/A N/A N/A N/A 58.1 54.8 7.5 kW (1.0 HP) 1.5 kW (2.0 HP) .75 kW (1.0 HP) 1.5 kW (2.0 HP) 42.7 41.8 23.1 67.7 65.9 35.2 40.5 37.9 21.3 59.8 56.3 1.1 kW (1.5 HP) 2.2 kW (3.0 HP) 1.1 kW (1.5 HP) 1.5 kW (2.0 HP) .75 kW (1.0 HP) 1.5 kW (3.0 HP) .75 kW (1.0 HP) .7

^{1.} For Split System Evaporators with SCR reheat, use the values above.

FLA = Full Load Amps (Input Amps)

RLA = Rated Load Amps

LRA = Locked Rotor Amps

^{*} F = Downflow

U = Upflow

E = Downflow with Econ-O-Coil K = Upflow with Econ-O-Coil

Table 20 Self-contained with SCR reheat

Model	3 Ton				5 To	on		
Voltage (3, 50 Hz)	200	230	380/415	200	230	380/415		
	Electric Reheat & Humidifier (Infrared or Steam Generating)							
Motor		N/A	A	1.1	kW (1.5 HP)		
FLA	N/A	N/A	N/A	78.8	75.5	40.8		
Motor	.75	kW (1.0 HP)	1.5	kW (2	2.0 HP)		
FLA	55.5	52.9	29.5	80.5	77.0	41.6		
Motor	1.1	kW (1.5 HP)	2.2 kW (3.0 HP)				
FLA	57.1	54.3	30.3	83.6	79.7	43.2		
Electric Rel	heat C	nly						
Motor		N/A	Α	1.1	kW (1.5 HP)		
FLA	N/A	N/A	N/A	66.0	64.4	34.4		
Motor	.75	kW (1.0 HP)	1.5	kW (2	2.0 HP)		
FLA	42.7	41.8	23.1	67.7	65.9	35.2		
Motor	1.1	kW (1.5 HP)	2.2	2 kW (3.0 HP)		
FLA	44.3	43.2	23.9	70.8	68.6	36.8		

Note: Compressor is locked on. Heater is same size as standard.

Table 21 Scroll compressor and main fan (for comparison purposes only)

companion purposes sing,							
Model	3 Ton			on 5 Ton			
Voltage (3, 50 Hz)	200	230	380/415	200	230	380/415	
Scroll Con	npress	or					
RLA	15.0	15.0	8.2	20.7	20.7	10.0	
LRA	120.0	132.0	51.5	156.0	172.0	74.0	
Main Fan	Main Fan						
Motor		N/A		1.1 kW (1.5 HP)			
RLA	N/A	N/A	N/A	5.3	4.6	2.7	
LRA	N/A	N/A	N/A	35.8	31.2	17.9	
Motor	.75	kW (1.	0 HP)	1.5 kW (2.0 HP)		0 HP)	
RLA	3.7	3.2	1.9	7.0	6.1	3.5	
LRA	19.2	16.7	9.6	50.6	44.0	25.3	
Motor	1.1 kW (1.5 HP)			2.2	kW (3.	0 HP)	
RLA	5.7	5.2	2.6	10.1	8.8	5.1	
LRA	35.9	31.2	15.6	58.5	51.0	29.3	

Table 22 Outdoor condensing units

-						
Electrical Data 50 Hz 35°C (95°F) Ambient						
Voltage	Model	PFH041AL	PFH066AL			
200/230-3-50	FLA	16.3	24.1			
380/415-3-50	FLA	8.8	13.2			
Electrical Data 50 Hz 40°C (105°F) Ambient						
Voltage	Model	PFH041AH	PFH066AH			
200/230-3-50	FLA	18.4	24.2			
380/415-3-50	FLA	9.9	13.2			
Electrical Data	50 Hz Q	uiet-Line 35°C (95°F)			
Voltage	Model	PFHZ41AL	PFHZ66AL			
200/230-3-50	FLA	15.9	22.5			
380/415-3-50	FLA	8.7	12.4			

Table 23 Indoor condensing units air cooled

Electrical Data 50 Hz 35°C (95°F) Ambient					
Voltage	Model	MC_39A	MC_64A		
380/415-3-50	FLA	10.4	13.7		

^{1.} Consult factory for 200/230 volts.

Table 24 Indoor condensing units water cooled

Voltage	Model	MC_43W	MC_68W
380/415-3-50	FLA	7.5	10.0

^{1.} Consult factory for 200/230 volts.

Table 25 Fan speed control condensers

35°C (95°F) Ambient (1 Phase - 50 Hz)						
CSF083/CSF104						
Voltage	200	230	380/415			
FLA	4.0	4.0	2.0			

Table 26 Lee-Temp condensers

35°C (95°F) Ambient (3 Phase - 50 Hz)						
CSL083/CSF104						
Voltage	200	230	380/ 415			
FLA	4.0	4.0	1.8			

Table 27 Lee-Temp receiver heater pads; for use w/CSL condensers

Volts	230
Watts/Pad	150
Amps	0.68

Separate electrical source required for continuous operation of single phase heater pads for Lee-Temp.

Table 28 Drycooler & pump package - 35°C (95°F) ambient

Tonnage	3 Ton			5 Ton		
Voltage	200	230	380/415	200	230	380/415
Glycol	Drycooler & Pump					
DSF Model	069	069	069	109	109	109
Pump Hp	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2
FLA	9.6	9.6	4.6	9.6	9.6	4.6
GLYCOOL			Drycoole	r & Pu	mp	
DSO Model	-	-	-	109	109	109
Pump Hp	-	-	-	1-1/2	1-1/2	1-1/2
FLA	-	-	-	9.6	9.6	4.6

^{1.} Pump and drycooler powered from same 3 phase feeder.

Table 29 Drycooler only - 35°C (95°F) ambient

Tonnage		3 T	on		5 T	on
Voltage	200	230	380/415	200	230	380/415
Glycol			Drycoole	r & P	ump	
DSF Model	069	069	069	109	109	109
FLA	4.0	4.0	1.8	4.0	4.0	1.8
GLYCOOL			Drycoole	r & P	ump	
DSO Model	-	-	-	109	109	109
FLA	-	-		4.0	4.0	1.8

^{1.} Drycooler powered from same 3 phase feeder as pumps.

Table 30 Pumps

	Voltage	(3 Phase	- 50 Hz)	
HP		200	230	380/415
1-1/2	FLA	5.6	5.6	2.8

GUIDE SPECIFICATIONS—NOMINAL 3 OR 5 TON ENVIRONMENTAL CONTROL SYSTEM

1.0 GENERAL

1.1 Summary

These specifications describe requirements for an environmental control system. The system shall be designed to maintain temperature and relative humidity conditions within the room. The manufacturer shall design and furnish all equipment to be fully compatible with heat dissipation requirements of the site.

1.2 Design Requirements

The environmental control system shall be a Liebert Challenger 3000 factory assembled unit. Standard 60 Hz units shall be UL listed and CSA (NRTL-C) certified. It shall be specifically designed for service from the front of the unit. The system shall be designed for draw-through air arrangement to insure even air distribution to the entire face area of the coil.

Each system shall be capable of handling (CMH) at inches (mm) of water external static pressure with (down discharge air flow) (up discharge air flow with front return or up discharge airflow with rear return) pattern. It shall have a total _ BTU/HR (kW), sensible coolcooling capacity of ing capacity of BTU/HR (kW), based on the entering air condition of °F (°C) dry bulb, and (°C) wet bulb. These units are to be supplied with Volt, ____ phase, ____ Hz power supply. The humidifier shall have a capacity of ____ lbs/hr (kg/h). Reheat shall have a capacity of BTU/HR (kW). The main fan shall be ____ HP (kW).

1.3 Submittals

Submittals shall be provided with the proposal and shall include: Single-Line Diagrams; Dimensional, Electrical, and Capacity data; Piping and Electrical Connection Drawings.

2.0 PRODUCT

2.1 All Systems

2.1.1 Cabinet and Frame Construction

The frame shall be constructed of MIG welded tubular and formed steel. All frame components shall be finished in a black, powder-coat finish to protect against corrosion. The exterior panels shall be (20 gauge)/(18 gauge) steel and shall be powder coated with ____ color paint. The panels shall be insulated with a minimum 1 in. (25.4mm), 1-1/2 lbs. (0.68 kg) density fiber insulation. Front and side panels shall have captive, 1/4 turn fasteners.

The cabinet shall be designed so that all components are serviceable and removable from the front of the unit.

2.1.2 Fan and Motor Section

The fan shall be the centrifugal type, double width, double inlet. The shaft shall be heavy duty steel with self-aligning ball bearings with minimum life span of 100,000 hours.

The fan motor shall be 1750 RPM and mounted on an adjustable base. The drive package shall be sized for 200% of the fan motor horsepower, and equipped with an adjustable motor pulley. The fan/motor assembly shall be mounted on (vibration isolators) (solid base). The fan shall be located to draw air over the coil to ensure even air distribution and maximum coil performance.

High Efficiency Motor (Optional)

The fan motor shall be a ____ HP (kW) high efficiency motor with a full load efficiency of ____ %.

2.1.3 Filter

The filter shall be____ inches (mm) thick and rated not less than ____ % (20%, 30%, 40-45%, 60-65%) efficiency based on ASHRAE 52.1.

Prefilter (Optional)

The prefilter shall be 2 in. (50.8mm) thick with an efficiency of 20% based on ASHRAE 52.1.

2.1.4 Advanced Microprocessor Control (Standard)

The Advanced control processor shall be microprocessor based with a front monitor LCD display panel and control keys for user inputs. The controls shall be menu driven with on-screen prompts for easy user operation. The system shall allow user review and programming of temperature and humidity setpoints, alarm parameters, and setup selections including choice of control type. A password shall be required to make system changes. For all user selections, the range of acceptable input (temperature, humidity, or time delay) shall be displayed on the monitor screen. The system shall provide monitoring of room conditions, operational status in % of each function, component run times, date and time, and four analog inputs from sensors provided by others.

Control

The control system shall allow programming of the following room conditions:

Temperature Setpoint 65 to 85°F (18-29°C) Temperature Sensitivity +1 to +9.9°F (0.6 to 5.6°C) in 0.1° increments Humidity Setpoint 20 to 80% RH Humidity Sensitivity +1 to +30% RH

All setpoints shall be adjustable from the individual unit front monitor panel. The microprocessor can be set within these ranges, however, the unit may not be able to control to extreme combinations of temperature and humidity.

Temperature and Humidity Sensors shall be capable of being calibrated using the front monitor panel controls to coordinate with other temperature and humidity sensors in the room.

Predictive Humidity Control

The microprocessor shall calculate the moisture content in the room and prevent unnecessary humidification and dehumidification cycles by responding to changes in dew point temperature.

Compressor Short-Cycle Control

The control system shall include a program to prevent compressor short-cycling.

System Auto-Restart

For start-up after power failure, the system shall provide automatic restart with a programmable (up to 9.9 minutes in 6-second increments) time delay. Programming can be performed either at the unit or from the central site monitoring system.

Sequential Load Activation

During start-up, or after power failure, the microprocessor shall sequence operational load activation to minimize inrush current. Systems allowing multiple loads to start simultaneously are unacceptable.

Chilled Water/Hot Water/Econ-O-Coil Flush Cycles

Chilled water, hot water, and Econ-O-Cool coils (if unit is so equipped) shall be automatically flushed to prevent the buildup of contaminants. Systems without this feature shall include the necessary devices to bypass fluid into the coil on a programmed basis.

Front Monitor Display Panel

The microprocessor shall provide a front monitor LCD backlit display panel with 4 rows of 20 characters with adjustable contrast. This display (along with five front mounted control keys) shall be the only operator interface required to obtain all available system information such as room conditions, operational status, alarms, control and alarm setpoints, and all user selections including alarm delays, sensor calibration, DIP switch selections, and diagnostics. All indicators shall be in language form. No symbols or codes shall be acceptable.

Alarms

The microprocessor shall activate an audible and visual alarm in event of any of the following conditions:

High Temperature
Low Temperature
High Humidity
Low Humidity
Short Cycle
Compressor Overload (Optional)
Main Fan Overload (Optional)
Humidifier Problem
High Head Pressure
Change Filter
Loss of Air Flow
Low Suction Pressure
Loss of Power
Custom Alarm (#1 to #4)

Custom alarms are four customer accessible alarm inputs to be indicated on the front panel. Custom alarms can be identified with prepared (programmed) alarm labels for the following frequently used inputs:

Water Under Floor Smoke Detected Standby GC Pump On Loss of Water Flow Standby Unit On

User customized text can be entered for two of the four custom alarms. Each alarm (unit and custom) can be separately enabled or disabled, selected to activate the common alarm, and programmed for a time delay of 0 to 255 seconds.

Audible Alarm

The audible alarm shall annunciate any alarm that is enabled by the operator.

Common Alarm

A programmable common alarm shall be provided to interface user selected alarms with a remote alarm device.

Remote Monitoring

All alarms shall be communicated to the Liebert monitoring system with the following information: date and time of occurrence, unit number, and present temperature and humidity.

Analog Inputs

The system shall include four customer accessible analog inputs for sensors provided by others. The analog inputs shall accept a 4 to 20 mA signal. The user shall be able to change the input to 0 to 5 VDC or 0 to 10 VDC if desired. The gains for each analog input shall be programmable from the front panel. The analog inputs shall be able to be monitored from the front panel.

Diagnostics

The control system and electronic circuitry shall be provided with self-diagnostics to aid in troubleshooting. The microcontroller board shall be diagnosed and reported as pass/not pass. Control inputs shall be indicated as on or off at the front monitor panel. Control outputs shall be able to be turned on or off from the front monitor panel without using jumpers or a service terminal. Each control output shall be indicated by an LED on a circuit board.

Data Collection

The control system shall maintain accumulative operating hours of compressor, reheat, humidifier, fan motor, and Econ-O-Coil. The ten most recent alarms shall also be retained.

Communications

The microprocessor shall be compatible with all Liebert remote monitoring and control devices.

2.1.5 Advanced Microprocessor Control with Graphics (Optional)

The optional Advanced control processor shall be microprocessor based with a front monitor dot matrix display panel and control keys for user inputs. The controls shall be menu driven with on-screen prompts for easy user operation. The system shall allow user review and programming of temperature and humidity setpoints, alarm parameters, and setup selections including choice of control type. A password shall be required to make system changes. For all user selections, the range of acceptable input (temperature, humidity, or time delay) shall be displayed on the monitor screen. The system shall provide monitoring of room conditions, operational status in % of each function, component run times, date and time, and four analog inputs from sensors provided by others.

Control

The control system shall allow programming of the following room conditions:

Temperature Setpoint 65 to 85°F (18-29°C)
Temperature Sensitivity +1 to +9.9°F (0.6 to 5.6°C) in 0.1° increments
Humidity Setpoint 20 to 80% RH
Humidity Sensitivity +1 to +30% RH

All setpoints shall be adjustable from the individual unit front monitor panel.

Temperature and Humidity Sensors shall be capable of being calibrated using the front monitor panel controls to coordinate with other temperature and humidity sensors in the room.

Predictive Humidity Control

The microprocessor shall calculate the moisture content in the room and prevent unnecessary humidification and dehumidification cycles by responding to changes in dew point temperature.

Compressor Short-Cycle Control

The control system shall include a program to prevent compressor short-cycling.

System Auto-Restart

For start-up after power failure, the system shall provide automatic restart with a programmable (up to 9.9 minutes in 6-second increments) time delay. Programming can be performed either at the unit or from the central site monitoring system.

Sequential Load Activation

During start-up, or after power failure, the microprocessor shall sequence operational load activation to minimize inrush current. Systems allowing multiple loads to start simultaneously are unacceptable.

Chilled Water/Hot Water/Econ-O-Coil Flush Cycles

Chilled water, hot water, and Econ-O-Cool coils shall be automatically flushed to prevent the buildup of contaminants. Systems without this feature shall include the necessary devices to bypass fluid into the coil on a programmed basis.

Front Monitor Display Panel

The microprocessor shall provide a front monitor 240 x 120 dot matrix display panel with adjustable backlighting. This display (along with five front mounted control keys) shall be the only operator interface required to obtain all available system information such as room conditions, operational status, graphical data, alarms, control and alarm setpoints, and all user selections including alarm delays, sensor calibration, DIP switch selections, and diagnostics. All indicators shall be in language form. No symbols or codes shall be acceptable.

Alarms

The microprocessor shall activate an audible and visual alarm in event of any of the following conditions:

High Temperature
Low Temperature
High Humidity
Low Humidity
Short Cycle
Compressor Overload (Optional)
Main Fan Overload (Optional)
Humidifier Problem
High Head Pressure
Change Filter
Loss of Air Flow
Low Suction Pressure
Loss of Power

Custom alarms are four customer accessible alarm inputs to be indicated on the front panel. Custom alarms can be identified with prepared (programmed) alarm labels for the following frequently used inputs:

Water Under Floor Smoke Detected Standby GC Pump On Loss of Water Flow Standby Unit On

Custom Alarm (#1 to #4)

User-customized text can be entered for all four custom alarms. Each alarm (unit and custom) can be separately enabled or disabled, selected to activate the common alarm, and programmed for a time delay of 0 to 255 seconds.

Audible Alarm

The audible alarm shall annunciate any alarm that is enabled by the operator.

Common Alarm

A programmable common alarm shall be provided to interface user selected alarms with a remote alarm device.

Remote Monitoring

All alarms shall be communicated to the Liebert site monitoring system with the following information: date and time of occurrence, unit number, and present temperature and humidity.

Analog Inputs

The system shall include four customer accessible analog inputs for sensors provided by others. The analog inputs shall accept a 4 to 20 mA signal. The user shall be able to change the input to 0 to 5 VDC or 0 to 10 VDC if desired. The gains for each analog input shall be programmable from the front panel. The analog inputs shall be able to be monitored from the front panel.

Diagnostics

The control system and electronic circuitry shall be provided with self-diagnostics to aid in troubleshooting. The microcontroller board shall be diagnosed and reported as pass/not pass. Control inputs shall be indicated as on or off at the front monitor panel.

Control outputs shall be able to be turned on or off from the front monitor panel without using jumpers or a service terminal. Each control output shall be indicated by an LED on a circuit board.

Data Collection

The control system shall maintain accumulative operating hours of compressor, reheat, humidifier, fan motor, Econ-O-Coil, and heat rejection. The sixty most recent alarms shall also be retained.

Graphing

The control shall display the following graphical data:

Temperature, humidity, analog inputs Component operating status by hour Operating status

Communications

The microprocessor shall be compatible with all Liebert remote monitoring and control devices.

2.1.6 Infrared Humidifier (Standard)

The humidifier shall be of the infrared type consisting of high intensity quartz lamps mounted above and out of the water supply. The evaporator pan shall be stainless steel and arranged to be serviceable without disconnecting water supply lines, drain lines or electrical connections. The complete humidifier section shall be pre-piped ready for final connection. The infrared humidification system shall use bypass air to prevent over-humidification of the controlled space. The auto flush system shall automati-

cally flush deposits from the humidifier pan. The system shall be field adjustable to change the cycle time to suit local water conditions. The humidifier shall have a capacity of _____ lbs/hr (kg/h).

2.1.7 Steam Generating Humidifier (Optional)

The environmental control system shall be equipped with a steam generating humidifier that is controlled by the microprocessor control system. It shall be complete with disposable canister, all supply and drain valves, steam distributor, and electronic controls. The need to change canister shall be annunciated on the microprocessor control panel. The humidifier shall have a capacity of _____ lbs/hr (kg/h).

2.1.8 Electric Reheat (Standard)

The low-watt density, 304/304, stainless steel, finned-tubular electric reheat coils shall be capable of maintaining room dry bulb conditions when the system is calling for dehumidification. The reheat section shall include UL approved safety switches to protect the system from overheating. The capacity of the reheat coils shall be _____ BTU/HR (kW), ____ kW, controlled in _____ stage(s).

2.1.9 Hot Water Reheat (Optional)

The hot water reheat coil shall have copper tubes and aluminum fins with a capacity of ______ BTU/HR (kW) when supplied with _____ °F (°C) entering water temperature at _____ GPM (l/s) flow rate. Maximum pressure drop shall be _____ PSI (kPa). The control system shall be factory pre-piped with a 2-way motorized control valve and cleanable Y-strainer.

2.1.10 SCR Electric Reheat (Optional)

The SCR (Silicon Controlled Rectifier) controller shall proportionally control the stainless steel reheats to maintain the selected room temperature. The rapid cycling made possible by the SCR controller provides precise temperature control, and the more constant element temperature improves heater life. The capacity of the reheat coils shall be ______ BTU/HR (kW).

2.1.11 Floor Stand (Optional)

The floor stand shall be constructed of a heliarc-welded tubular steel frame. The floor stand shall be coated using an autodeposition process to protect against corrosion. The floor stand shall have adjustable legs with vibration isolation pads. The floor stand shall be: 9 in. (23cm), 12 in. (30cm), 15 in. (38cm), 18 in. (46cm), 21 in. (53cm), 24 in. (61cm) high.

2.1.12 Turning Vane (Optional)

The turning vane shall be designed to mount in the factory supplied floor stand and direct air either to the front or rear of the unit.

2.1.13 Plenum (Optional)

The unit shall be supplied with a (2 way) (3 way) (4 way) (ducted) air discharge plenum. The plenum shall be 18 in. (457mm) high, insulated and powder painted the same color as the room unit.

2.1.14 Disconnect Switch, Non-Locking Type (Optional)

The manual disconnect switch shall be mounted in the high voltage section of the electrical panel. The switch shall be accessible with the door closed.

2.1.15 Disconnect Switch, Locking Type (Optional)

The manual disconnect switch shall be mounted in the high voltage section of the electrical panel. The switch shall be accessible from the outside of the unit with the door closed, and prevent access to the high voltage electrical components until switched to the "OFF" position.

2.1.16 Remote Sensors (Optional)

The unit shall be supplied with remote temperature and humidity sensors. The sensors shall be connected to the unit by a 30 ft. (9m), 60 ft. (18m), 90 ft. (27m), 120 ft. (36m), 150 ft. (45m) shielded cable.

2.1.17 Firestat (Optional)

The firestat shall immediately shut down the system when high temperatures are detected. The firestat shall be mounted in the electrical panel with the sensing element in the return air.

2.1.18 Smoke Detector (Optional)

The smoke detector senses the return air, shuts down the unit upon detection, and sends visual and audible alarm. Dry contacts are available for a remote customer alarm. This smoke detector is not intended to function as or replace any room smoke detection system that may be required by local or national codes.

2.1.19 Condensate Pump (Optional)

The condensate pump shall have the capacity of ____ GPH (l/h) at ____ ft. (m) head @ ____ V - ___ Hz. It shall be complete with (single) (dual) integral float switch, pump, motor assembly, and reservoir.

2.2 Direct Expansion Self-Contained Systems

Direct Expansion Coil

The evaporator coil shall have _____ sq.ft. (sq. m) face area, ____ rows deep. It shall be configured as (A) (V) frame and be constructed of copper tubes and aluminum fins and have a maximum face velocity of ____ ft. per minute (m/s) at ____ CFM (CMH). The coil shall be provided with a stainless steel drain pan.

Refrigeration System

The refrigeration system shall consist of a high efficiency scroll compressor, hot gas bypass, pressure safety switches, externally equalized expansion valve, filter drier, refrigerant sight glass and moisture indicator.

2.2.1 Air Cooled Self-Contained Systems

Pump Down Control

A liquid line solenoid valve shall be provided for pump down control.

Crankcase Heater

A crankcase heater shall be provided for additional system protection from refrigerant migration during off cycles.

Propeller Fan Condenser (Standard)

The Liebert manufactured air cooled condenser shall be the low profile, slow speed, direct-drive, propeller-fan type. The condenser shall be constructed of aluminum and contain a copper tube, aluminum fin coil with an integral electric control panel. The system shall be designed for _____ °F (°C) ambient. The air cooled condenser shall have a _____ Volt, ____ phase, ____ Hz power supply.

Fan Speed Control (FSC) Head Pressure Control (Standard)

The winter control system for the air cooled condenser shall be Liebert Fan Speed Control (FSC). The variable speed motor shall turn on at 10% of the supply voltage and modulate in response to head pressure to a full speed of 1050 RPM. It shall be designed with ball bearings, permanent lubrication, and internal overload protection.

The control system shall be complete with transducers, thermostats and electrical control circuit, factory prewired and tested in an integral control panel. The transducer shall automatically sense the head pressure of the compressor and control the variable speed fan on the air cooled condenser to properly maintain the head pressure.

The fan speed control system shall provide positive start-up and operation in ambient temperature as low as -20°F (-29°C). Included with the fan speed control system shall be a solid state winter start kit as an integral feature of the electronic control panel.

Lee-Temp Head Pressure Control (Optional)

The winter control system for the air cooled condenser shall be "Lee-Temp." The Lee-Temp system shall allow startup and positive head pressure control with ambient temperatures as low as -30°F (-34.4°C). The Lee-Temp package shall include: insulated receiver, pressure relief valve for each circuit, head pressure three-way control valve, and rotalock valve for isolating the refrigerant charge. The Lee-Temp receiver shall be factory insulated and mounted ready for the field connection to the air cooled condenser. The Lee-Temp heater shall be (150) (300) ______ Watt and require a separate power supply of (115) (230) ______ Volt, single phase, _____ Hz.

Piggyback Condenser (Optional)

The system shall be supplied with a piggyback condenser (PB). The condenser shall be constructed of steel with frame coated using the autophoretic process, and panels powder coated to protect against corrosion. The coil shall be copper tube with aluminum fins. The heavy duty fan shall be the centrifugal type, double width, double inlet. The 1750 RPM (1450 RPM © 50 Hz) fan motor shall be mounted on an adjustable base, and equipped with an adjustable motor pulley. A Liebert Lee-Temp head pressure control system shall be integral with the unit. The system shall be designed for -30°F (-34.4°C) ambient. The air cooled condenser shall have a ______ Volt, 3 phase, _____ Hz power supply.

Centrifugal Fan Condenser (Optional)

The system shall be supplied with a centrifugal fan condenser (LCC). The condenser shall be constructed of galvanized steel with a copper tube, aluminum fin coil. The heavy duty fan shall be the centrifugal type, double width, double inlet. The 1750 RPM (1450 RPM @ 50 Hz) fan motor shall be mounted on an adjustable base, and equipped with an adjustable motor pulley. A Liebert Lee- Temp head pressure control system shall be field piped to the unit. Electrical controls shall be in a rain-tight enclosure.

The system shall be designed for _____ °F (°C) ambient. The air cooled condenser shall have a _____ Volt, 3 phase, ____ Hz power supply.

2.2.2 Water or Glycol Cooled Self-Contained Systems

Indoor Unit Condenser

The water/glycol system shall be equipped with a coaxial condenser having a total pressure drop of _____ ft. of water (kPa) and a flow rate of ____ GPM (l/s) with ____ °F (°C) entering water/glycol temperature.

2-Way Water Regulating Valve with Bypass (Standard)

The condenser circuit shall be pre-piped with a head-pressure actuated 2-way regulating valve with bypass.

3-Way Water Regulating Valve (Optional)

The condenser circuit shall be pre-piped with a head pressure actuated 3-way regulating valve.

Design Pressure

The condenser water/glycol circuit shall be designed for a pressure of [(150 PSI (1034 kPa)) (350 PSI (2413 kPa))].

Crankcase Heater (Optional)

A crankcase heater is provided to prevent the migration of refrigerant to the compressor during off cycles.

Hot Gas Reheat (Optional)

The complete hot gas reheat system shall include a copper tube, aluminum fin coil, three-way solenoid valve, and refrigerant check valve. The capacity of the coil shall be BTU/HR (kW).

Outdoor Unit

Propeller Fan Drycooler (Standard)

The Liebert manufactured drycooler shall be the low profile, slow speed, direct drive propeller fan type. The drycooler shall be constructed of aluminum and contain a copper tube aluminum fin coil with an integral electric control panel. The drycooler shall be designed for _____ °F (°C) ambient.

Centrifugal Fan Drycooler (Optional)

The system shall be supplied with a centrifugal fan drycooler (LCD). The drycooler shall be constructed of galvanized steel with a copper tube, aluminum fin coil. The heavy duty fan shall be the centrifugal type, double width, double inlet. The 1750 RPM (1450 RPM @ 50 Hz) fan motor shall be mounted on an adjustable base, and equipped with an adjustable motor pulley. A 3-way control valve and thermostat shall maintain the desired fluid temperature. Electrical controls shall be in a rain-tight enclosure. The system shall be designed for _____ °F (°C) ambient. The drycooler shall have a ____ Volt, 3 phase, ____ Hz power supply.

Single Glycol Pump Package (Standard)

This system shall be provided with a centrifugal pump mounted in a weatherproof and vented enclosure. The pump shall be rated for _____ GPM (l/s) at ____ ft. of head (kPa), and operate on _____ Volt, 3 phase, ____ Hz.

Dual Glycol Pump Package (Optional)

The dual pump package shall include pumps, enclosure, and field mounted flow switch. The pumps shall be wired to the drycooler control box which includes a lead/lag switch for the pumps. The standby pump shall automatically start upon failure of the lead pump. Each pump shall be rated _____ for GPM (l/s) at _____ feet of head (kPa).

2.2.3 GLYCOOL Self-Contained Systems GLYCOOL Coil

The GLYCOOL coil shall be constructed of copper tubes and aluminum fins and be located upstream of the evaporator coil. The GLYCOOL coil shall be designed for closed-loop applications using properly treated glycol solutions. The coil shall be rated at _____ BTU/HR (kW) sensible cooling capacity with a 45°F (7.2°C) entering glycol solution temperature. The GLYCOOL coil shall require ____ GPM (l/s) and the total unit pressure drop shall not exceed ____ feet of water (kPa) when in the free cooling mode.

3-Way GLYCOOL Valve

The GLYCOOL coil shall be equipped with a fully proportional 3-way control valve. This motorized control valve shall control the amount of flow to the GLYCOOL coil and maintain constant temperature and relative humidity.

Glycol Condenser

The glycol system shall be equipped with a coaxial condenser having a total pressure drop of _____ feet of water (kPa) and a flow rate of _____ GPM (l/s), with _____ $^{\circ}$ F ($^{\circ}$ C) entering 40% ethylene glycol temperature.

3-Way Water Regulating Valve

The condenser circuit shall be pre-piped with a head pressure actuated 3-way water regulating valve.

Design Pressure

The GLYCOOL coil/condenser circuit shall be designed for a pressure of [(150 PSI (1034 kPa)) (300 PSI (2069 kPa))].

Comparator Circuit

The system shall be equipped with a microprocessorcontrolled comparator sensor that permits free-cooling operation whenever entering glycol temperature is below return-air temperature.

Propeller Fan Drycooler (Standard)

The Liebert manufactured drycooler shall be the low profile, slow speed, direct drive propeller fan type. The drycooler shall be constructed of aluminum and contain a copper tube aluminum fin coil with an integral electric control panel. The drycooler shall be designed for _____ °F (°C) ambient.

Centrifugal Fan Drycooler (Optional)

The system shall be supplied with a centrifugal fan drycooler (LCD). The drycooler shall be constructed of galvanized steel with a copper tube, aluminum fin coil. The heavy duty fan shall be the centrifugal type, double width, double inlet. The 1750 RPM (1450 RPM @ 50 Hz) fan motor shall be mounted on an adjustable base, and equipped with an adjustable motor pulley. A 3-way control valve and thermostat shall maintain the desired fluid temperature. Electrical controls shall be in a rain tight enclosure. The system shall be designed for _____ °F (°C) ambient. The drycooler shall have a ____ Volt, 3 phase, ____ Hz power supply.

Single Glycol Pump Package (Standard)

This system shall be provided with a ce	ntrifugal
pump mounted in a weatherproof and v	ented enclo-
sure. The pump shall be rated for	GPM (l/s) at
ft. of head (kPa), and operate on _	Volt,
3 phase, Hz.	

Dual Glycol Pump Package (Optional)

The dual pump package shall include pumps, enclosure, and field mounted flow switch. The pumps shall be wired to the drycooler control box which includes a lead/lag switch for the pumps. The standby pump shall automatically start upon failure of the lead pump. Each pump shall be rated for _____ GPM (l/s) at _____ feet of head (kPa).

2.3 Direct Expansion Split Systems

Direct Expansion Coil

The evaporator	coil shall have _	sq.ft. (sq. m)
face area,	rows deep. It sh	nall be configured as
(A) (V) frame an	nd be constructed	d of copper tubes and
aluminum fins	and have a maxi	mum face velocity of
ft. per mi	nute (m/s) at	CFM (CMH). The
		inless steel drain
pan.		

Refrigeration System

The refrigeration system shall consist of a rugged scroll compressor, pressure safety switches, externally equalized expansion valve, filter dryer, and a refrigerant sight glass and moisture indicator.

Refrigerant Line Sets (Optional)

Pre-charged refrigerant line sets shall be provided by Liebert in proper lengths for application. Line set length shall be _____ feet (m).

Centrifugal Fan Condensing Unit

The condenser coil shall be constructed of copper tubes and aluminum fins. The condensing unit shall be factory assembled, charged with refrigerant and sealed.

Components shall include scroll compressor, highpressure switch, Lee-temp refrigerant receiver, head pressure control valve, and liquid line solenoid valve.

The condensing unit shall be designed for 95°F (35°C) ambient and be capable of operation to -20°F (-29°C) ambient.

A hot gas bypass circuit shall be provided to reduce compressor cycling and improve operation under low load conditions.

The condenser fan shall	be designed for
CFM (CMH) at	inches (mm) externa
static pressure.	

(Optional) Disconnect

Factory installed non-fused disconnect switch allows unit to be turned off for maintenance.

3-Ton Models

The condensing module shall be capable of being connected to the evaporator section using pre-charged refrigerant line sets. No brazing, dehydration, or charging shall be required. The fan/motor assembly shall be direct drive.

5-Ton Models

The fan/motor assembly shall be belt drive. Condensing unit must be hard piped with the evaporator. Sweat adapters are shipped loose with all 5 ton evaporators for use on the 5 ton condensing units.

Propeller Fan Condensing Unit

The condenser coil shall be constructed of copper tubes and aluminum fins with a direct drive propeller type fan and shall include a scroll compressor, high pressure switch, Lee-temp receiver, head pressure control valve, and liquid line solenoid valve. All components shall be factory assembled, charged with refrigerant and sealed. No brazing, dehydration, or charging shall be required. Condensing unit shall be designed for 95°F (35°C) ambient and be capable of operation to -30°F (-34.4°C).

A hot gas bypass circuit shall be provided to reduce compressor cycling and improve operation under low load conditions.

(Optional) Quiet-Line Models

The condensing unit shall be designed to operate at a sound level less then 58 dBa.

(Optional) High Ambient Models

The outdoor condensing unit shall be designed for design ambient operation of 105°F (40.6°C).

3-Ton Models

The condensing module shall be capable of being connected to the evaporator section using pre-charged refrigerant line sets. No brazing, dehydration, or charging shall be required.

5-Ton Models

Condensing unit must be hard piped with the evaporator. Sweat adapters are shipped loose with all 5 ton evaporators for use on the 5 ton condensing units.

2.3.1 Water or Glycol Cooled Split Systems Water or Glycol Cooled Condensing Unit

The water/glycol condensing unit shall be equipped with a coaxial condenser having a total system pressure drop of _____ ft. of water (kPa) and a flow rate of ____ GPM (l/s) with _____ °F (°C) entering water/glycol temperature.

Components shall include scroll compressor and high-pressure switch. The condensing unit shall be factory charged with R-22 refrigerant.

The condenser circuit shall be pre-piped with a [(2-way) (3-way)] regulating valve which is head-pressure actuated.

The condenser water/glycol circuit shall be designed for a static operating pressure of [(150 PSI (1034 kPa)) (350 PSI (2413 kPa))].

A hot gas bypass circuit shall be provided to reduce compressor cycling and improve operation under low load conditions.

(Optional) Disconnect

Factory installed non-fused disconnect switch allows unit to be turned off for maintenance.

3-Ton Models

The condensing module shall be capable of being connected to the evaporator section using pre-charged refrigerant line sets. No piping, brazing, dehydration, or charging shall be required.

5-Ton Models

Condensing unit must be hard piped with the evaporator. Sweat adapters are shipped loose with all 5 ton evaporators for use on the 5 ton condensing units.

Propeller Fan Drycooler (Standard)

The Liebert manufactured drycooler shall be the low profile, slow speed, direct drive propeller fan type. The drycooler shall be constructed of aluminum and contain a copper tube aluminum fin coil with an integral electric control panel. The drycooler shall be designed for $___$ °F (°C) ambient.

Centrifugal Fan Drycooler (Optional)

The system shall be supplied with a centrifugal fan drycooler (LCD). The drycooler shall be constructed of galvanized steel with a copper tube, aluminum fin coil. The heavy duty fan shall be the centrifugal type, double width, double inlet. The 1750 RPM (1450 RPM @ 50 Hz) fan motor shall be mounted on an adjustable base, and equipped with an adjustable motor pulley. A 3- way control valve and thermostat shall maintain the desired fluid temperature. Electrical controls shall be in a rain tight enclosure. The system shall be designed for _____ °F (°C) ambient. The drycooler shall have a ____ Volt, 3 phase, ____ Hz power supply.

Single Glycol Pump Package (Standard)

This system shall be provided with a centrifugal
pump mounted in a weatherproof and vented enclo
sure. The pump shall be rated for GPM (l/s) at
ft. of head (kPa), and operate on Volt,
3 phase, Hz.

Dual Glycol Pump Package (Optional)

The dual pump package shall include pumps, enclosure, and field mounted flow switch. The pumps shall be wired to the drycooler control box which includes a lead/lag switch for the pumps. The standby pump shall automatically start upon failure of the lead pump. Each pump shall be rated for ____ GPM (l/s) at ____ feet of head (kPa).

2.4 Chilled Water Self-Contained Systems Chilled Water Coil

The cooling coil shall have a minimum of sq. ft.
(sq. m) face area, rows deep. The coil shall be
controlled by a modulating control valve. The chilled
water coil shall be designed for closed-loop applica-
tions using properly maintained water. It shall be
configured as an (A) (V) frame and be constructed of
copper tubes and aluminum fins and have a maxi-
mum face velocity of ft. per minute (m/s) at
CFM (CMH). The water circuit shall be
designed to distribute water into the entire coil face
area. The coil shall be supplied with °F (°C)
entering water temperature, with a °F (°C)
temperature rise. The coil shall be supplied with
GPM (m/s) of chilled water and the pressure
drop shall not exceed PSI (kPa). The coil
assembly shall be mounted in a stainless steel con-
densate drain pan.

3-Way Chilled Water Valve (Standard)

The water circuit shall include a 3-way modulating valve. The microprocessor control shall position the valve in response to room conditions. Cooling capacity will be controlled by bypassing chilled water around the coil.

2-Way Chilled Water Valve (Optional)

The water circuit shall include a 2-way modulating valve. The microprocessor control shall position the valve in response to room conditions. The minimum close-off pressure of the valve/actuator assembly shall be _____ PSI (kPa).

Design Pressure

The chilled water circuit shall be designed for a pressure of [(150 PSI (1034 kPa)) (400 PSI (2758 kPa))].

Flow Switch (Optional)

The flow switch shall activate the alarm system should the chilled water supply be interrupted. The switch shall be factory mounted and wired.

2.5 Comprehensive Monitoring Solutions

(For detailed Guide Specifications on these products, refer to information posted at www.liebert.com)

SiteScan Web System

SiteLink Module

OpenComms Nform

OpenComms NIC & Web Card (OC-NIC & OC-Web Card)

Environmental Discrete Outputs Card (ENV-DO)

Remote Contact Monitor

RCM4

Autochangeover Controllers

- AC3
- RAC2-8

Universal Monitor

Leak Detection

- · Direct Read Module
- Zone Sensor
- Spot Sensor

3.0 EXECUTION

3.1 Installation of Environmental Control Units

3.1.1 General

Install environmental control units in accordance with manufacturer's installation instructions. Install units plumb and level, firmly anchored in locations indicated, and maintain manufacturer's recommended clearances.

3.1.2 Electrical Wiring

Install and connect electrical devices furnished by manufacturer but not specified to be factory mounted. Furnish copy of manufacturer's electrical connection diagram submittal to electrical contractor.

3.1.3 Piping Connections

Install and connect devices furnished by manufacturer but not specified to be factory mounted. Furnish copy of manufacturer's piping connection diagram submittal to piping contractor.

3.1.4 Supply and Drain Water Piping

Connect water supply and drains to air conditioning unit. Provide pitch and trap as manufacturer's instructions and local codes require.

3.2 Field Quality Control

Start up environmental control units in accordance with manufacturer's start up instructions. Test controls and demonstrate compliance with requirements.

Ensuring The High Availability Of Mission-Critical Data And Applications.

Emerson Network Power, the global leader in enabling business-critical continuity, ensures network resiliency and adaptability through a family of technologies—including Liebert power and cooling technologies—that protect and support business-critical systems. Liebert solutions employ an adaptive architecture that responds to changes in criticality, density and capacity. Enterprises benefit from greater IT system availability, operational flexibility and reduced capital equipment and operating costs.

Technical Support / Service Web Site

www.liebert.com

Monitoring 800-222-5877

monitoring@emersonnetworkpower.com Outside the US: 614-841-6755

Single-Phase UPS

800-222-5877

upstech@emersonnetworkpower.com Outside the US: 614-841-6755

Three-Phase UPS

800-543-2378

powertech@emersonnetworkpower.com

Environmental Systems

800-543-2778

Outside the United States

614-888-0246

Locations United States

1050 Dearborn Drive P.O. Box 29186 Columbus, OH 43229

Europe

Via Leonardo Da Vinci 8 Zona Industriale Tognana 35028 Piove Di Sacco (PD) Italy +39 049 9719 111

Fax: +39 049 5841 257

Asia

7/F, Dah Sing Financial Centre 108 Gloucester Road, Wanchai Hong Kong 852 2572220

EmersonNetworkPower.com

Fax: 852 28029250

While every precaution has been taken to ensure the accuracy and completeness of this literature, Liebert Corporation assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

© 2006 Liebert Corporation

All rights reserved throughout the world. Specifications subject to change without notice.

® Liebert and the Liebert logo are registered trademarks of Liebert Corporation. All names referred to are trademarks or registered trademarks of their respective owners.

SL-11915_REV1_08-06

Emerson Network Power.

The global leader in enabling Business-Critical Continuity™.

AC Power Systems

Embedded Computing
Embedded Power

Outside Plant

Services

Connectivity

DC Power Systems

Integrated Cabinet Solutions

Power Switching & Control

Precision Cooling

Site Monitoring

Surge Protection

Business-Critical Continuity, Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co.

©2006 Emerson Electric Co.