

Liebert® DSE Thermal Management System

System Design and User Guide

Downflow, 250 kW (71 ton) and 265 kW (75 ton) Capacity, 50 and 60 Hz

The information contained in this document is subject to change without notice and may not be suitable for all applications. While every precaution has been taken to ensure the accuracy and completeness of this document, Vertiv assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Refer to local regulations and building codes relating to the application, installation, and operation of this product. The consulting engineer, installer and/or end user is responsible for compliance with all applicable laws and regulations relating to the application, installation, and operation of this product.

The products covered by this instruction manual are manufactured and/or sold by Vertiv. This document is the property of Vertiv and contains confidential and proprietary information owned by Vertiv. Any copying, use or disclosure of it without the written permission of Vertiv is strictly prohibited.

Names of companies and products are trademarks or registered trademarks of the respective companies. Any questions regarding usage of trademark names should be directed to the original manufacturer.

Technical Support Site

If you encounter any installation or operational issues with your product, check the pertinent section of this manual to see if the issue can be resolved by following outlined procedures.

Visit https://www.vertiv.com/en-us/support/ for additional assistance.

TABLE OF CONTENTS

1 Important Safety Instructions	. 1
2 Nomenclature and Components	. 9
2.1 Liebert® DSE Model Number Nomenclature	. 9
2.2 Component Location	. 12
2.3 Cooling Configurations	. 12
2.4 Blower Configurations	. 13
3 System Data	. 15
3.1 Capacity and Performance Data	. 15
3.2 Physical Data	23
4 Pre-installation Preparation and Guidelines	. 25
4.1 Planning Dimensions	.26
4.2 Connections and System Setup	.26
4.3 Operating Conditions	. 27
4.3.1 Humidification Control	. 27
4.4 Shipping Dimensions and Unit Weights	27
5 Equipment Inspection and Handling	29
5.1 Packaging Material	. 30
5.2 Handling the Unit while Packaged	.30
5.3 Unpacking the Unit	. 31
5.4 Removing the Unit from the Skid	. 32
5.5 Unpacking and Handling the Fan Section	. 35
5.6 Placing the Unit on a Floor Stand	. 35
6 Electrical Requirements	. 37
6.1 Indoor Unit Electrical Power Requirements	. 37
6.2 Electrical Field Connections	. 39
7 Piping and Refrigerant Requirements	.43
7.1 Drain Fluid Piping	.44
7.1.1 Field Installed, Gravity Fed Drain Line Requirements	.45
7.1.2 Condensate Pump Drain Line Requirements	47
7.2 Refrigerant Piping and Charging	.48
7.2.1 Refrigerant Piping Guidelines for Air Cooled Systems	. 49
7.2.2 Refrigerant Line Sizes and Equivalent Lengths	50
7.2.3 Refrigerant Charge Requirements for Air Cooled Systems	. 52
7.2.4 Additional Oil Requirements for Scroll and Digital Scroll Compressors	. 53
7.2.5 Evacuation, Leak Testing, and Charging Air Cooled Systems	. 55
8 Heat Rejection Skid	. 63
8.1 Planning Dimensions	63

8.2 Vertiv™ Liebert® MCV Match-up Selections	63
8.3 Vertiv™ Liebert® MCV Electrical Power Requirements	63
9 Checklist for Completed Installation	65
9.1 Moving and Placing Equipment	65
9.2 Electrical Installation Checks	65
9.3 Piping Installation Checks	65
9.4 Other Installation Checks	65
10 Initial Start-up Checks and Commissioning Procedure for Warranty Inspection	69
11 Maintenance	71
11.1 Filters	72
11.1.1 Replacing the Filters	73
11.2 Fan Maintenance	73
11.2.1 Fan Assembly Troubleshooting	73
11.2.2 Fan Impellers	74
11.2.3 Blower Motor Lubrication	74
11.2.4 Removing Fan Assembly	74
11.3 Condensate Drain and Condensate Pump System Maintenance	74
11.3.1 Condensate Drain	74
11.3.2 Condensate Pump	75
11.4 Electronic Expansion Valve (EEV) Maintenance	75
11.5 Compressor Maintenance	76
11.5.1 Compressor Oil	76
11.5.2 Replacement Compressors	76
11.5.3 Rotalock Valve on Digital Scroll Compressors (model digit 10 = T or P)	76
11.5.4 Unloading Solenoid(s) on a Digital Scroll Compressor	77
11.5.5 Compressor Electrical Failure (Motor Burnout)	77
11.5.6 Replacing a Compressor with Electrical Failure (Motor Burnout)	78
11.5.7 Compressor Mechanical Failure	
11.5.8 Replacing a Compressor with Mechanical Failure - Unit with Rotalock Valves (model digit 10 = T or P) \dots	79
11.5.9 Replacing a Compressor with Mechanical Failure - Unit without Rotalock Valves (model digit 10 = W, N, R,	
E)	
11.6 Evaporator Coil	
11.7 Air Cooled Condenser Maintenance	
12 Preventive Maintenance Checklist	
Appendices	89
Appendix A: Technical Support and Contacts	
Appendix B: Submittal Drawings	91
Appendix C: Seismic Submittal Drawings	
Appendix D: Guide Specifications	95

1 Important Safety Instructions

SAVE THESE INSTRUCTIONS

This manual contains important safety instructions that should be followed during the installation and maintenance of the Vertiv[™] Liebert[®] DSE. Read this manual thoroughly before attempting to install or operate this unit.

Only qualified personnel should move, install or service this equipment.

Adhere to all warnings, cautions, notices and installation, operating and safety instructions on the unit and in this manual. Follow all installation, operation and maintenance instructions and all applicable national and local building, electrical and plumbing codes.

WARNING! Arc flash and electric shock hazard. Can cause serious injury or death. Building and equipment damage may also result. Disconnect all local and remote electric power supplies and wear appropriate, OSHA-approved personal protective equipment (PPE) per NFPA 70E before working within the electric control enclosure. Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable.

Verify with a voltmeter that power is Off. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components still require and receive power even during the "Unit Off" mode of the Liebert[®] iCOM[™] controller. The factory-supplied, optional disconnect switch is inside the unit. The line side of this switch contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch. Refer to unit electrical schematic.

Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power. Follow all local codes.

WARNING! Risk of electric shock. Can cause serious injury or death. Building and equipment damage may also result. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components require and receive power even during the "unit off" mode of the Liebert[®] iCOM[™] controller.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

WARNING! Risk of short circuits and electric shock. Can cause serious injury or death. Building and equipment damage can result from cut insulation or damaged wires. Can cause overheated wiring, smoke, fire, activation of fire suppression systems and EMS personnel, and loss of power to fans. Verify that all wiring connections are tight and that all wiring is contained within the junction box prior to closing and securing the cover.

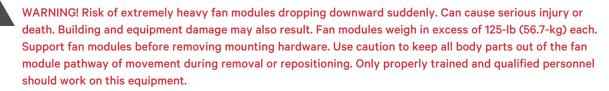
Insert CSA-certified or UL-listed bushings into holes and/or knockouts used to route wiring through metal panels to protect the wire insulation from contact with sheet metal edges.

WARNING! Risk of improper wire sizing/rating and loose electrical connections causing overheated wire and electrical connection terminals resulting in smoke or fire. Can cause serious injury or death. Building and equipment damage may also result. Use correctly sized copper wire only and verify that all electrical connections are tight before turning power On. Check all electrical connections periodically and tighten as necessary.

WARNING! Risk of contact with high-speed rotating fan blades. Can cause serious injury or death. Open all local and remote electric power-supply disconnect switches, verify with a voltmeter that power is off, and verify that all fan blades have stopped rotating before working in the unit cabinet or on the fan assembly. If control voltage is applied, the fan motor can restart without warning after a power failure. Do not operate the unit with any or all cabinet panels removed.

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

WARNING! Risk of explosive discharge of high-pressure refrigerant. Can cause serious injury or death. Building and equipment damage may also result. Neutral and service ports on the compressor service valves do not have a valve core. Front-seat the service valves and relieve pressure from the compressor before loosening a part or a component attached to the service valve. Follow local codes to properly reclaim refrigerant.


WARNING! Risk of improper wiring, piping, moving, lifting and handling. Can cause serious injury or death. Building and equipment damage may also result. Installation and service of this equipment should be done only by qualified personnel who have been specially-trained in the installation of air-conditioning equipment and who are wearing appropriate, OSHA-approved PPE.

WARNING! Risk of improper moving. Can cause serious injury or death. Building and equipment damage may also result. Use only lifting equipment that is rated for the unit weight by an OSHA-certified rating organization. The center of gravity varies depending on the unit size and selected options. The slings must be equally spaced on either side of the center of gravity indicator. Shipping weights and unit weights are listed in **Table 4.2** on page 27 and **Table 4.3** on page 27. Use the center of gravity indicators on the unit to determine the position of the slings.

WARNING! Risk of improper lifting. Can cause serious injury or death. Building and equipment damage may also result. A spreader bar or equivalent must be used when rigging to ensure the lifting force is completely vertical at these fasteners. Lift points are rated for lifting this section only. Do not lift assembled sections from these lift points. WARNING! Risk of top-heavy unit falling over when improperly lifted or moved. Can cause serious injury or death. Building and equipment damage may also result. Read all of the following instructions and verify that all lifting and moving equipment is rated for the weight of the unit before attempting to move, lift, remove packaging from or prepare the unit for installation. Unit weights are specified in **Table 4.2** on page 27 and **Table 4.3** on page 27.

More than one person may be required to complete the assembly and installation. Installer(s) must be properly trained and qualified to lift, move and manipulate very heavy equipment from floor level to the top of the unit. Wear appropriate, OSHA-approved PPE when moving, lifting, installing, and removing the fan(s) and plenum. Read and follow the lifting equipment and/or ladder manufacturer's operating instructions and safety requirements.

WARNING! Risk of contact with sharp edges, exposed fasteners, and improper handling of very heavy parts. Can cause serious injury or death. Building and equipment damage may also result. Use extreme caution, wear appropriate, OSHA-approved PPE, and install the EC fan(s) and plenum to the unit only as described in these instructions.

More than one person may be required to complete the assembly and installation. Installer(s) must be properly trained and qualified to lift, move and manipulate very heavy equipment from floor level to the top of the unit.

Wear appropriate, OSHA-approved PPE when moving, lifting and installing the fan(s) and plenum.

Equipment used in moving, lifting and installing the fan(s) and plenum must meet OSHA requirements and be rated for the weight of the fan(s) and the plenum. If ladders are used, verify that they are rated for the combined weight of the fan(s), plenum and installer(s) as loaded. EC Fan and plenum weights are specified in **Table 4.2** on page 27 and **Table 4.3** on page 27.

Read and follow the lifting equipment and/or ladder manufacturer's operating instructions and safety requirements.

CAUTION: Risk of excessive refrigerant line pressure. Can cause equipment damage or injury resulting from tubing and component rupture. Do not close off the refrigerant-line isolation valve for repairs unless a pressure-relief valve is field- installed in the line between the isolation valve and the check valve. The pressure-relief valve must be rated 5% to 10% higher than the system-design pressure. An increase in ambient temperature can cause the pressure of the isolated refrigerant to rise and exceed the system-design pressure rating (marked on the unit nameplate).

CAUTION: Risk of contact with sharp edges, splinters, and exposed fasteners. Can cause injury. Only properly trained and qualified personnel wearing appropriate, OSHA-approved PPE should attempt to move, lift, remove packaging from or prepare the unit for installation.

CAUTION: Risk of contact with hot surfaces. Can cause injury. Personal burn injury can be the result of touching a compressor, refrigerant discharge lines, and some electrical components that are extremely hot during unit operation. Allow sufficient time for them to cool to a touch-safe temperature before working within the unit cabinet.

Use extreme caution and wear appropriate, OSHA-approved PPE when working on or near hot components.

CAUTION: Risk of improper handling heavy and lengthy parts. Can cause injury. Building and equipment damage may also result. Cabinet panels can exceed 5 ft. (1.5 m) in length and weigh more than 35 lb (15.9 kg). Follow relevant OSHA lifting recommendations and consider using a two-person lift for safe and comfortable removal and installation of cabinet panels. Only properly trained and qualified personnel wearing appropriate, OSHA-approved PPE should attempt to remove or install cabinet panels.

CAUTION: Risk of improper moving, lifting and handling. Can cause injury. Building and equipment damage may also result. Only properly trained and qualified personnel should work on this equipment. Evaporator fan modules weigh in excess of 125-Ib (56.7-kg). Use proper lifting techniques and wear appropriate OSHA-approved PPE to avoid injury and dropping the fan module during removal. Equipment used in handling/lifting, and/or installing the fan assembly must meet OSHA requirements. Use handling/lifting equipment rated for the weight of the fan assembly. Use ladders rated for the weight of the fan assembly and technicians if used during installation. Refer to handling/lifting, and/or installation equipment operating manual for manufacturer's safety requirements and operating procedures.

CAUTION: Risk of heavy unit falling into defective raised floor. Can cause injury and equipment damage. Prior to installation, all floor tiles immediately around floor stand are to be removed and inspected. Make sure tiles are not cracked, and ribs have not been cut. If free from defects, re-install. Replace with new tiles if defects are found.

CAUTION: Risk of contact with hot surfaces. Can cause injury. Personal burn injury can be the result of touching an electronics housing, fan motor, and some electrical components that are extremely hot during unit operation. Allow sufficient time for them to cool to a touch-safe temperature before working within the unit cabinet.

Use extreme caution and wear appropriate, OSHA-approved PPE when working on or near hot components, including when replacing or performing maintenance on the fans.

CAUTION: Risk of exposure to harmful noise levels. Can cause hearing injury or loss. Depending on the installation and operating conditions, a sound pressure level greater than 70 dB(A) may arise. Take appropriate technical safety measures. Operating personnel must wear appropriate, OSHA-approved PPE and observe all appropriate hearing protection safety requirements.

NOTICE

Risk of improper electrical connection of three-phase input power. Can cause backward compressor rotation and unit damage. Service technicians should use a gauge set on the system during the initial start up to verify that the three-phase power is connected properly. The EC fans are not a reliable indicator of proper connection. The blowers will rotate the same direction, regardless of the three phase power input. Three phase power must be connected to the unit line voltage terminals in the proper sequence so that the compressors rotate in the proper direction. Incoming power must be properly phased to prevent compressors from running backward. We recommend checking the unit's phasing with proper instrumentation to ensure that the power connections were made correctly. We also recommend verifying discharge and suction pressures during start up to ensure that the compressors are running in the correct direction.

NOTICE

Risk of improper power supply connection. Can cause equipment damage and loss of warranty coverage.

Prior to connecting any equipment to a main or alternate power source (for example: backup generator systems) for startup, commissioning, testing, or normal operation, ensure that these sources are correctly adjusted to the nameplate voltage and frequency of all equipment to be connected. In general, power source voltages should be stabilized and regulated to within ±10% of the load nameplate nominal voltage. Also, ensure that no three phase sources are single phased at any time.

NOTICE

Risk of oil contamination with water. Can cause equipment damage.

Vertiv[™] Liebert[®] DSE systems require the use of POE (polyolester) oil. POE oil absorbs water at a much faster rate when exposed to air than previously used oils. Because water is the enemy of a reliable refrigeration system, extreme care must be used when opening systems during installation or service. If water is absorbed into the POE oil, it will not be easily removed and will not be removed through the normal evacuation process. If the oil is too wet, it may require an oil change. POE oils also have a property that makes them act as a solvent in a refrigeration system. Maintaining system cleanliness is extremely important because the oil will tend to bring any foreign matter back to the compressor.

NOTICE

Risk of improper refrigerant charging. Can cause equipment damage.

Refrigerant charge must be weighed into air cooled compressorized systems before they are started. Starting digital scroll compressors without proper refrigerant charging can cause the compressors to operate at less than 15°F (-9.4°C) evaporator temperature and at less than 70 psig (483 kPa). Operation for extended periods at less than 70 psig (483 kPa) can cause premature compressor failure.

NOTICE

Risk of clogged or leaking drain lines. Can cause equipment and building damage.

This unit requires a water drain connection. Drain lines must be inspected at start-up and periodically, and maintenance must be performed to ensure that drain water runs freely through the drain system and that lines are clear and free of obstructions and in good condition with no visible sign of damage or leaks. This unit may also require an external water supply to operate.

Improper installation, application and service practices can result in water leakage from the unit. Water leakage can result in catastrophic and expensive building and equipment damage and loss of critical data center equipment.

Do not locate unit directly above any equipment that could sustain water damage.

We recommend installing a monitored fluid detection system to immediately discover and report condensate drain line leaks.

NOTICE

Risk of water backing up in the drain line. Leaking and overflowing water can cause equipment and building damage.

Do not install an external trap in the drain line. This line already has a factory-installed trap inside the cabinet. Installation of a second trap will prevent drain-water flow and will cause the water to overflow the drain pan.

Sagging condensate drain lines may inadvertently create an external trap.

NOTICE

Risk of passageway interference. Can cause unit and/or structure damage. The unit may be too large to fit through a passageway while on or off the skid. Measure the unit and passageway dimensions, and refer to the installation plans prior to moving the unit to verify clearances.

NOTICE

Risk of damage from forklift. Can cause unit damage. Keep tines of the forklift level and at a height suitable to fit below the skid and/or unit to prevent exterior and/or underside damage.

NOTICE

Risk of improper storage. Can cause unit damage.

Keep the unit upright, indoors and protected from dampness, freezing temperatures and contact damage.

NOTICE

Risk of improper control circuits. Can cause equipment damage.

When using jumpers for troubleshooting, always remove jumpers when maintenance is complete. Jumpers left connected could override controls and cause equipment damage.

NOTICE

Risk of improper filter installation. Can cause filter collapse and airflow reduction.

NOTICE

Vertiv[™] Liebert[®] DA250-265 cannot be operated below 25% load. Operating units below 25% load can have detrimental effects on compressor longevity and reliability. The failure of a compressor increases with low load conditions due to short run time and frequent cycling. Compressor warranty claims are subject to rejection if the unit has been operating below the minimum load of 25%.

NOTICE

Condenser fans should be operated manually if they have not run for an extended time in an outdoor environment. Before enabling the condenser for normal cooling operation fans should be run at full speed for at least three hours once a month to move the bearings and allow any condensate that may have ingressed to evaporate.

Condenser firmware release 1.06.042 & later includes settings to operate condenser fans if they have been inactive for more than 30 days.

NOTICE

Risk of improper component re-installation. Can cause equipment damage.

Identify and mark location of suction pressure transducer and discharge pressure switch. These devices look similar and they must be reinstalled in their original location.

NOTE: The Liebert[®] indoor cooling unit has a factory installed, high pressure safety switch in the high side refrigerant circuit. Each refrigerant receiver contains a fusible plug for fire safety purposes. Consult your local building code to determine whether the refrigerant piping will require additional, field provided pressure relief devices.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

2 Nomenclature and Components

This section describes the model number for Vertiv™ Liebert® DSE units and components.

2.1 Liebert® DSE Model Number Nomenclature

 Table 2.2
 on page 11 describes each digit of the model number.

Table 2.1 Liebert® DSE Model Number

		N	/lodel	Numbe	ər Digit	s 1 to '	10							Ма	del Det	ails					Mod	el Num to	ber Digi 14	its 11
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
D	А	2	5	0	D	Ρ	3	A	Т	0	2	0	8	1	1	L	0	В	0	Ρ	1	2	3	S

Digit	Description
Digits 1 and 2 = Proc	duct Family
DA	= Liebert® DSE
Digit 3, 4, 5 = Nomin	nal Cooling Capacity, kW
250) = 250 kW
265	5 = 265 kW
Digit 6 = Air Dischar	rge
D =	Downflow, bottom discharge
H =	Downflow, horizontal discharge
Digit 7 = System Typ	pe
P =	Air cooled, Econ-O-Phase ready
Digit 8 = Airflow (Fa	an Type)
3 =	Direct-drive + VFD (plenum)
Digit 9 = Voltage	
A =	460 V - 3 ph - 60 Hz
B =	575 V - 3 ph - 60 Hz
G =	415 V - 3 ph - 50 Hz
*For	r applications that require less than 400 V/3 ph/50 Hz, please consult your local sales office for assistance.

Digit	Description
Digit 10 = Coc	ling System
	T = Tandem with digital scroll, R-410A
	P = Tandem with digital scroll, R-410A with Power Factor Correction
	W = Tandem with digital scroll, R-410A with Oil Separator
	N = Tandem with digital scroll, R-410A with Power Factor Correction with Oil Separator
	R = Tandem with digital scroll, R-410A without Oil Separator
	E = Tandem with digital scroll, R-410A with Power Factor Correction without Oil Separator
	Notes:
	W, N , R, and E are options without Rotolock Fittings.
	Indoor unit with compressor options (W, N, R, E) can be paired with MCV440 (1 to 2 floor building), R410A.
	For applications for multi-floor buildings use MCV430 +DA250 (W, N, R, E) or DA265 (W, N, R, E), R410A.
Digit 11 = Hun	nidifier
	0 = No humidifier
Digit 12 = Disp	play
	2 = Liebert® iCOM™ (High Definition)
Digit 13 = Reh	eat
	0 = None
Digit 14 = Air	Filter
	8 = MERV 8, 4 in .
	9 = MERV 11, 4 in .
Digit 15 = Coil	Option
	1 = Non-coated coil, indoor unit
	2 = Coated coil, indoor unit
Digit 16 = Enc	losure Option
	1 = Color standard
	2 = Color optional

Table 2.2 Liebert® DSE Model Number Digit Definitions (continued)

Digit	Description
Digit 17 =	High voltage option
	L = Locking disconnect
	5 = Locking disconnect, with condensate pump
	S = Dual locking disconnect, with reversing starter and condenser subfeed
	9 = Dual locking disconnect, with reversing starter, with condensate pump and condenser subfeed
	R = Dual locking disconnect, with reversing starter and condenser subfeed
	7 = Dual locking disconnect, with reversing starter, with condensate pump and condenser subfeed
	Y = Dual locking disconnect, with reversing starter and condenser subfeed
	6 = Dual locking disconnect, with reversing starter, with condensate pump and condenser subfeed
	Notes:
	Indoor unit with compressor options (L, 5, S, 9) to be paired with MCV440, R410A.
	Indoor unit with compressor options (R, 7) to be paired with MCV430 Standard Fans, 410A.
	Indoor unit with compressor options (Y, 6) to be paired with MCV430 High Airflow Fans, 410A.
Digit 18 =	Option packages
	O = None
	L = Option package #1 - low voltage terminal package contact
	D = Low Voltage Terminal Package and Remote Humidifier Contact
Digit 19 =	Monitoring
	B = Base comms and connectivity
Digit 20 =	Sensors
	O = None
	H = High Temperature Sensor
	S = Smoke Sensor
	F = Smoke Sensor and High Temperature Sensor
Digit 21 =	Packaging
	P = Domestic
	C = Export
Digit 22-2	4 = Factory Configuration Number
Digit 25 =	Configuration Code
	A = No SFAs (Any alpha letter except S)
	S = Special feature authorization (SFA). A non-standard configuration or feature of the product that requires the local factory representative to work directly with the factory.

Table 2.2 Liebert® DSE Model Number Digit Definitions (continued)

2.2 Component Location

The unit component locations are described in the submittal documents included in the Submittal Drawings on page 91.

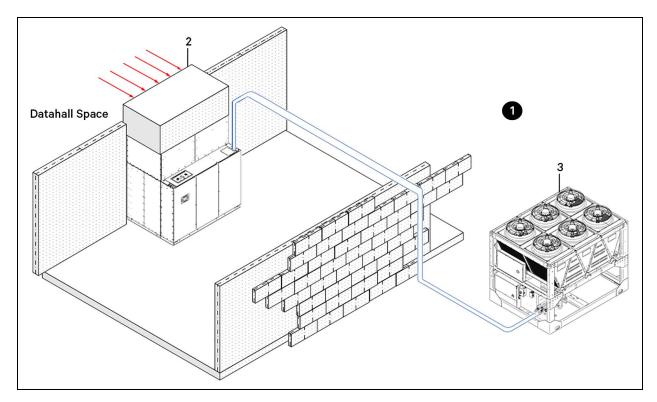
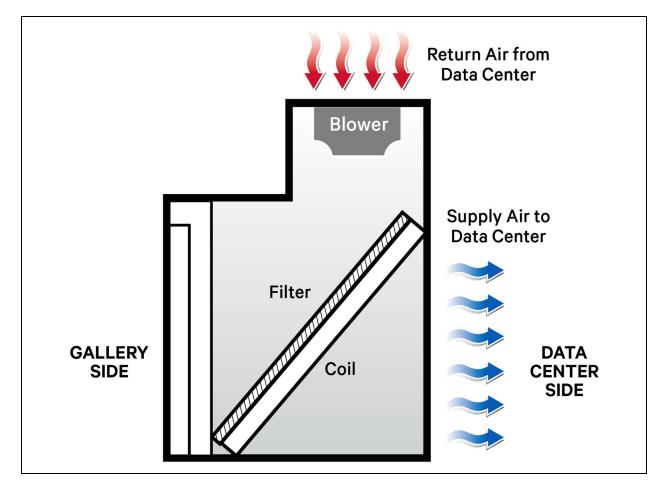
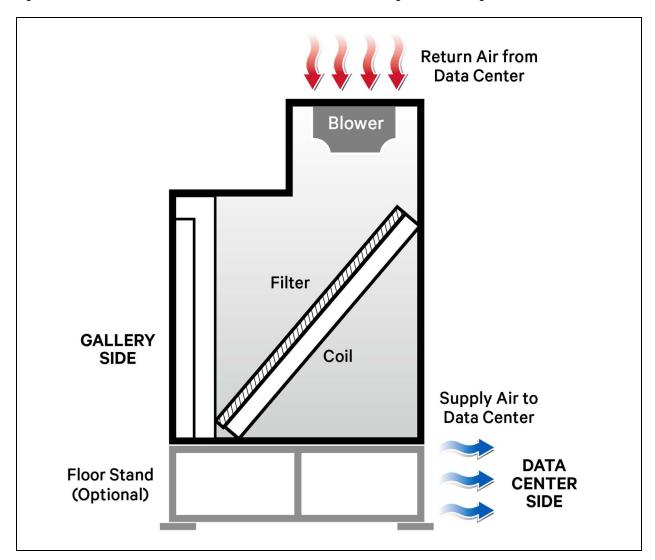

The following table lists the relevant documents by number and title.

Table 2.3 Component Location Drawings

Document Number	Title
DPN004368	Liebert® DSE Component Location Drawing

2.3 Cooling Configurations


Figure 2.1 Vertiv[™] Liebert[®] DSE with Vertiv[™] Liebert[®] MCV Condenser and Vertiv[™] Liebert[®] EconoPhase Pumping Unit




ltem	Description
1	Air-cooled with Liebert® MCV Condenser with Liebert® Econo-Phase Pumping Unit—All the features of a standard air-cooled system, with the added benefit of an economizer mode that can be used when the outdoor temperature is cold enough to cool the refrigerant enough to suspend use of the compressors.
2	Liebert® DSE Thermal Management System
3	Liebert® MCV Condenser with Liebert® EconoPhase Pumping unit and Liebert® DSE receivers mounted, wired, and piped on a common heat- rejection skid for ease of job-site deployment. NOTE: Receivers are not included with model DA265 and MCV440 systems.

2.4 Blower Configurations

Figure 2.2 Vertiv[™] Liebert[®] DSE DA250-265 Downflow, Horizontal-Discharge Blower Configurations with EC Fans

3 System Data

3.1 Capacity and Performance Data

Air-sid	de A T		ly-air erature		rn-air erature	Outo Tempe	door erature	Air I	Flow		Sensible pacity	Input Power	SCOP
۴F	°C	۴F	°C	°F	°C	°F	°C	ACFM	АСМН	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	41,000	69,689	248	846	93.1	27
20	11.2	74	23	94	34	95	35	43,000	73,057	259	884	97.5	27
25	13.9	70	21	95	35	95	35	34,500	58,616	261	891	84.6	3.1
20	10.0	74	23	99	37	95	35	36,500	62,014	273	931	88.3	3.1

Table 3.1 60 Hz DA250 Bottom Discharge (Digit 10 = T or P)

1. Total Cooling Capacity is not shown because the performance is 100% sensible.

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

5. Maximum air flow calibration voltage must be adjusted based on the required air flow. See Table 9.1 on page 66, for values.

Table 3.2 60 Hz DA265 Bottom Discharge (Digit 10 = T or P)

Air-si	de∆T	Supply-air Temperature		Return-air Temperature		Outdoor Temperature		Return Air flow			ensible Dacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	43,000	73,057	261	891	Power	25
20	11.2	74	23	94	34	95	35	45,000	76,455	273	931	108	25
25	13.9	70	21	95	35	95	35	36,000	61,164	273	931	92.6	3.0
20	10.0	74	23	99	37	95	35	38,000	64,562	286	976	96.4	3.0

1. Total Cooling Capacity is not shown because the performance is 100% sensible.

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Table 3.3 60 Hz DA250 Horizontal Discharge (Digit 10 = T or P)

Air-si	de∆T	Supply-air Temperature		Return-air Temperature		Outdoor Temperature		Air Flow			Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	41,000	69,659	250	853	91	27
20	11.2	74	23	94	34	95	35	43,000	73,057	260	887	Power	27
25	13.9	70	21	95	35	95	35	34,500	58,616	262	894	83.5	3.1
20	10.0	74	23	99	37	95	35	36,500	62,014	274	935	86.9	3.2
	. 1.	Total Cool	ling Capacit	y is not show	wn because	the perform	nance is 100	1% sensible.					
	2.	Capacity o	lata is rated	and factory	certified pe	er ASHRAE	127-2007 w	th a 5% tole	erance.				
	З.	Quantity c	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	Pa) and Dev	/point of 52'	°F (11.1°C).				

4. For return-air temperatures outside the range shown, please consult factory.

5. Maximum air flow calibration voltage must be adjusted based on the required air flow. See Table 9.1 on page 66, for values.

Table 3.4 60 Hz DA265 Horizontal Discharge (Digit 10 = T or P)

Air-si	de∆T		ly-air orature		rn-air orature	Outo Tempe	door erature	Return	Air Flow		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	43,000	73,057	263	897	101	2.6
20	11.2	74	23	94	34	95	35	45,500	77,305	275	938	106	2.6
25	13.9	70	21	95	35	95	35	36,500	62,014	275	938	92	3.0
20	10.0	74	23	99	37	95	35	38,500	65,412	288	983	95.5	3.0
	1	Total Cool	ing Capacity	vie not shou		the perform		% conciblo					

. Total Cooling Capacity is not shown because the performance is 100% sensible.

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Air-si	de∆T		oly-air oraturo		rn-air Prature		door erature	Air	Flow		Sensible pacity	Input Power	SCOP
°F	°C	۴F	°C	°F	°C	۴F	°C	ACFM	АСМН	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	36,000	61,164	221	754	73.1	3.0
20	11.2	74	23	94	34	95	35	38,500	65,412	232	792	76.8	3.0
25	13.9	70	21	95	35	95	35	30,500	51,820	232	792	67.4	3.4
20	13.9	74	23	99	37	95	35	32,500	55,218	244	833	69.8	3.5
	1.	Total Cool	ling Capacit [,]	y is not show	vn because	the perform	ance is 100	% sensible.					
	2.	Capacity o	data is rated	and factory	certified pe	er ASHRAE 1	127-2007 wi	th a 5% tole	rance.				
	3.	Quantity c	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	a) and Dew	point of 52°	°F (11.1°C).				
	4.	For return	-air tempera	itures outsid	de the range	e shown, ple	ase consult	factory.					

Table 3.5 50 Hz DA250 Bottom Discharge (Digit 10 = T or P)

5. Maximum air flow calibration voltage must be adjusted based on the required air flow. See **Table 9.1** on page 66, for values.

Table 3.6 50 Hz DA265 Bottom Discharge (Digit 10 = T or P)

Air-si	de∆T	Supp Tempe	ly-air əraturə		rn-air Əraturə	Outo Tempe	door erature	Return /	Air Flow		Sensible pacity	Input Power	SCOP
°F	°C	۴F	°C	۴	°C	°F	°C	ACFM	АСМН	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	38,000	64,562	232	792	81.8	2.8
20	11.2	74	23	94	34	95	35	40,000	67,960	243	829	85.2	2.9
25	13.9	70	21	95	35	95	35	32,000	54,368	241	822	74.5	3.2
20	10.0	74	23	99	37	95	35	34,000	57,766	254	867	77.1	3.3
	1.	Total Cool	ling Capacit	y is not show	wn because	the perform	nance is 100	% sensible.					

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Table 3.7 50 Hz DA265 Horizontal Discharge (Digit 10 = T or P)

Air-si	de∆T		ly-air əraturə		rn-air əraturə		loor əraturə	Return	Air Flow		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	36,500	62,014	222	757	72.4	3.1
20	11.2	74	23	94	34	95	35	38,500	65,412	233	795	75.2	3.1
25	13.9	70	21	95	35	95	35	30,500	51,820	232	792	66.7	3.5
20	10.0	74	23	99	37	95	35	32,500	55,218	244	833	68.9	3.6
	1.	Total Cool	ling Capacit	y is not show	wn because	the perform	ance is 100	% sensible.					
	2.	Capacity c	lata is rated	and factory	certified pe	er ASHRAE 1	27-2007 wi	th a 5% tole	rance.				
	З.	Quantity o	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	a) and Dew	point of 52°	°F (11.1°C).				

4. For return-air temperatures outside the range shown, please consult factory.

5. Maximum air flow calibration voltage must be adjusted based on the required air flow. See Table 92 on page 67, for values.

Table 3.8 50 Hz DA265 Horizontal Discharge (Digit 10 = T or P)

Air-si	de∆T	Supp Tempe	ly-air erature		rn-air erature		door erature	Return	Air Flow		Sensible pacity	input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	38,000	64,562	233	795	80.2	2.9
20	11.2	74	23	94	34	95	35	40,500	68,810	244	833	84.0	2.9
25	13.9	70	21	95	35	95	35	32,000	54,368	242	826	73.7	3.3
20	10.0	74	23	99	37	95	35	34,000	57,766	255	870	76.1	3.4
	1.	Total Cool	ling Capacit	y is not show	wn because	the perform	nance is 100	% sensible.	о				

Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Air-si	de∆T		vly-air erature		rn-air əraturə		door erature	Air F	Flow		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	۴F	°C	°F	°C	ACFM	АСМН	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	41,000	69,667	263.8	899.8	935.2	2.8
20	11.2	74	23	94	34	95	35	43,000	73,066	275.5	940.2	99.7	2.8
25	13.9	70	21	95	35	95	35	34,500	58,622	277.6	947.7	86.5	3.2
20	13.9	74	23	99	37	95	35	36,500	62,021	290.4	990.2	90.3	3.2
	1.	Total Cool	ling Capacit	y is not show	wn because	the perform	nance is 100	% sensible.			,		
	2.	Capacity o	data is rated	and factory	certified pe	er ASHRAE ⁻	127-2007 wi	th a 5% tole	rance.				
	З.	Quantity c	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	Pa) and Dew	point of 52°	°F (11.1°C).				
	4.	For return	-air tempera	itures outsid	de the range	e shown, ple	ase consult	factory.					
	5.	Maximum	air flow calil	oration volta	age must be	adjusted ba	ased on the	required air	flow. See 1	Table 9.1	on page 66 ,	for values.	

Table 3.9 60 Hz DA250 Bottom Discharge (Digit 10 = W, N, R, or E)

Table 3.10 60 Hz DA265 Bottom Discharge (Digit 10 = W, N, R, or E)

Air-sid	de∆T	Supp Tempe	ly-air orature		rn-air erature	Outo Tempe	loor erature	Return	Air flow		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	43,000	73,066	277.6	947.7	105.3	2.6
20	11.2	74	23	94	34	95	35	45,000	76,464	290.4	990.2	110.4	2.6
25	13.9	70	21	95	35	95	35	36,000	61,171	290.4	990.2	94.7	3.1
20	10.0	74	23	99	37	95	35	38,000	64,570	304.2	1,038.1	98.6	3.1

1. Total Cooling Capacity is not shown because the performance is 100% sensible.

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Air-si	de∆T		ly-air erature		rn-air erature		loor erature	Air I	low		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	41,000	69,667	265.9	907.2	93.1	2.8
20	11.2	74	23	94	34	95	35	43,000	73,066	276.5	943.4	97.2	2.8
25	13.9	70	21	95	35	95	35	34,500	58,622	278.7	950.8	85.4	3.2
20	10.0	74	23	99	37	95	35	36,500	62,021	291.4	994.5	88.9	3.2
	1.	Total Cool	ling Capacit	y is not show	vn because	the perform	ance is 100	% sensible.					
	2.	Capacity c	lata is rated	and factory	certified pe	er ASHRAE	127-2007 wi	th a 5% tole	rance.				
	3.	Quantity o	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	a) and Dew	point of 52	°F (11.1°C).				
	4.	For return	-air tempera	atures outsid	de the range	e shown, ple	ase consult	factory.					

Table 3.11 60 Hz DA250 Horizontal Discharge (Digit 10 = W, N, R, or E)

5. Maximum air flow calibration voltage must be adjusted based on the required air flow. See **Table 9.1** on page 66, for values.

Table 3.12 60 Hz DA265 Horizontal Discharge (Digit 10 = W, N, R, or E)

Air-si	de∆T		ly-air oraturo		rn-air erature	Outo Tempe	loor erature	Return	Air Flow		ensible bacity	input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	43,000	73,066	279.7	954.0	103.3	2.7
20	11.2	74	23	94	34	95	35	45,500	77,314	292.5	997.6	108.4	2.7
25	13.9	70	21	95	35	95	35	36,500	62,021	292.5	997.5	94.1	3.1
20	10.0	74	23	99	37	95	35	38,500	65,419	306.3	1045.5	97.7	3.1
	1	Total Cool	ing Capacit	v is not show	wn because	the perform	Jance is 100	% sensible					

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Air-si	de∆T		ly-air orature		rn-air orature		loor prature	Air	Flow		Sensible pacity	input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	36,000	61,171	235.1	801.9	74.7	3.1
20	11.2	74	23	94	34	95	35	38,500	65,419	246.8	842.4	78.5	3.1
25	13.9	70	21	95	35	95	35	30,500	51,826	246.8	842.4	68.9	3.5
20	10.0	74	23	99	37	95	35	32,500	55,224	259.5	886.0	71.4	3.5
	1.	Total Cool	ing Capacity	y is not show	vn because	the perform	ance is 100	% sensible.					
	2.	Capacity c	lata is rated	and factory	certified pe	r ASHRAE 1	27-2007 wi	th a 5% tole	rance.				
	З.	Quantity o	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	a) and Dew	point of 52°	°F (11.1°C).				
	4.	For return	-air tempera	atures outsid	de the range	e shown, ple	ase consult	factory.					
	5.	Maximum	air flow calib	oration volta	ige must be	adjusted ba	ased on the	required air	flow. See T	Table 9.1	on page 66 ,	for values.	

Table 3.13 50 Hz DA250 Bottom Discharge (Digit 10 = W, N, R, or E)

Table 3.14 50 Hz DA265 Bottom Discharge (Digit 10 = W, N, R, or E)

Air-si	de∆T		ly-air erature		rn-air Əraturə	Outo Tempe	loor erature	Return	Air Flow		Sensible pacity	Input Power	SCOP
°F	°C	۴F	°C	°F	°C	°F	°C	ACFM	АСМН	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	38,000	64,570	246.8	842.4	83.6	2.9
20	11.2	74	23	94	34	95	35	40,000	67,968	258.5	881.7	87.1	3.0
25	13.9	70	21	95	35	95	35	32,000	54,374	256.3	874.3	76.2	3.3
20	10.0	74	23	99	37	95	35	34,000	57,773	270.2	922.1	78.8	3.4
	1.	Total Cool	ling Capacit	y is not show	wn because	the perform	nance is 100	% sensible.				· · · · · ·	

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

Air-si	de∆T		ly-air oraturo		rn-air oraturo		loor erature	Air I	=low		Sensible pacity	Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	36,500	62,021	236.1	805.1	74.0	3.2
20	11.2	74	23	94	34	95	35	38,500	65,419	247.8	845.6	76.9	3.2
25	13.9	70	21	95	35	95	35	30,500	51,826	246.8	842.4	68.2	3.6
20	10.0	74	23	99	37	95	35	32,500	55,224	259.5	886.0	70.5	3.7
	1.	Total Cool	ing Capacity	y is not show	vn because	the perform	iance is 100	% sensible.					
	2.	Capacity c	lata is rated	and factory	certified pe	r ASHRAE [^]	27-2007 wi	th a 5% tole	rance.				
	3.	Quantity o	of Fans is 3, E	External Sta	tic pressure	0.2 in. (50 F	a) and Dew	point of 52°	°F (11.1°C).				
	4.	For return	-air tempera	itures outsid	de the range	shown, ple	ase consult	factory.					
	5.	Maximum	air flow calib	oration volta	ige must be	adjusted ba	ased on the	required air	flow. See T	Table 9.1	on page 66	, for values.	

Table 3.15 50 Hz DA250 Horizontal Discharge (Digit 10 = W, N, R, or E)

Table 3.16 50 Hz DA265 Horizontal Discharge (Digit 10 = W, N, R, or E)

Air-side ∆ T		Supply-air Temperature		Return-air Temperature		Outdoor Temperature		Return Air Flow		Net Sensible Capacity		Input Power	SCOP
°F	°C	°F	°C	°F	°C	°F	°C	ACFM	ACMH	kW	kBtuh/hr	kW	kW/kW
20	11.2	70	21	90	32	95	35	38,000	64,570	247.8	845.6	82.0	3.0
20	11.2	74	23	94	34	95	35	40,500	68,818	259.5	886.0	85.9	3.0
25	13.9	70	21	95	35	95	35	32,000	54,374	257.4	878.5	75.4	3.4
		74	23	99	37	95	35	34,000	57,773	271.2	925.3	77.8	3.5
	1. Total Cooling Capacity is not shown because the performance is 100% sensible.												

2. Capacity data is rated and factory certified per ASHRAE 127-2007 with a 5% tolerance.

3. Quantity of Fans is 3, External Static pressure 0.2 in. (50 Pa) and Dewpoint of 52°F (11.1°C).

4. For return-air temperatures outside the range shown, please consult factory.

3.2 Physical Data

Table 3.17	Physical Data for 60/50-Hz Models
------------	-----------------------------------

Model Size	DA250	DA265						
EVAPORATOR COIL- Copper Tube/Aluminum Fin								
Face Area, sq. ft. (sq. m)	67.5 (6.27)							
Rows of Coil	4	5						
	520 ft/min (2.6 m/s	s) based on 35,000 CFM (59465 CMH)						
Face Velocity, FPM (m/s), Std. Air Volume	540 ft/min (2.7 m/s	s) based on 36,500 CFM (62,013 CMH)						
	622 ft/min (3.2 m/s) based on 42,000 CFM (71,358 CMH)							
FILTER SECTION - Disposable Type - Nominal Sizes and Quantities								
Nominal Size, inches (mm)	Nominal Size, inches (mm) 28 x 22 x 4 (711 x 558 x 102)							
Quantity	15							
UNIT PIPING CONNECTION SIZES (not external lin	ne sizes)							
Condensate Drain w/opt Condensate Pump, OD 1/2-in. O.D. Cu								
Condensate Drain, without condensate pump	3/4 in. NPT Female							
Liquid Line, O.D. Cu	1-3/8 in. O.D. Cu							
Hot Gas Line, O.D. Cu	1-5/8 in. O.D. Cu							

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

4 Pre-installation Preparation and Guidelines

NOTE: Before installing unit, determine whether any building alterations are required to run piping, wiring and duct work. Follow all unit dimensional drawings and refer to the submittal engineering dimensional drawings of individual units for proper clearances.

Refer to **Table 2.2** on page 11, and submittal drawings to determine the type of system being installed and anticipate building alterations, piping and duct work needed.

The unit dimensions, pipe connection locations, and piping schematics are described in the submittal documents included in the Submittal Drawings on page 91.

- Verify that the floor is level, solid and sufficient to support the unit. See Shipping Dimensions and Unit Weights on page 27 for unit weights.
- Confirm that the room is properly insulated and has a sealed vapor barrier.
- For proper humidity control, keep outside or fresh air to an absolute minimum (less than 5% of total air circulated in the room).
- Do not install a Vertiv™ Liebert® DSE in an alcove or at the end of a long, narrow room.
- Install the units as close as possible to the largest heat load.
- Allow at least the minimum recommended clearances for maintenance and service. See the appropriate submittal drawings for dimensions.

We recommend installing an under floor water detection system. Contact your Vertiv representative for information.

4.1 Planning Dimensions

The unit, floor stand, and plenum dimensions are described in the submittal documents included in the Submittal Drawings on page 91.

The following table lists the relevant documents by number and title.

Table 4.1 Dimension Planning Drawing

Document Number	Title
Evaporator Units	
DPN004366	Liebert® DSE Cabinet Dimensional Data DA250-DA265 with Horizontal Discharge
DPN004516	Liebert® DSE Cabinet Dimensional Data DA250-DA265 with Bottom Discharge
DPN004514	Liebert® DSE Installation and Service Clearance Data DA250-DA265
DPN004581	Liebert® DSE Floor Planning for Adjacent DA250-DA265 Units
Floor Stands	
DPN004511	Liebert® DSE Floor Stand Dimensional Data DA250-DA265
Airflow Schematic	
DPN004367	Cabinet and Plenum Airflow Schematic, DA250-DA265 Downflow, Horizontal Discharge
DPN004557	Cabinet and Plenum Airflow Schematic, DA250-DA265 Downflow, Bottom Discharge
Dimension Planning Drawings - Condenser U	Inits
DPN004259	Cabinet Dimensional Data, MCV440, Single skid
DPN004261	Cabinet Dimensional Data, MCV440, Dual skid
10032070	Cabinet & Anchor Dimensional Data, Liebert® MCV430 + Liebert® EconoPhase + Base Assembly
10032072	Cabinet & Anchor Dimensional Data, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + Base Assembly

4.2 Connections and System Setup

- The unit requires a drain, which must comply with all applicable codes. See Connections and System Setup above, for details.
- If seismic requirements apply, consult your Vertiv representative for information about a seismic rated floor stand.

NOTE: Seal openings around electrical connection to prevent air leakage. Failure to do so could reduce the unit's cooling performance.

The Vertiv[™] Liebert[®] DSE controls superheat with an electronic expansion valve (EEV). The EEV controller adjusts the orifice based on suction pressure and temperature. The EEV control will drive the valve to maintain the superheat setpoint, set in the Vertiv[™] Liebert[®] iCOM[™], using a Proportional, Integral, Derivative (PID) routine. The PID control values are set at the factory for most applications. These default values PID will allow stable superheat control of the unit.

4.3 Operating Conditions

The Vertiv[™] Liebert[®] DSE must be operated in a conditioned space within the operating envelope that ASHRAE recommends for data centers. Operating the Liebert[®] DSE outside of this envelope can decrease equipment reliability. Refer to ASHRAE's publication, "Thermal Guidelines for Data Processing Environments."

The recommended maximum for return air temperature is 105°F (40°C) and maximum dew point is 59°F (15°C). The recommended minimum return air temperature setpoint for the Liebert® DSE is 85°F (29.4°C).

4.3.1 Humidification Control

The humidifier option is not available on the DA250 or DA265. A remote humidifier contact is available for a standalone humidifier.

4.4 Shipping Dimensions and Unit Weights

Model #	Dom	estic Packaging	Exp	Dry Weight, lb (kg)	
	Ship Weight, lb (kg)	Shipping Dimensions, in. (mm)	Ship Weight, lb (kg)	Shipping Dimensions, in. (mm)	
DA250, DA265	6,160	90 x 128 x 97	6,540 (2,966)	90.5 x 128.5 x 99	4,761
Coil section	(2,794)	(2,286 x 3,251 x 2,464)		(2,299 x 3,264 x 2,515)	(2,159)
DA250, DA265	3,281	90 x 128 x 54	3,676 (1,667)	90.5 x 128.5 x 99	2,325
Fan section	(1,488)	(2,286 x 3,251 x 1,372)		(2,299 x 3,264 x 2,515)	(1,055)

Table 4.2 Downflow Unit Domestic and Export Shipping Dimensions and Weights

Table 4.3	Vertiv™ Liebert® MC\	/ Condenser Unit	Domestic and Export	t Shipping Dimensio	ns and Weights
		•••••••••••			

	Domestic	Packaging	Export	Packaging	Dry Weight, Ib	Max. Operation	
Model #	Ship Weight, Ib (kg)	Shipping dimensions, ft (mm)	Ship Weight, Ib (kg)	Shipping dimensions, ft (mm)	(kg)	Weight, Ib (kg)	
MCV440 ¹ (single skid) 8-fan + PR250	5,900 (2,676)	14 ft 11 in. x 8 ft 5.25 in. x 9 ft 3 in.	6,140 (2785)	15 ft 1 in. x 9 ft 4.25 in. x 9 ft 3.25 in.	5,880 (2667)	6,004 (2,723)	
MCV440 ² (dual skid) 16-fan + PR250 (qty. 2)	11,580 (5,252)	29 ft 6 in. x 8 ft 5.25 in. x 9 ft 3 in.	11,960 (5425)	29 ft 8 in. x 9 ft 4.25 in. x 9 ft 3.25 in.	11,560 (5,243)	11,808 (5,356)	
MCV430 (single skid) 8-fan + PR250	6,190 (2808)	11 ft x 8 ft 5.25 in x 10 ft 3.5 in	6,430	11 ft 2 in x 9 ft 4.25 in x 10 ft 3.75 in	6,170 (2,799)	6,294 (2,855)	
MCV430 (dual skid) 16-fan + PR250 (qty. 2)	11,980 (5434)	22 ft x 8 ft 5.25 in x 10 ft 3.5 in	12,360 (5,606)	22 ft2 in x 9 ft 4.25 in x 10 ft 3.75 in	11,960 (5425)	12208 (5537)	

NOTE: DA250 is matched with Liebert® MCV with receivers. DA265 is matched with Liebert® MCV without receivers.

¹Deduct 100 lbs. (55kg) if no receivers

² Deduct 200 lbs. (100kg) if no receivers.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

5 Equipment Inspection and Handling

WARNING! Risk of improper wiring, piping, moving, lifting and handling. Can cause serious injury or death. Building and equipment damage may also result. Installation and service of this equipment should be done only by qualified personnel who have been specially-trained in the installation of air-conditioning equipment and who are wearing appropriate, OSHA-approved PPE.

WARNING! Risk of improper moving. Can cause serious injury or death. Building and equipment damage may also result. Use only lifting equipment that is rated for the unit weight by an OSHA-certified rating organization. The center of gravity varies depending on the unit size and selected options. The slings must be equally spaced on either side of the center of gravity indicator. Shipping weights and unit weights are listed in **Table 4.2** on page 27 and **Table 4.3** on page 27. Use the center of gravity indicators on the unit to determine the position of the slings.

WARNING! Risk of improper lifting. Can cause serious injury or death. Building and equipment damage may also result. A spreader bar or equivalent must be used when rigging to ensure the lifting force is completely vertical at these fasteners. Lift points are rated for lifting this section only. Do not lift assembled sections from these lift points.

WARNING! Risk of top-heavy unit falling over when improperly lifted or moved. Can cause serious injury or death. Building and equipment damage may also result. Read all of the following instructions and verify that all lifting and moving equipment is rated for the weight of the unit before attempting to move, lift, remove packaging from or prepare the unit for installation. Unit weights are specified in **Table 4.2** on page 27 and **Table 4.3** on page 27.

CAUTION: Risk of contact with sharp edges, splinters, and exposed fasteners. Can cause injury. Only properly trained and qualified personnel wearing appropriate, OSHA-approved PPE should attempt to move, lift, remove packaging from or prepare the unit for installation.

NOTICE

Risk of passageway interference. Can cause unit and/or structure damage. The unit may be too large to fit through a passageway while on or off the skid. Measure the unit and passageway dimensions, and refer to the installation plans prior to moving the unit to verify clearances.

NOTICE

Risk of damage from forklift. Can cause unit damage. Keep tines of the forklift level and at a height suitable to fit below the skid and/or unit to prevent exterior and/or underside damage.

NOTICE

Risk of improper storage. Keep the unit upright, indoors and protected from dampness, freezing temperatures and contact damage.

NOTE: Access panel screws have a maximum torque value of 40 in-lbs.

Upon arrival of the unit and before unpacking:

- Verify that the labeled equipment matches the bill of lading.
- Carefully inspect all items for visible or concealed damage.
- Report damage immediately to the carrier and file a damage claim with a copy sent to Vertiv or to your sales representative.

Equipment Recommended for Handling the Unit:

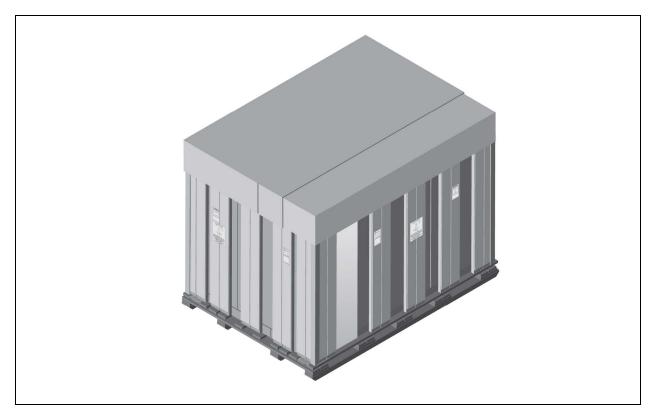
- Forklift
- Slings
- Spreader bars
- Beam trolleys
- Chain hoists
- Gantries

5.1 Packaging Material

All material used to package this unit is recyclable. Please save for future use or dispose of the material appropriately.

5.2 Handling the Unit while Packaged

If possible, transport the unit with a forklift

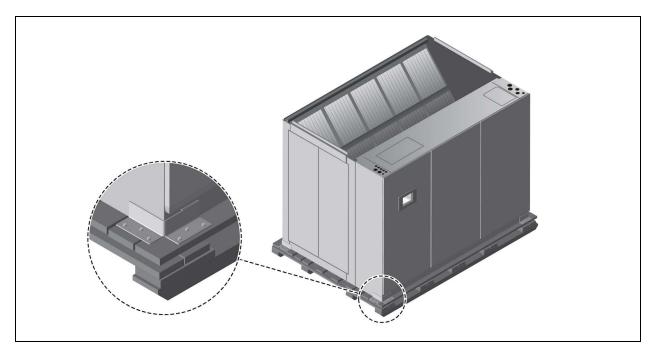

When using a forklift:

- Make sure that the lift has adjustable forks, and are spread to the widest allowable distance to still fit under the skid.
- Make sure that the fork length is suitable for the skid length. Skid length is 128 in. (3251 mm).
- If the unit must be lifted higher than 2 in. (51 mm) to 4 in. (102 mm), all personnel not directly involved in moving the unit must be 20 ft. (5 m) or farther from the unit.

5.3 Unpacking the Unit

Remove exterior package material from around, and on top of the unit.

Figure 5.1 Unpacking the Unit



5.4 Removing the Unit from the Skid

NOTE: If you do not follow these steps, damage could occur to the panels and base of the unit.

1. Referring to **Figure 5.2** below, use a 9/16 in. socket driver to remove the lag screws (24 total) from the four corner brackets to detach the unit from the skid.

Figure 5.2 Remove Corner Brackets

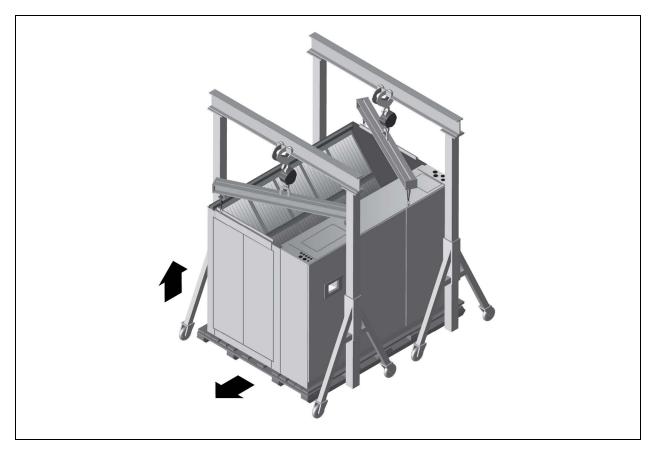

- 2. Open the door indicated in **Figure 5.3** below , and locate the rigging fastener kit that is secured to the bottom base inside the door.
- 3. Using the instructions included in the kit, install the rigging hardware for lifting the unit from the skid. **Figure 5.3** below, shows an example of one of the eye nuts installed.

Figure 5.3 Locate the Rigging Fastener Hardware Kit

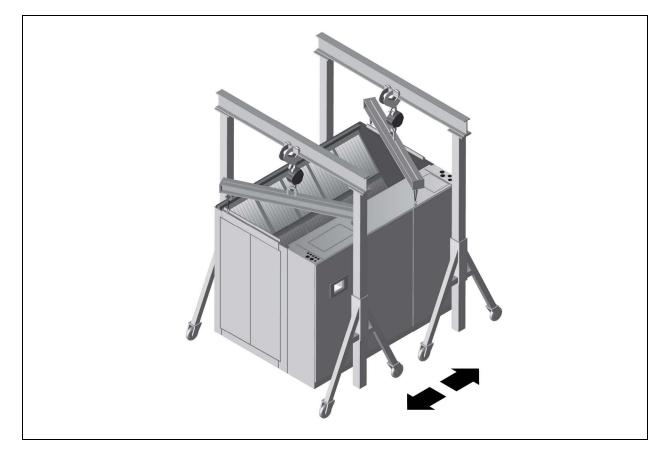

- 4. Attach the recommended rigging equipment to the eye nuts installed in Step 3.
- 5. Using the rigging equipment, lift the unit from the skid, and remove the skid from under the unit, see **Figure 5.4** below .

Figure 5.4 Lifting Unit and Removing Skid

6. Use the rigging equipment to move the unit to the final installation location, see Figure 5.5 below .

Figure 5.5 Moving the Unit with Rigging

5.5 Unpacking and Handling the Fan Section

Refer to drawing number 336511 "Instructions Handling/Installation of Fan Section CW/DSE" that is included in the fan plenum packaging for instructions on uncrating and handling the fan section.

5.6 Placing the Unit on a Floor Stand

CAUTION: Risk of heavy unit falling into defective raised floor. Can cause injury and equipment damage. Prior to installation, all floor tiles immediately around floor stand are to be removed and inspected. Make sure tiles are not cracked, and ribs have not been cut. If free from defects, re-install. Replace with new tiles if defects are found.

Unit to be placed onto floor stand using process that will provide safest method based on site layout. Professional installers to be used when placing unit. Unit may require lift onto a floor stand if elevated flooring has not been installed. If flooring is installed, unit will be placed over floor opening containing floor stand.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

6 Electrical Requirements

6.1 Indoor Unit Electrical Power Requirements

Table 6.1 Electrical Data-DA250 and DA265

Unit Voltage Rating			
	FLA	170.6	
460V/60Hz	WSA	177.3	
	OPD	200	
	FLA	145.8	
575V/60Hz	WSA	151.7	
	OPD	175	
	FLA	212.2	
380V/60Hz	WSA	220.7	
	OPD	250	
	FLA	169.0	
415V/50Hz	WSA	175.3	
	OPD	200	
1. FLA = Full-load Amps; WSA = Wire Size Amps; OPD = Maximum Overcurrent Protection Device.			
2. Full-load amperage values do not r	2. Full-load amperage values do not reflect operating amperage values.		
3. For 380V/50Hz application, consu	For 380V/50Hz application, consult the factory for SFA.		
Source: DPN002863, Rev. 3			

Table 6.2 Electrical Data-Single Point, DA250 or DA265 + MCV440 + PRE

Unit Voltage Rating				
	FLA	193.0		
460V/60Hz	WSA	199.7		
	OPD	225		
575V/60Hz	FLA	163.7		
	WSA	169.6		
	OPD	175		
	FLA	240.2		
380V/60Hz	WSA	248.7		
	OPD	250		

Table 6.2 Electrical Data-Single Point, DA250 or DA265 + MCV440 + PRE (continued)

Unit Voltage Rating			
		FLA	197.0
415V/50Hz		WSA	203.3
		OPD	225
1. FLA = Full-load Amps; WSA = Wire Size Amps; OPD = Maximum Overcurrent Protection Device.			
2.	2. Full-load amperage values do not reflect operating amperage values.		
3.	3. For 380V/50Hz application, consult the factory for SFA.		
Source: DPN002863, Rev. 3			

Table 6.3 Electrical Data-Single Point Power, DA250/DA265 + MCV430 (STD) + PRE

Unit Voltage Rating				
	FLA	187.4		
460 V/60 Hz	WSA	194.1		
	OPD	200		
	FLA	159.2		
575 V/60 Hz	WSA	165.2		
	OPD	175		
	FLA	233.2		
380 V/60 Hz	WSA	241.7		
	OPD	250		
	FLA	190.0		
415 V/50 Hz	WSA	196.3		
	OPD	200		
1. FLA = Full load amps; WSA = Wire s	1. FLA = Full load amps; WSA = Wire size amps; OPD = Maximum overcurrent protection device.			
2. Full load amperage values do not reflect operating amperage values.				

3. For 380 V/50 Hz application, consult the factory for SFA.

6.2 Electrical Field Connections

WARNING! Arc flash and electric shock hazard. Can cause serious injury or death. Building and equipment damage may also result. Disconnect all local and remote electric power supplies and wear appropriate, OSHAapproved personal protective equipment (PPE) per NFPA 70E before working within the electric control enclosure. Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable.

Verify with a voltmeter that power is Off. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components still require and receive power even during the "Unit Off" mode of the Liebert[®] iCOM[™] controller. The factory-supplied, optional disconnect switch is inside the unit. The line side of this switch contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch. Refer to unit electrical schematic.

Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power. Follow all local codes.

WARNING! Risk of electric shock. Can cause serious injury or death. Building and equipment damage may also result. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components require and receive power even during the "unit off" mode of the Liebert[®] iCOM[™] controller.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

WARNING! Risk of short circuits and electric shock. Can cause serious injury or death. Building and equipment damage can result from cut insulation or damaged wires. Can cause overheated wiring, smoke, fire, activation of fire suppression systems and EMS personnel, and loss of power to fans. Verify that all wiring connections are tight and that all wiring is contained within the junction box prior to closing and securing the cover.

Insert CSA-certified or UL-listed bushings into holes and/or knockouts used to route wiring through metal panels to protect the wire insulation from contact with sheet metal edges.

WARNING! Risk of improper wire sizing/rating and loose electrical connections causing overheated wire and electrical connection terminals resulting in smoke or fire. Can cause serious injury or death. Building and equipment damage may also result. Use correctly sized copper wire only and verify that all electrical connections are tight before turning power On. Check all electrical connections periodically and tighten as necessary.

NOTICE

Risk of improper electrical connection of three phase input power. Can cause backward compressor rotation and unit damage. Service technicians should use a gauge set on the system during the initial startup to verify that the three phase power is connected properly. Three phase power must be connected to the unit line voltage terminals in the proper sequence so that the compressors rotate in the proper direction. Incoming power must be properly phased to prevent compressors from running backward. We recommend checking the unit's phasing with proper instrumentation to ensure that power connections were made correctly. We also recommend verifying discharge and suction pressures during startup to ensure that the compressors are running in the correct direction.

NOTICE

Risk of improper power supply connection. Can cause equipment damage and loss of warranty coverage.

Prior to connecting any equipment to a main or alternate power source (for example: backup generator systems) for startup, commissioning, testing, or normal operation, ensure that these sources are correctly adjusted to the nameplate voltage and frequency of all equipment to be connected. In general, power source voltages should be stabilized and regulated to within ±10% of the load nameplate nominal voltage. Also, ensure that no three phase sources are single phased at any time.

See transformer label for primary tap connections. Installer will need to change transformer primary taps if applied unit voltage is other than pre-wired tap voltage.

NOTE: Seal openings around piping and electrical connection to prevent air leakage. Failure to do so could reduce the unit's cooling performance.

Three phase electrical service is required for all models. Electrical service must conform to national and local electrical codes. Refer to equipment nameplate regarding wire size and circuit protection requirements. Refer the appropriate submittal drawing, listed in **Table 6.4** below, for electrical service entrances into unit

- Vertiv[™] Liebert[®] DSE voltage should be verified with available power supply before installation. Refer to the unit's electrical schematic and serial tag for specific electrical requirements. Line voltage electrical service is also required for all condensers at the location of the condenser.
- For the most reliable operation of the system, the indoor unit and the Vertiv[™] Liebert[®] MCV condenser should be on the same power source. The Liebert[®] DSE system offers an option for a power feed from the active source on the indoor unit to the outdoor condenser. This configuration provides the greatest reliability and fastest recovery during power loss or source change. See DPN005196 for details on the Automatic Transfer Switch control which is included with the dual power feed option.
- When powering the outdoor condenser from the indoor unit, there is a breaker/fuse on the indoor unit.
- A unit disconnect is standard on the Liebert[®] MCV skid. However, a site disconnect may be required per local code to isolate the unit for maintenance. Refer to the unit's serial tag for specific condenser electrical requirements.
- Route the supply power to the site disconnect switch and then to a factory provided high voltage enclosure located on the Liebert[®] MCV heat rejection skid.
- A manual electrical disconnect switch should be installed in accordance with local codes and distribution system. Consult local codes for external disconnect requirements.

The electrical and unit to unit connections are described in the submittal documents included in the Submittal Drawings on page 91.

 Table 6.4
 below and Table 6.5
 below list the relevant documents by number and title.

Table 6.4	Electrical	Field	Connection	Drawings
-----------	------------	-------	------------	----------

Document Number	Title	
DPN004797	Liebert® DSE Electrical Field Connections DA250, DA265 Downflow Models	
DPN003886	Liebert® Heat Rejection Skid CANbus and Interlock Connections Liebert® MCV and Liebert® MCV EconoPhase and Base Assembly	
DPN005196	Automatic Transfer Switch	
Unit to Unit Networking		
DPN004351	Liebert® iCOM™ Unit to Unit Network Connections (Liebert® CW, Liebert® CWA, Liebert® DS, Liebert® DS, Liebert® DS, Liebert® PCW	

Table 6.5 Vertiv™ Liebert® MCV Heat Rejection Skid Field Connection Drawings

Document Number	Title
DPN004257	Condenser connection data, MCV440, Single skid
DPN004262	Condenser connection data, MCV440, Dual skid
10032073	Primary connection locations, Liebert® MCV MCV430 + Liebert® EconoPhase + base assembly
10032075	Primary connection locations, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + base assembly

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

7 Piping and Refrigerant Requirements

WARNING! Risk of improper wiring, piping, moving, lifting and handling. Can cause serious injury or death. Building and equipment damage may also result. Installation and service of this equipment should be done only by qualified personnel who have been specially-trained in the installation of air-conditioning equipment and who are wearing appropriate, OSHA-approved PPE.

All fluid and refrigeration connections to the unit are sweat copper. Factory installed piping brackets must not be removed. Field installed piping must be installed in accordance with local codes and must be properly assembled, supported, isolated and insulated. Avoid piping runs through noise sensitive areas, such as office walls and conference rooms.

Refer to specific text and detailed diagrams in this manual for other unit specific piping requirements.

All piping below the elevated floor must be located so that it offers the least resistance to air flow. Careful planning of the piping layout under the raised floor is required to prevent the air flow from being blocked. When installing piping on the subfloor, we recommend that the pipes be mounted in a horizontal plane rather than stacked one above the other. Whenever possible, the pipes should be run parallel to the air flow.

The following pipe connections are required:

- A drain line from the unit.
- A drain line from the secondary drain pan (if applicable).
- Refrigerant piping connections between the evaporator unit and the MCV440 heat rejection skid. See Refrigerant Piping and Charging on page 48.

The pipe connection locations, piping general arrangement and schematics are described in the submittal documents included in the Submittal Drawings on page 91.

The following tables list the relevant documents by number and title.

Table 7.1	Piping	General	Arrangement	Drawings
-----------	--------	---------	-------------	----------

Document Number	Title	
DPN004476	Piping Schematic, DA125, DA150, DA165 & DA250 with Liebert® MCV	
DPN005206	Piping Schematic, DA265 with Liebert® MCV	
20000028	Piping Schematic with Optional Oil Separator DA250 & DA265 with Liebert $^{\oplus}$ MCV without Receivers	
Piping Arrangement - Liebert® MCV Condenser and Liebert® EconoPhase Pump Locations		
DPN003965	Liebert® DSE Air Cooled Piping Schematic Liebert® MCV Mounted above Liebert® DA125-250	
DPN005207	Liebert® DSE Air Cooled Piping Schematic Liebert® MCV Mounted above DA265	
DPN004702	Gravity Condensate Piping - 250-265 kW	

Table 7.2 Piping Connection Drawings

Document Number	Title
DPN004208	Liebert® DSE Connection Locations, DA250, DA265
DPN004257	Condenser connection data, MCV440, Single skid
DPN004262	Condenser connection data, MCV440, Dual skid
10032073	Primary connection locations, Liebert® MCV MCV430 + Liebert® EconoPhase + base assembly
10032075	Primary connection locations, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + base assembly

7.1 Drain Fluid Piping

NOTICE

Risk of clogged or leaking drain lines. Can cause equipment and building damage.

This unit requires a water drain connection. Drain lines must be inspected at start-up and periodically, and maintenance must be performed to ensure that drain water runs freely through the drain system and that lines are clear and free of obstruction and in good condition with no visible sign of damage or leaks. This unit may also require an external water supply to operate.

Improper installation, application and services practices can result in water leakage from the unit. Water leakage can result in catastrophic and expensive building and equipment damage and loss of critical data center equipment.

Do not locate unit directly above any equipment that could sustain water damage.

We recommend installing a monitored fluid-detection system to immediately discover and report condensate drain-line leaks.

7.1.1 Field Installed, Gravity Fed Drain Line Requirements

NOTICE

Risk of water backing up in the drain line. Leaking and overflowing water can cause equipment and building damage.

Do not install an external trap in the drain line. This line already has a factory installed trap inside the cabinet. Installation of a second trap will prevent drain water flow and will cause the water to overflow the drain pan.

Sagging condensate drain lines may inadvertently create an external trap.

Observe the following requirements when installing and routing the drain line:

- The drain line must be sized for 2 gpm (7.6 l/m) flow.
- The drain line must be located so it will not be exposed to freezing temperatures.
- The drain should be the full size of the drain connection.
- The drain line must slope continuously away from the unit. Pitch drain line toward drain a minimum of 1/8 in. (3 mm) per 1 ft (305 mm) of length.
- Drain is trapped internally. Do not externally trap the drain line.
- The drain line must be rigid enough that it does not sag between supports, which unintentionally creates traps.
- The drain line must comply with all applicable codes.
- We recommend installing monitored, under floor leak detection equipment.

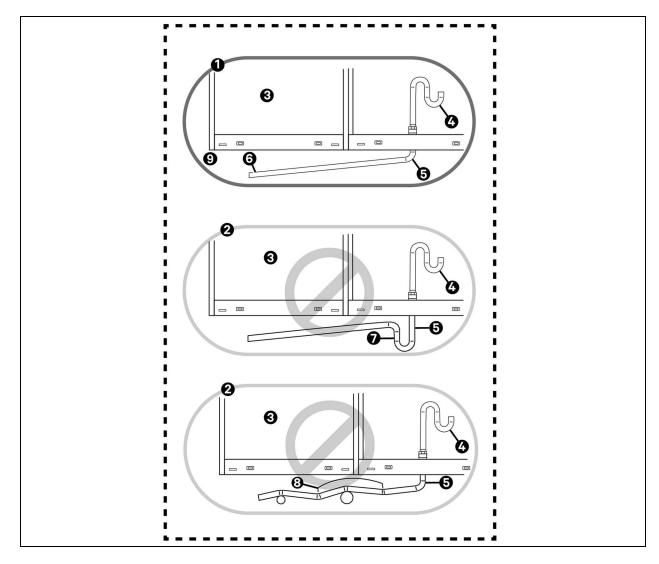


Figure 7.1 Correct and Incorrect Gravity Drains for Downflow Units

 Table 7.3 Gravity Fed Drain Line Figure Descriptions

ltem	Description
1	Correct drain installation.
2	Incorrect drain installation.
3	Liebert® DSE unit
4	Internal drain
5	External drain
6	Continuous downward slope
7	External trap. Do not trap externally.
8	External trap, although unintentional. Lines must be rigid enough to not bow over the top of other objects.
9	Floor stand required.

7.1.2 Condensate Pump Drain Line Requirements

NOTICE

Risk of water backing up in the drain line. Leaking and overflowing water can cause equipment and building damage.

Do not install an external trap in the drain line. This line already has a factory installed trap inside the cabinet. Installation of a second trap will prevent drain water flow and will cause the water to overflow the drain pan.

Sagging condensate drain lines may inadvertently create an external trap.

Observe the following requirements when installing and routing the drain line:

- The drain line must be located so it will not be exposed to freezing temperatures.
- Size the piping based on the available condensate head.
- Drain is trapped internally. Do not externally trap the drain line.
- The drain line must be rigid enough that it does not sag between supports, which unintentionally creates traps.
- We recommend installing monitored, under floor leak detection equipment.

Factory Installed Condensate Pump

WARNING! Risk of electric shock. Can cause serious injury or death. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Condensate pump will stay energized and has the potential to operate even in the "Unit Off" mode.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

If your unit includes an optional condensate pump, the pump is factory installed inside the unit and a 3/4 in. copper sweat connection is provided on the unit.

7.2 Refrigerant Piping and Charging

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

WARNING! Risk of explosive discharge of high-pressure refrigerant. Can cause serious injury or death. Building and equipment damage may also result. Neutral and service ports on the compressor service valves do not have a valve core. Front-seat the service valves and relieve pressure from the compressor before loosening a part or a component attached to the service valve. Follow local codes to properly reclaim refrigerant.

CAUTION: Risk of excessive refrigerant line pressure. Can cause equipment damage or injury resulting from tubing and component rupture. Do not close off the refrigerant-line isolation valve for repairs unless a pressure-relief valve is field- installed in the line between the isolation valve and the check valve. The pressure-relief valve must be rated 5% to 10% higher than the system-design pressure. An increase in ambient temperature can cause the pressure of the isolated refrigerant to rise and exceed the system-design pressure rating (marked on the unit nameplate).

CAUTION: Risk of contact with hot surfaces. Can cause injury. Personal burn injury can be the result of touching a compressor, refrigerant discharge lines, and some electrical components that are extremely hot during unit operation. Allow sufficient time for them to cool to a touch-safe temperature before working within the unit cabinet.

Use extreme caution and wear appropriate, OSHA-approved PPE when working on or near hot components.

Consult local building and plumbing codes for installation requirements of additional pressure relief devices when isolation valves are field installed. Do not isolate any refrigerant circuits from over pressurization protection.

Table 7.4 System Refrigerant Pressures

Maximum Design Operating Pressure (High Side)	530 psig	3655 kPa	Noted on the unit serial tag
High Pressure Cut Out Safety Switch	580 psig	4000 kPa	Nominal
Source: DPN000788, Rev 16			

NOTICE

Risk of oil contamination with water. Can cause equipment damage.

Vertiv[™] Liebert[®] DSE systems require the use of POE (polyolester) oil. POE oil absorbs water at a much faster rate when exposed to air than previously used oils. Because water is the enemy of a reliable refrigeration system, extreme care must be used when opening systems during installation or service. If water is absorbed into the POE oil, it will not be easily removed and will not be removed through the normal evacuation process. If the oil is too wet, it may require an oil change. POE oils also have a property that makes them act as a solvent in a refrigeration system. Maintaining system cleanliness is extremely important because the oil will tend to bring any foreign matter back to the compressor.

NOTICE

Risk of improper refrigerant charging. Can cause equipment damage.

Refrigerant charge must be weighed into air-cooled compressorized systems before they are started. Starting scroll and digital scroll compressors without proper refrigerant charging can cause the compressors to operate at less than 15°F (-9.4°C) evaporator temperature and at less than 70 psig (483 kPa). Operation for extended periods at less than 70 psig (483 kPa) can cause premature compressor failure.

NOTICE

Units should never be operated with no refrigerant charge, a holding charge, a proper load or without additional oil as required added. Tag out system to prevent unauthorized personnel from accidentally starting equipment and damaging compressors if any of these conditions exist.

7.2.1 Refrigerant Piping Guidelines for Air Cooled Systems

- Field installed interconnecting piping should be properly selected based on local codes and unit labeling.
- Air cooled units ship with a nitrogen holding charge. Do not vent the charge until all refrigerant piping is in place, ready for connection to the unit and condenser.
- Use copper piping with a brazing alloy with a minimum temperature of 1350°F (732°C), such as Sil-Fos. Avoid soft solders, such as 50/50 or 95/5.
- Use a flow of dry nitrogen through the piping during brazing to prevent formation of copper oxide scale inside the piping. When copper is heated in the presence of air, copper oxide forms. POE oils will dissolve these oxides from inside the copper pipes and deposit them throughout the system, clogging filter driers and affecting other system components.
- A pure dry nitrogen flow of 1-3 ft³/min (0.5-1.5 l/s) inside the pipe during brazing is sufficient to displace the air. Control the flow using a suitable measuring device.
- Ensure that the tubing surfaces to be brazed are clean and that all burrs have been removed from the ends of the tubes.
- Ensure that all loose material has been cleaned from inside the tubing before brazing.
- Protect all refrigerant line components within 18 in. (460 mm) of the brazing site by wrapping them with a wet cloth or with a suitable heat sink compound.
- Isolate piping from building using vibration isolating supports.
- The Vertiv[™] Liebert[®] MCV heat rejection skid cannot be installed below the evaporator.
- The DA250 is used with a Liebert[®] MCV heat rejection skid with receiver tanks. For this system, the outlet of the receivers on the outdoor Liebert[®] MCV heat rejection skid must be higher than the elevation of the electronic expansion valves (EEVs) inside of the indoor unit. If the vertical height of the receiver outlet is greater than 60 ft. (18.3m) above the EEV, consult the factory. Refer to DPN003965 in Submittal Drawings on page 91.

- The DA265 is used with a Liebert® MCV heat rejection skid without receiver tanks. For this system, the bottom of
 the condenser coil on the outdoor Liebert® MCV heat rejection skid must be higher than the elevation of the EEV
 inside of the indoor unit. If the vertical height between the condenser coil bottom and the EEV is greater than 60
 ft. (18.3m), consult the factory. Refer to DPN005207 in Submittal Drawings on page 91
- Install traps on hot gas (discharge) lines at the base of vertical risers over 5 ft. (1.5 m) and then for vertical rises over 25 ft. (7.6 m), install a trap in 20 ft (6 m) increments or evenly-divided over the vertical rise. The DA250 with piping out the top of the unit has internally installed traps on the hot gas lines.
- Pitch horizontal hot gas piping down at a minimum rate of 1/2 in. per 10 ft. (42 mm per 10 m) so that gravity will aid in moving oil in the direction of refrigerant/oil flow.
- Consult factory if piping run exceeds 200 ft. (61 m) linear length or 300 ft. (91 m) equivalent length.
- Keep piping clean and dry, especially on units with R-410A refrigerant.
- Avoid piping runs through noise-sensitive areas.
- Do not run piping directly in front of discharge air stream.
- Refrigerant oil do not mix oil types (see Table 11.3 on page 76).

Refer to ASHRAE Refrigeration Handbook for general, good-practice refrigeration piping. The indoor cooling unit has a factory installed high pressure safety switch in the high side refrigerant circuit. A fusible plug is installed in each Vertiv[™] Liebert[®] DSE receiver.

NOTE: All indoor field refrigerant piping must be insulated, 1/2" minimum thickness. All outdoor field refrigeration piping does not need to be insulated. The installing contractor is responsible for the insulating, securing, protecting and the proper installation of all field refrigerant piping, observing the details outlined by the Engineer of Record.

- Refer to Refrigerant Line Sizes and Equivalent Lengths below, for recommended refrigerant piping sizes based on equivalent pipe lengths.
- Refer to Refrigerant Charge Requirements for Air Cooled Systems on page 52, for the refrigerant-charge requirements of the system.
- Refer to Charging DA250 Air Cooled Systems (Vertiv[™] Liebert[®] MCV440 with Receivers) on page 56, for charging information.

7.2.2 Refrigerant Line Sizes and Equivalent Lengths

DA250 Model DA265 **Equivalent Length** Hot Gas Line, in. Liquid Line, in. 50 ft. (15 m) 1-5/8 1-3/8 1-5/8 100 ft. (30 m) 150 ft. (45 m) 1-5/8* 1-3/8* 300 ft. (91 m) 1-5/8* 1-3/8* *The DA250 and DA265 units can be extended to a maximum 200 ft (61m) linear or 300 ft (91m) equivalent length. Source: DPN000788 Rev 16

Table 7.5 Recommended Refrigerant Line Sizes, OD Copper

NOTE: See the piping schematics for your system in Submittal Drawings on page 91. For installations using prefabricated heat rejection skids, included piping must be factored into total equivalent length calculation. Please consult factory for details.

7.2.3 Refrigerant Charge Requirements for Air Cooled Systems

The following tables provide the refrigerant charge requirements for the Vertiv[™] Liebert[®] DSE, connected piping, and condenser options.

Table 7.6 Indoor Unit Approximate Refrigerant Charge for R-410A Per Circuit

Indoor Unit Type	Model	Circuit 1 (Outer circuit), lb (kg)	Circuit 2 (Inner circuit), lb (kg)		
Air cooled	DA250	25 (11.3)	25 (11.3)		
Air cooled	DA265	25 (11.3)	35 (15.9)		
*System Charge: Indoor unit, MCV440 heat rejection skid with Liebert® EconoPhase (PRE) and refrigerant lines.					
For system charges over 200 lb. (90.7kg), consult your Vertiv representative.					
See Table 11.3 on page 76 for the recommended oil for the system.					
The values in this table and in the following tables are needed in order to calculate the full system charge:					
• Table 7.7 below					
• Table 7.8 below					

Table 7.7 Vertiv[™] Liebert[®] MCV Heat Rejection Skid Refrigerant Charge for R-410A per Circuit Including PRE

Heat Rejection Skid*	System #	Circuit Number	Charge per Circuit, lb (kg) (With or Without Receivers)	
MCV430 or MCV440 Single skid	1	1	62 (28.1)	
with (1) PRE unit		2	62 (28.1)	
MCV430 or MCV440 Dual skid with (2) PRE units	1	1	62 (28.1)	
		2	62 (28.1)	
	2	1	62 (28.1)	
		2	62 (28.1)	
*The heat rejection skid contains Liebert® MCV condenser(s), Liebert® DSE receiver(s) when used with a DA250 system, Liebert® EconoPhase PRE units, and all internal piping. Liebert® DSE receivers are not used with a DA265 system.				

Table 7.8 Interconnecting Piping Refrigerant Charge for R-410A, lb per 100 ft (kg per 30 m)

Line Size, OD, in. Liquid Line		Hot Gas Line
1-3/8	51.5 (23.0)	5.9 (2.6)
1-5/8	-	8.4 (3.7)
Source: DPN003099, Rev. 1		

Table 7.9 Liebert® Pump Module Refrigerant Charge for R-410A Per Circuit

System Type	Model	Charge per Circuit, Ib. (kg)
Liebert® EconoPhase Pumping Unit	PR250	9.2 (4.2)

7.2.4 Additional Oil Requirements for Scroll and Digital Scroll Compressors

NOTICE

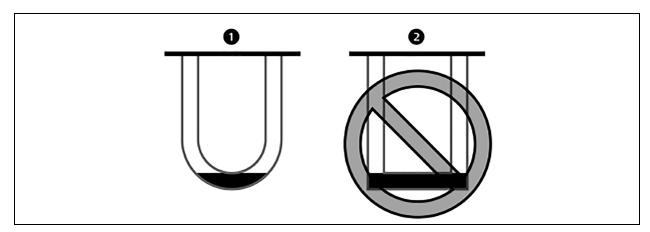
Risk of improper compressor lubrication. Can cause compressor and refrigerant system damage.

Failure to use oil types, viscosities and quantities recommended by the compressor manufacturer may reduce compressor life and void the compressor warranty. See **Table 11.3** on page 76, for the recommended oil for the system.

- Do not mix polyolester (POE) and mineral-based oils.
- Do not mix oils of different viscosities.
- Consult your Vertiv sales representative, visit https://www.Vertiv.com/en-us/support/, or contact the compressor manufacturer if questions arise.

See Table 11.3 on page 76, for the amount required for various system charge levels.

In addition to oil added based on system charge, additional oil is required for discharge line field installed traps. Standard formed tube traps are required, see Figure 7.2 below, and Table 7.11 on page 55, because straight tubes and fittings used as traps require much more oil and the length of the straight tube can vary.


With the total calculated refrigerant charge for each circuit, see **Table 7.10** on the next page for the refrigerant charge amount that was calculated and follow that line to the right to see how much additional compressor oil is required for each circuit.

Count the numbers of traps in each circuit. See **Table 7.11** on page 55 for the discharge line pipe diameter. Follow the line to the right to see how much oil is needed per trap. Multiply the number of traps per circuit by the Oil volume.

Add the additional compressor oil amount and the trap oil volume together. This will be the total amount of oil that will need to be added before the refrigerant is added to each circuit.

The amount of oil added by field service must be recorded on the tag marked "Oil Added Field Service Record," attached to each compressor. The date of oil addition must be included as well.

Figure 7.2 Standard Formed Tube Trap Versus Straight Tubes and Fittings Trap

Item	Description
1	Standard formed tube trap
2	Straight tubes and fittings trap

	Model
Refrigerant System Charge Per Circuit, Ib (kg) *	DA250, DA265
	Additional Oil Required Per Circuit, oz (ml)
< 40 (18.1)	0
40 (18.1)	10 (300)
50 (22.7)	18 (530)
60 (27.2)	26 (770)
70 (31.8)	34 (1010)
80 (36.3)	42 (1240)
90 (40.8)	50 (1480)
100 (45.4)	58 (1720)
110 (49.9)	66 (1950)
120 (54.4)	74 (2190)
130 (59.0)	82 (2430)
140 (63.5)	90 (2660)
150 (68.0)	98 (2900)
160 (72.6)	106 (3130)
170 (77.1)	114 (3370)
180 (81.6)	122 (3610)
190 (86.2)	130 (3840)
200 (90.7)	138 (4080)
System Charge: indoor unit, Liebert® MCV heat rejection skid, refrigerant	lines. Calculated per circuit.

Table 7.10 Additional Oil Required per Refrigerant Charge

For system charges over 200 lb. (90.7 kg), consult your Vertiv representative.

See Table 11.3 on page 76, for the recommended oil for the system.

Source: DPN003950 Rev. 6

Pipe diameter, in.	Oil volume, oz (ml)
1/2	0.2 (5.9)
5/8	0.4 (11.8)
3/4	0.6 (17.7)
7/8	0.9 (26.6)
1-1/8	1.8 (53.2)
1-3/8	3.3 (97.6)
1-5/8	5.5 (162.7)
Source: DPN003950, Rev. 6	

Table 7.11 Volume of Oil in Standard Form Trap by Pipe Diameter

7.2.5 Evacuation, Leak Testing, and Charging Air Cooled Systems

Two discharge lines and two liquid lines must be field installed between the indoor unit and the outdoor condenser.

NOTE: Keep the evaporator unit, receiver (if equipped), and condenser closed with their factory charge of dry nitrogen while all field piping is installed. Keep the field piping clean and dry during installation. Do not allow it to stand open to the atmosphere. When all the field interconnecting piping is in place, vent each outdoor unit's dry nitrogen charge and connect to the field piping. Finally, vent the evaporator unit's dry nitrogen charge and make its piping connection last. Follow all proper brazing practices, including a dry nitrogen purge to maintain system cleanliness. The condenser connection pipes must be wrapped with a wet cloth to keep the pressure and temperature sensors cool during any brazing.

Evacuation and Leak Testing Air Cooled Systems

For proper leak check and evacuation, you must open all system valves and account for all check valves.

NOTE: The system includes a factory installed additional downstream Schrader valve with core in the compressor discharge line. Proper evacuation of the condenser side of the compressor can be accomplished only using the downstream Schrader valve. See the appropriate piping schematic for your system in Submittal Drawings on page 91.

- Starting with Circuit #1, open the service valves (service valves not present on units with model digit 10=W,N,R,E) and place a 150 PSIG (1034 kPa) of dry nitrogen with a tracer of refrigerant. Check the system for leaks with a suitable leak detector.
- 2. With pressure still in Circuit #1, open the compressor service valves (service valves not present on units with model digit 10=W,N,R,E) in Circuit #2.
 - If pressure increases in Circuit #2, the system is cross-circuited and must be re-checked for proper piping.
 - If there is no pressure increase, repeat step 1 on Circuit #2.
- 3. After completion of leak testing, release the test pressure, (observe local code) and pull an initial deep vacuum of 500 microns on the system with a suitable pump.

4. After four hours, check the pressure readings and, if they have not changed, break vacuum with dry nitrogen. Pull a second and third vacuum to 500 microns or less. Re-check the pressure after two hours. When the three checks are complete, remove the jumper hose from the service valve fitting and the condenser, and proceed to Charging DA250 Air Cooled Systems (Vertiv[™] Liebert[®] MCV440 with Receivers) on the next page.

Break Vacuum

Using a manifold charging hose equipped with a ball valve, properly connect to a tank of refrigerant, and purge the hose with refrigerant to ensure non-condensables do not enter the system. Connect the hose assembly to the liquid line Schrader port and break circuit vacuum with a portion of the calculated refrigerant pre-charge. Add enough refrigerant to bring pressure slightly above positive. Close ball valve and remove refrigerant tank.

Charging DA250 Air Cooled Systems (Vertiv™ Liebert® MCV440 with Receivers)

NOTICE

Risk of improper refrigerant charging. Can cause equipment damage.

R-410A is a blended refrigerant and must be introduced and charged from the cylinder only as a liquid.

Care must be exercised to avoid damage to the compressor. We recommend connecting a manifold charging hose equipped with a ball valve to the liquid line Schraeder port.

NOTICE

Risk of improper operation. Can cause compressor failure.

Operating the unit with the EEV closed can cause compressor failure. The reheat and humidifier are disabled. A minimum of 70 psig (483 kPa) must be established and maintained for the compressor to operate. The charging function can be reset as many times as required to complete.

NOTICE

Units should never be operated with no refrigerant charge, holding charge, proper load, or without additional oil as required. Tag out system to prevent unauthorized personnel from accidentally starting equipment and damaging compressors if any of these conditions exist.

To charge the system:

- 1. Check the nameplate on the indoor unit for refrigerant type to be used. Unit control configurations differ depending on refrigerant type.
- 2. Refer to Checklist for Completed Installation on page 65.
- 3. Calculate the amount of charge for the system. See Refrigerant Charge Requirements for Air Cooled Systems on page 52.
- 4. Add additional compressor and trap oil. See Additional Oil Requirements for Scroll and Digital Scroll Compressors on page 53.
- 5. Accurately weigh in as much of the system charge as possible before starting the unit. Do not exceed the calculated charge by more than 0.5 lb (0.37 kg).
- 6. Close the MVC heat rejection skid disconnect switch.
 - We recommend charging the unit with the return air setpoint between 75°F and 85°F (24°C and 29°C).
 - The return air temperature to the unit being charged must be stable and must be maintained greater than 65°F (18°C). If this is not possible due to lack of heat load, then the load banks must be used to offset the cooling load during start-up. See Target Refrigerant Level in Sight Glasses at Outdoor Temperatures on page 58.
- 7. Close the Vertiv[™] Liebert[®] DSE disconnect switch.

NOTICE

The unit must have line voltage applied to the unit at least 12 hours before compressor start-up to allow the compressor crankcase heaters time to warm the compressors and boil off any liquid refrigerant in the compressors after pre-charge.

- 8. In the Service menu of the Vertiv[™] Liebert[®] iCOM[™] controller, select *Diagnostics/Service* > *Diagnostics*:
 - a. Enable Manual Mode.

NOTE: Manual Mode will time out after 60 minutes.

b. In the search box, enter *E1*77 and press Enter.

Two parameters appear in the Parameter Directory (E177.1 and E177.2).

Press the Gear icon in the upper right corner.

Select Make Writeable.

Change E177.1 and E177.2 from 15 minutes to 2 minutes.

This reduces the superheat setpoint from 24°F (13.3 °C) to 13°F (7.2°C) in two minutes.

- c. In Evaporator Fan options set *Motors* to *On* to operate the fan during Manual Mode.
- d. In Compressor Circuit 1 options, set *Compressor Mode* to *Charge* to operate Compressors 1A and 1B at full capacity. Turn Compressor 1A and 1B to On. The EEV will modulate to control superheat setpoint
- e. Reset the charge function as many times as needed to complete unit charging.

NOTE: You must establish and maintain a minimum 70 psig (483 kPa) for the compressor to operate.

- f. Repeat step 8 for Compressor Circuit 2.
- 9. Check the refrigerant level in the refrigerant level sight glasses on each receiver after the unit has been operating for at least 15 minutes.

NOTE: Each receiver at the condenser has two sight glasses and the refrigerant level varies with outside temperature.

- 10. Adjust the refrigerant level in each circuit to meet the level shown in Target Refrigerant Level in Sight Glasses at Outdoor Temperatures on the next page.
- 11. After adjusting the refrigerant, allow the system to operate an additional 15 minutes before checking for the need of further adjustment.
- 12. Repeat the procedure for the second circuit.

NOTE: A digital scroll compressor can have a clear unit sight glass on the liquid line only when operating at 100% capacity. When operating with a receiver, the unit sight glass might not become clear even when operating at 100% capacity. When operating below 100%, the unit sight glass may show bubbles with each 15 second unloading cycle.

Target Refrigerant Level in Sight Glasses at Outdoor Temperatures

- 40°F (4.5°C) and lower—bottom sight glass is 3/4 full
- 40°F (4.5°C) and higher—bottom sight glass is full

If the return air temperature cannot be maintained between 75°F and 85°F (24°C and 29°C) due to lack of load, then the liquid level receiver must be adjusted to the following if return air is between 65°F and 75°F (18°C and 24°C):

- 40°F (4.5°C) and lower—Charge to the bottom of the top sight glass.
- 40°F (4.5°C) and higher—Top sight glass is 1/4 full.

Additional Compressor Oil

Once the circuits are topped off with refrigerant, more compressor oil may need to be added to each circuit if the final charge is over 10 pounds of the calculated refrigerant charge. Record this additional oil amount on the manilla tag hanging on the compressor service valve.

Charging DA250/DA265 Air Cooled Systems (Vertiv[™] Liebert[®] MCV430/MCV440 without Receivers)

NOTICE

Risk of improper refrigerant charging. Can cause equipment damage.

R-410A is a blended refrigerant and must be introduced and charged from the cylinder only as a liquid.

Care must be exercised to avoid damage to the compressor. We recommend connecting a manifold charging hose equipped with a ball valve to the liquid line Schrader port.

NOTICE

Risk of improper operation. Can cause compressor failure.

Operating the unit with the EEV closed can cause compressor failure. The reheat and humidifier are disabled. A minimum of 70 psig (483 kPa) must be established and maintained for the compressor to operate. The charging function can be reset as many times as required to complete.

NOTE: If at least 50% Nominal Unit Load is not available then Load Banks will be required at commissioning in order to allow for proper unit charging.

NOTICE

Units should never be operated with no refrigerant charge, holding charge, proper load, or without additional oil as required. Tag out system to prevent unauthorized personnel from accidentally starting equipment and damaging compressors if any of these conditions exist.

To charge the system:

- 1. Check the nameplate on the indoor unit for the refrigerant type to be used. Unit control configurations differ depending upon the refrigerant type.
- 2. Refer to Checklist for Completed Installation on page 65.
- 3. Calculate the amount of charge for the system. See Refrigerant Charge Requirements for Air Cooled Systems on page 52.
- 4. Add additional compressor and trap oil. See Additional Oil Requirements for Scroll and Digital Scroll Compressors on page 53.
- 5. Accurately weigh in as much of the system charge as possible before starting the unit. Do not exceed the calculated charge by more than 0.5 lb (0.37 kg).
- 6. Close the Vertiv[™] Liebert[®] MCV heat rejection skid disconnect switch.
 - Unit must be charged with the return air within +/- 10°F (5.5°C) of the operating point.
 - If the operating point changes, the charge may need to be adjusted according to the new operating point.
 - The return air temperature to the unit being charged must be stable. If this is not possible due to the lack of heat load, then the load banks must be used to offset the cooling load during start-up.
- 7. Close the Vertiv[™] Liebert[®] DSE disconnect switch.

NOTICE

The unit must have line voltage applied to the unit at least 12 hours before compressor start-up to allow the compressor crankcase heaters time to warm the compressors and boil off any liquid refrigerant in the compressors after pre-charge.

- 8. In the Service menu of the Vertiv[™] Liebert[®] iCOM[™] controller, select *Diagnostics/Service > Diagnostics*.
 - a. Enable Manual Mode.

NOTE: Manual mode will time out after 60 minutes.

b. In the Search Box type *E177* and press Enter.

Two parameters appear in the Parameter Directory (E177.1 and E177.2).

Press the Gear icon in the upper right corner.

Select Make Writeable.

Change E177.1 and E177.2 from 15 minutes to 2 minutes.

This will reduce the superheat setpoint from 24°F (13.3° C) to 13°F (7.2° C) degrees in two minutes.

- c. In the Evaporator Fan options, set Motors to On to operate the fan during Manual Mode.
- d. In Compressor Circuit 1 options, set the Compressor Mode to Charge to operate Compressors 1A and 1B at full capacity. Turn Compressor 1A and 1B to On. The EEV will modulate to control superheat setpoint.
- e. Reset the charge function as many times as needed to complete unit charging.

NOTE: You must establish and maintain a minimum 70 psig (483 kPa) for the compressor to operate.

- 9. Check out the subcooling using the Schrader port on the liquid line just before the expansion valve. Superheat should be around 13°F (7.2°C) before verifying subcooling.
- 10. Adjust the refrigerant level to meet the subcooling shown in Table 7.12 on the facing page .
- 11. After adjusting the refrigerant, allow the system to operate an additional 15 minutes before checking the need of further adjustment.

NOTE: A digital scroll compressor can have a clear unit sight glass on the liquid line only when operating at 100% capacity. When operating below 100% capacity, the unit sight glass may show bubbles with each 15 second unloading cycle.

Outdoor Ambient		Subcooling		
۴	° C	۴	° C	
-30	-34.4	10	5.5	
-15	-26.1	10	5.5	
0	-17.8	10	5.5	
15	-9.4	10	5.5	
30	-1.1	10	5.5	
45	7.2	10	5.5	
60	15.6	10	5.5	
75	23.9	10	5.5	
85	29.4	10	5.5	

Table 7.12 Target Subcooling at Outdoor Temperature

Outdoor Ambient		Subcooling	
۴	° C	۴F	್
95	35	10	5.5
105	40.6	12	6.7
115	46.1	14	7.8
Subcooling should be within ± 3°F (1.7°C)			

Table 7.12Target Subcooling at Outdoor Temperature(continued)

- 12. Repeat steps 7 through 10 for Compressor Circuit 2.
- 13. Change E177.1 and E177.2 back to 15 minutes after both circuits are charged.

Additional Compressor Oil

Once the circuits are topped off with refrigerant, more compressor oil may need to be added to each circuit if the final charge is over 10 pounds of the calculated refrigerant charge. Record this additional oil amount on the manilla tag hanging on the compressor service valve.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

8 Heat Rejection Skid

8.1 Planning Dimensions

The unit dimensions are described in the submittal documents included in the Submittal Drawings on page 91.

 Table 8.1
 below lists the relevant documents by number and title.

Table 8.1 Dimension Planning Drawings

Document Number	Title
DPN004259	Cabinet Dimensional Data, MCV440, Single skid
DPN004261	Cabinet Dimensional Data, MCV440, Dual skid
10032070	Cabinet & Anchor Dimensional Data, Liebert® MCV430 + Liebert® EconoPhase + Base Assembly
10032072	Cabinet & Anchor Dimensional Data, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + Base Assembly

8.2 Vertiv[™] Liebert[®] MCV Match-up Selections

Table 8.2 High-efficiency Condenser Match-ups

Outdoor Design Ambient Temp., °F (°C)	Meximum Return Air Temp., °F (°C)	Liebert ^e DSE Models DA250, DA265
Up to 105 (41)	85 (29) to 105 (41)	MCV430/MCV440

8.3 Vertiv[™] Liebert[®] MCV Electrical Power Requirements

Condenser-rated voltage should be verified with available power supply before installation. Refer to the unit's electrical schematic and serial tag for specific electrical requirements. Line voltage electrical service is required for all condensers at the location of the condenser.

For the most reliable operation of the system, the indoor unit and the Liebert® MCV condenser should be on the same power source. The Vertiv[™] Liebert® DSE system offers an option for a power feed from the active source on the indoor unit to the outdoor condenser. This configuration provides the greatest reliability and fastest recovery during power loss or source change.

When powering the outdoor condenser from the indoor unit, there is a breaker/fuse on the indoor unit and the wire sizing requirements are provided in **Table 8.3** on the next page.

A unit disconnect is standard on the Liebert[®] MCV skid. However, a site disconnect may be required per local code to isolate the unit for maintenance. Refer to the unit's serial tag for specific condenser electrical requirements (**Table 8.3** on the next page).

Route the supply power to the site disconnect switch and then to factory-provided high-voltage enclosure located on the Liebert® MCV heat-rejection skid. Reference submittal drawings listed in **Table 8.3** on the next page .

Model	Voltage	FLA	WSA	OPD
	2 = 380V/60Hz	36.4	37.5	40
MCV440 + PR250*****2	A = 460V/60Hz	29.4	30.3	35
100000002	G = 415V / 50Hz	35.4	36.3	40
	B = 575V/60Hz	23.5	24.2	35
	2 = 380V/60Hz	35.8	36.8	40
MCV440 + PR250****5	A = 460V/60Hz	28.8	29.6	30
	G = 415V/50Hz	NA	NA	NA
	B = 575V/60Hz	23.1	23.8	35
	2 = 380V/60Hz	29.4	30.5	35
MCV430 + PR250	A = 460V/60Hz	23.8	24.7	25
	G = 415V/50Hz	28.4	29.3	30
	B = 575V/60Hz	19.0	19.7	30
FLA = Full Load Amps; WSA = Wire Size Amps; OPD = Maximum Overcurrent Protection Device.				
*For 380-V, 50-Hz application, consult the factory for SFA.				

Table 8.3 Heat Rejection Skid Electrical Data, Three-Phase

Table 8.4	Vertiv™ Li	iebert® MCV	Condenser	Only	Electrical	Data,	Three-Phase
-----------	------------	-------------	-----------	------	------------	-------	-------------

Model	Voltage	FLA	WSA	OPD				
	2 = 380V/60Hz	28.0	28.9	30				
MCV440	A = 460V/60Hz	22.4	23.1	25				
	M = 380-415V/50Hz	28.0	28.9	30				
	G = 415V/50Hz	28.0	28.9	30				
	2 = 380V/60Hz	21.0	21.9	25				
MCV430	A = 460V/60Hz	16.8	17.5	20				
	M = 380-415V/50Hz	21.0	21.9	25				
	G = 415V/50Hz	21.0	21.9	25				
FLA = Full Load Amps; WSA = Wire Size Amps; OPD = Maximum Overcurrent Protection Device.								
*For 380-V, 50-Hz application, consult the factory for SFA.								

9 Checklist for Completed Installation

9.1 Moving and Placing Equipment

- 1. Unpack and check received material.
- 2. Make sure that proper clearance for service access has been maintained around the equipment.
- 3. Check that equipment is level and mounting fasteners are tight.

9.2 Electrical Installation Checks

- 1. Check that supply voltage and phase matches equipment nameplate.
- 2. Check that power wiring connections completed to the disconnect switch, evaporator unit and heat rejection equipment.
- 3. Check that power line circuit breakers or fuses have proper ratings for equipment installed.
- 4. Control wiring connections completed between indoor evaporator and heat rejection equipment.
- 5. Ensure that all internal and external high and low voltage wiring connections are tight.
- 6. Confirm that unit is properly grounded to an earth ground.
- 7. Check that control transformer setting matches incoming power.
- 8. Confirm that electrical service conforms to national and local codes.
- 9. Check blowers and compressors for proper rotation.

9.3 Piping Installation Checks

- 1. Check that piping is completed to refrigerant loop.
- 2. Confirm that piping has been leak checked.
- 3. Check that additional oil has been added for system charges over 40 pounds (18.1kg) per circuit. See Additional Oil Requirements for Scroll and Digital Scroll Compressors on page 53.
- 4. Check that piping is properly sized, sloped and trapped as shown in the piping schematics.
- 5. Check piping inside and outside of equipment for proper support and adequate spacing to prevent rub through.
- 6. Ensure that factory clamps have been reinstalled.
- 7. Confirm that the drain line is connected, not obstructed, and pitched per local code.

9.4 Other Installation Checks

- 1. Make sure that ducting or plenum assembly complete (if required), maintain access to filters.
- 2. Check that filters are installed.
- 3. Check fasteners that secure motors—some may have become loose during shipment.
- 4. Verify water detection is properly installed around all units (recommended).
- 5. Confirm that blower drive system rotates freely.
- 6. Check all fans are free of debris.
- 7. Set fan airflow calibration voltage. Refer to **Table 9.1** on the next page and **Table 9.2** on page 67, for values. The values are set in the iCOM[™] Service menu > *Setpoints* > *Fan.*

Table 9.1	Airflow Calibration	Voltage for DA250
-----------	----------------------------	-------------------

			DA250 with Bo	ttom Discharge	DA250 with Horizontal Discharge					
Return Air ^{(1), (2), (3)}		60 Hz 50 Hz			Hz	60) Hz	50 Hz		
		0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	
ACFM	АСМН	Airflow Calibration Voltage (V) Airflow Calib					Airflow Calibra	ration Voltage (V)		
25,000	42,475	5.35	5.63	6.40	6.73	5.27	5.55	6.31	6.64	
26,000	44,174	5.54	5.80	6.62	6.94	5.45	5.72	6.52	6.85	
27,000	45,873	5.72	5.98	6.85	7.15	5.63	5.89	6.74	7.05	
28,000	47,572	5.91	6.16	7.07	7.37	5.81	6.07	6.96	7.26	
29,000	49,271	6.09	6.34	7.29	7.58	5.99	6.24	7.17	7.46	
30,000	50,970	6.28	6.51	7.51	7.79	6.17	6.41	7.39	7.67	
31,000	52,669	6.47	6.69	7.74	8.01	6.35	6.58	7.60	7.88	
32,000	54,368	6.65	6.87	7.96	8.22	6.53	6.76	7.82	8.09	
33,000	56,067	6.84	7.05	8.18	8.44	6.71	6.93	8.03	8.29	
34,000	57,766	7.03	7.23	8.41	8.66	6.89	7.11	8.25	8.50	
35,000	59,465	7.21	7.42	8.63	8.87	7.07	7.28	8.46	8.71	
36,000	61,164	7.40	7.60	8.85	9.09	7.25	7.46	8.68	8.92	
37,000	62,863	7.59	7.78	9.08	9.31	7.43	7.63	8.90	9.13	
38,000	64,562	7.77	7.96	9.3	9.52	7.61	7.81	9.11	9.34	
39,000	66,261	7.96	8.14	9.52	9.74	7.79	7.98	9.33	9.55	
40,000	67,960	8.15	8.33	9.75	(4)	7.97	8.16	9.54	9.76	
41,000	69,659	8.33	8.51	(4)	(4)	8.15	8.33	9.76	(4)	
42,000	71,358	8.52	8.69	(4)	(4)	8.33	8.51	(4)	(4)	
43,000	73,057	8.71	8.87	(4)	(4)	8.51	8.68	(4)	(4)	
44,000	74,756	8.89	9.06	(4)	(4)	8.69	8.86	(4)	(4)	
45,000	76,455	9.08	9.24	(4)	(4)	8.87	9.03	(4)	(4)	
46,000	78,154	9.27	9.42	(4)	(4)	9.05	9.21	(4)	(4)	
47,000	79,853	9.45	9.61	(4)	(4)	9.23	9.39	(4)	(4)	
48,000	81,552	9.64	(4)	(4)	(4)	9.41	9.56	(4)	(4)	
49,000	83,251	(4)	(4)	(4)	(4)	9.59	9.74	(4)	(4)	

1. Return Air Conditions for data: 95°F (35°C) DB, 52°F (11.1°C) DP, 300 ft (91m) elevation

2. Assumes Clean Filters.

3. Please contact your Vertiv representative for specific values which are available from Vertiv blower and performance programs.

4. A blower system is not available for the airflow and ESP.

			DA265 with bo	ttom discharge		DA265 with horizontal discharge			
		60 Hz		50 Hz		60 Hz		50 Hz	
Return Air ^{(1), (2), (3)}		0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)	0.2" ESP (50 Pa)	0.5" ESP (124 Pa)
ACFM	АСМН	Airflow Calibration Voltage (V)				Airflow Calibration Voltage (V)			
25,000	42,475	5.46	5.73	6.53	6.86	5.38	5.66	6.44	6.77
26,000	44,174	5.64	5.91	6.75	7.07	5.56	5.83	6.66	6.97
27,000	45,873	5.83	6.09	6.98	7.28	5.74	6	6.87	7.18
28,000	47,572	6.02	6.26	7.20	7.50	5.92	6.17	7.09	7.39
29,000	49,271	6.20	6.44	7.42	7.71	6.10	6.35	7.30	7.59
30,000	50,970	6.39	6.62	7.65	7.92	6.29	6.52	7.52	7.80
31,000	52,669	6.58	6.80	7.87	8.14	6.47	6.69	7.74	8.01
32,000	54,368	6.76	6.98	8.09	8.35	6.65	6.87	7.95	8.22
33,000	56,067	6.95	7.16	8.31	8.57	6.83	7.04	8.17	8.43
34,000	57,766	7.14	7.34	8.54	8.79	7.01	7.22	8.38	8.63
35,000	59,465	7.32	7.53	8.76	9	7.19	7.39	8.60	8.84
36,000	61,164	7.51	7.71	8.99	9.22	7.37	7.57	8.82	9.05
37,000	62,863	7.70	7.89	9.21	9.44	7.55	7.74	9.03	9.26
38,000	64,562	7.88	8.07	9.43	9.66	7.73	7.92	9.25	9.47
39,000	66,261	8.07	8.25	9.66	9.87	7.91	8.09	9.46	9.68
40,000	67,960	8.26	8.44	(4)	(4)	8.09	8.27	9.68	(4)
41,000	69,659	8.44	8.62	(4)	(4)	8.27	8.44	(4)	(4)
42,000	71,358	8.63	8.8	(4)	(4)	8.45	8.62	(4)	(4)
43,000	73,057	8.82	8.99	(4)	(4)	8.63	8.8	(4)	(4)
44,000	74,756	9.01	9.17	(4)	(4)	8.81	8.97	(4)	(4)
45,000	76,455	9.19	9.35	(4)	(4)	8.98	9.15	(4)	(4)
46,000	78,154	9.38	9.54	(4)	(4)	9.16	9.32	(4)	(4)
47,000	79,853	9.57	(4)	(4)	(4)	9.34	9.50	(4)	(4)
48,000	81,552	(4)	(4)	(4)	(4)	9.52	9.67	(4)	(4)
49,000	83,251	(4)	(4)	(4)	(4)	9.7	(4)	(4)	(4)
1.	Return Air Condit	ions for data: 95	5°F (35°C) DB, 5	52°F (11.1°C) DP,	300 ft (91m) el	evation.			

Table 9.2 Airflow Calibration Voltage for DA265

2. Assumes Clean Filters.

3. Please contact your Vertiv representative for specific values which are available from Vertiv blower and performance programs.

4. A blower system is not available for the airflow and ESP.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

10 Initial Start-up Checks and Commissioning Procedure for Warranty Inspection

WARNING! Arc flash and electric shock hazard. Can cause serious injury or death. Building and equipment damage may also result. Disconnect all local and remote electric power supplies and wear appropriate, OSHA-approved personal protective equipment (PPE) per NFPA 70E before working within the electric control enclosure. Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable.

Verify with a voltmeter that power is Off. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components still require and receive power even during the "Unit Off" mode of the Liebert[®] iCOM[™] controller. The factory-supplied, optional disconnect switch is inside the unit. The line side of this switch contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch. Refer to unit electrical schematic.

Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power. Follow all local codes.

WARNING! Risk of electric shock. Can cause serious injury or death. Building and equipment damage may also result. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components require and receive power even during the "unit off" mode of the Liebert[®] iCOM[™] controller.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

WARNING! Risk of improper wiring, piping, moving, lifting and handling. Can cause serious injury or death. Building and equipment damage may also result. Installation and service of this equipment should be done only by qualified personnel who have been specially-trained in the installation of air-conditioning equipment and who are wearing appropriate, OSHA-approved PPE.

NOTICE

Risk of improper electrical connection of three phase input power. Can cause backward compressor rotation and unit damage. Service technicians should use a gauge set on the system during the initial startup to verify that the three phase power is connected properly. Three phase power must be connected to the unit line voltage terminals in the proper sequence so that the compressors rotate in the proper direction. Incoming power must be properly phased to prevent compressors from running backward. We recommend checking the unit's phasing with proper instrumentation to ensure that power connections were made correctly. We also recommend verifying discharge and suction pressures during startup to ensure that the compressors are running in the correct direction.

NOTICE

Risk of improper power-supply connection. Can cause equipment damage and loss of warranty coverage.

Prior to connecting any equipment to a main or alternate power source (for example back-up generator systems) for start-up, commissioning, testing, or normal operation, ensure that these sources are correctly adjusted to the nameplate voltage and frequency of all equipment to be connected. In general, power-source voltages should be stabilized and regulated to within +/- 10% of the load nameplate nominal voltage. Also, ensure that no three-phase sources are single-phased at any time.

See transformer label for primary tap connections. Installer will need to change transformer primary taps if applied unit voltage is other than pre-wired tap voltage.

- Confirm that all items on Checklist for Completed Installation on page 65 have been done.
- Locate the Vertiv[™] Liebert[®] DSE Warranty Inspection Check Sheet in the unit's electric panel.
- Complete the Liebert® DSE Warranty Inspection Check Sheet during start-up.
- Forward the completed Liebert[®] DSE Warranty Inspection Check Sheet to your local sales office. This information must be completed and forwarded to validate warranty.
- Contact your local sales representative or technical support if you have any questions or problems during unit start-up and commissioning. Visit https://www.Vertiv.com/en-us/support/ or call 1-800-543-2778 for contacts.

11 Maintenance

WARNING! Arc flash and electric shock hazard. Can cause serious injury or death. Building and equipment damage may also result. Disconnect all local and remote electric power supplies and wear appropriate, OSHA-approved personal protective equipment (PPE) per NFPA 70E before working within the electric control enclosure. Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable.

Verify with a voltmeter that power is Off. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components still require and receive power even during the "Unit Off" mode of the Liebert[®] iCOM[™] controller. The factory-supplied, optional disconnect switch is inside the unit. The line side of this switch contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch. Refer to unit electrical schematic.

Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power. Follow all local codes.

WARNING! Risk of electric shock. Can cause serious injury or death. Building and equipment damage may also result. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components require and receive power even during the "unit off" mode of the Liebert[®] iCOM[™] controller.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

WARNING! Risk of short circuits and electric shock. Can cause serious injury or death. Building and equipment damage can result from cut insulation or damaged wires. Can cause overheated wiring, smoke, fire, activation of fire suppression systems and EMS personnel, and loss of power to fans. Verify that all wiring connections are tight and that all wiring is contained within the junction box prior to closing and securing the cover.

Insert CSA-certified or UL-listed bushings into holes and/or knockouts used to route wiring through metal panels to protect the wire insulation from contact with sheet metal edges.

WARNING! Risk of improper wire sizing/rating and loose electrical connections causing overheated wire and electrical connection terminals resulting in smoke or fire. Can cause serious injury or death. Building and equipment damage may also result. Use correctly sized copper wire only and verify that all electrical connections are tight before turning power On. Check all electrical connections periodically and tighten as necessary.

CAUTION: Risk of improper handling heavy and lengthy parts. Can cause injury. Building and equipment damage may also result. Cabinet panels can exceed 5 ft. (1.5 m) in length and weigh more than 35 lb (15.9 kg). Follow relevant OSHA lifting recommendations and consider using a two-person lift for safe and comfortable removal and installation of cabinet panels. Only properly trained and qualified personnel wearing appropriate, OSHA-approved PPE should attempt to remove or install cabinet panels

The Vertiv[™] Liebert[®] DSE is a single component in the facility heat removal system. The system includes air distribution (raised floors, duct systems), outdoor heat rejection (condensers, pumps) and indoor cooling and humidity loads (equipment load, location, outside air infiltration). Proper application and maintenance of the entire system is critical to the life and reliability of the thermal-management units.

- Good maintenance practices are essential to minimizing operation costs and maximizing product life.
- Read and follow monthly and semi-annual maintenance schedules included in this manual. These *minimum* maintenance intervals may need to be more frequent based on site-specific conditions.
- See the Vertiv[™] Liebert[®]iCOM[™] user manual, SL-31075, available at www.Vertiv.com, for instructions on using the controller to predict some service maintenance intervals.
- We recommend the use of trained and authorized service personnel, extended service contracts and factory specified replacement parts. Contact your Vertiv sales representative.

11.1 Filters

NOTICE

Risk of improper filter installation. Can cause filter collapse and airflow reduction.

To maximize the performance and reliability of the equipment, use only Vertiv filters. Contact your Vertiv representative to order replacement filters.

Verify that filters are installed and positioned so the airflow direction marked on the filter is the same direction as unit air flow.

Table 11.1 Filter Quantity and Type

Unit Size	Filter Type	Filter Size, Width x Length x Depth in. (mm)	Quantity
		28 X 22 X 4	15
DA250, DA265	MERV 8 or MERV 11	(711 X 559 X 102)	15

11.1.1 Replacing the Filters

WARNING! Risk of contact with high speed rotating fan blades. Can cause serious injury or death. Open all local and remote electric power supply disconnect switches, verify with a voltmeter that power is off, and verify that all fan blades have stopped rotating before working in the unit cabinet or on the fan assembly. If control voltage is applied, the fan motor can restart without warning after a power failure. Do not operate the unit with any or all cabinet panels removed.

Enter the unit through the service access door, and locate the supply side air filters in front of the heat exchanger. Refer to DPN005217 in Submittal Drawings on page 91.

Table 11.2 Filter Replacement Drawings

Document Number	Title
DPN005217	Liebert® DSE Filter Replacement DA250, DA265

11.2 Fan Maintenance

11.2.1 Fan Assembly Troubleshooting

Any safety hazards stemming from the device must be re-evaluated once it is installed in the end device.

Do not make any modifications, additions or conversions to the fan assembly without the approval of Vertiv.

WARNING! Risk of electric shock. Can cause serious injury or death. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Fan-motor controls can maintain an electric charge for 10 minutes after power is disconnected. Wait 10 minutes after power is verified as off before working within the electric control/connection enclosures.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

WARNING! Risk of contact with high speed rotating fan blades. Can cause serious injury or death. Open all local and remote electric power supply disconnect switches, verify with a voltmeter that power is off, and verify that all fan blades have stopped rotating before working in the unit cabinet or on the fan assembly. If control voltage is applied, the fan motor can restart without warning after a power failure. Do not operate the unit with any or all cabinet panels removed.

CAUTION: Risk of exposure to harmful noise levels. Can cause hearing injury or loss. Depending on the installation and operating conditions, a sound pressure level greater than 70 dB(A) may arise. Take appropriate technical safety measures. Operating personnel must wear appropriate, OSHA-approved PPE and observe all appropriate hearing protection safety requirements.

CAUTION: Risk of contact with hot surfaces. Can cause injury. Personal burn injury can be the result of touching an electronics housing, fan motor, and some electrical components that are extremely hot during unit operation. Allow sufficient time for them to cool to a touch-safe temperature before working within the unit cabinet.

Use extreme caution and wear appropriate, OSHA-approved PPE when working on or near hot components, including when replacing or performing maintenance on the fans.

NOTICE

Risk of improper power supply connection. Can cause equipment damage and loss of warranty coverage.

Prior to connecting any equipment to a main or alternate power source (for example: backup generator systems) for startup, commissioning, testing, or normal operation, ensure that these sources are correctly adjusted to the nameplate voltage and frequency of all equipment to be connected. In general, power source voltages should be stabilized and regulated to within ±10% of the load nameplate nominal voltage. Also, ensure that no three phase sources are single phased at any time.

NOTE: Do not assume that the fan blades will not start to spin. If the motor is in a fault condition, it will safely shut down. Once the fault condition is cleared, there are certain conditions in which the motor will automatically resume operation.

11.2.2 Fan Impellers

Fan impellers should be periodically inspected and any debris removed. Check to ensure that the impellers can rotate freely.

Consult the factory for fan assembly maintenance and removal instructions. Do not attempt to service or remove the fans without first contacting Vertiv support at 1-800-543-2778.

11.2.3 Blower Motor Lubrication

The motor is initially lubricated at the factory.

- Contact the motor manufacturer for the lubrication interval for motor bearings.
- Contact the motor manufacturer to determine the type of grease to use for lubrication.

11.2.4 Removing Fan Assembly

Do not attempt to remove the fan assemblies without first contacting Vertiv Technical Support at 1-800-543-2778.

11.3 Condensate Drain and Condensate Pump System Maintenance

11.3.1 Condensate Drain

Check for and clear obstructions in tubing during routine maintenance.

11.3.2 Condensate Pump

WARNING! Risk of electric shock. Can cause serious injury or death. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Vertiv[™] Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Condensate pump will stay energized and has the potential to operate even in the "Unit Off" mode.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

To maintain the condensate pump:

- 1. Disconnect power to the unit using the disconnect switch.
- 2. Check for and clear obstructions in gravity lines leading to the condensate pump.
- 3. Remove the sump, clean with a stiff nylon brush and flush with water.
- 4. Inspect and clear clogs in the discharge check valve and float mechanism.
- 5. Reassemble and check for leaks.

11.4 Electronic Expansion Valve (EEV) Maintenance

The EEV controls superheat through the Vertiv[™] Liebert[®] iCOM[™] controls by actively measuring suction pressure via a transducer attached to the suction line rotalock and suction temperature via a thermister strapped to the suction line. The EEV actively adjusts the orifice size and resulting mass flow of refrigerant to maintain the superheat setpoint (set in Liebert[®] iCOM[™]). The EEV is used in place of the standard thermal expansion valve (TXV).

WARNING! Risk of electric shock. Can cause serious injury or death. Building and equipment damage may also result. Open all local and remote electric power supply disconnect switches and verify that power is off with a voltmeter before working within any electric connection enclosures. The Liebert[®] iCOM[™] controller does not isolate power from the unit, even in the "Unit Off" mode. Some internal components require and receive power even during the "unit off" mode of the Liebert[®] iCOM[™] controller.

Installation, service, and maintenance work must be performed only by properly trained and qualified personnel and in accordance with applicable regulations and manufacturers' specifications. Opening or removing the covers to any equipment may expose personnel to lethal voltages within the unit even when it is apparently not operating and the input wiring is disconnected from the electrical source.

NOTE: Intermittent loss of subcooling may result in EEV/superheat instability. If superheat instability is observed, check for proper refrigerant level in receiver (see Refrigerant Piping Guidelines for Air Cooled Systems on page 49 for the proper charge level). If proper charge is observed in receiver, and superheat remains unstable, then increase superheat setting in the Liebert® iCOM™ to 15°F (8.49°C).

11.5 Compressor Maintenance

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

11.5.1 Compressor Oil

NOTICE

Risk of improper compressor lubrication. Can cause compressor and refrigerant system damage.

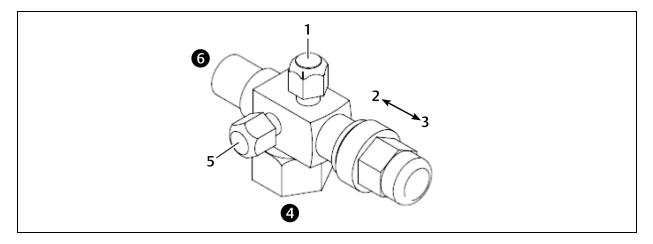
Failure to use oil types, viscosities and quantities recommended by the compressor manufacturer may reduce compressor life and void the compressor warranty.

- Do not mix polyolester (POE) and mineral based oils.
- Do not mix oils of different viscosities.
- Consult Vertiv technical support or the compressor manufacturer if questions arise.

Compressor Type	Оil Туре	
Copeland Digital Scroll	POE Oil - ISO 32 Centistoke Viscosity ¹	
1. Use Copeland POE Oil ULTRA 32-3MAF or other Copeland-approved oils.		
Source: DPN003950, Rev. 6		

Table 11.3 Compressor Oil Types for R-410A Refrigerant

11.5.2 Replacement Compressors


Replacement compressors are available through your Vertiv sales office. If the unit is under warranty, the replacement compressor must be obtained from and the original compressor returned to your local Vertiv sales office. Compressors are shipped in reusable packaging, and the original compressor should be returned in the same packaging.

11.5.3 Rotalock Valve on Digital Scroll Compressors (model digit 10 = T or P)

CAUTION: Risk of explosive discharge of high pressure refrigerant. Can cause serious injury. Neutral and service ports on the rotalock valve do not have a valve core. Front seat the service valves and relieve pressure from the compressor before loosening a part or a component attached to the service valve. Follow local codes to properly reclaim refrigerant.

- The Neutral port remains open to the compressor side in all positions of the valve stem, see **Figure 11.1** on the facing page . A high pressure cut out switch or low pressure switch/transducer will be connected to this port.
- The Service port is closed to the system when valve stem is back-seated, see **Figure 11.1** on the facing page. It is open to the system as soon as the valve is adjusted away from the back seated position.

Figure 11.1 Rotalock Valve

ltem	Description	
1	Service port (gauge)	
2	Front seat	
3	Back seat	
4	Compressor side of valve	
5	Neutral port	
6	System side of valve	

11.5.4 Unloading Solenoid(s) on a Digital Scroll Compressor

When replacing a digital scroll compressor, the digital solenoid valve and coil must be replaced. The compressor and valve kit are shipped separately. The valve kit must be field brazed to the top of the compressor in proper orientation and supported with the original factory bracket.

11.5.5 Compressor Electrical Failure (Motor Burnout)

If a burnout has occurred, a full system clean out is required. If not cleaned, compressor and system problems will continue.

Consult the factory for compressor maintenance. Do not attempt to remove the compressor without first contacting Vertiv support at 1-800-543-2778.

11.5.6 Replacing a Compressor with Electrical Failure (Motor Burnout)

WARNING! Risk of electric shock. Can cause serious injury or death. The Vertiv[™] Liebert®iCOM[™] microprocessor does not isolate power from the unit, even in the Unit Off mode. Some internal components require and receive power even during the unit off mode of the Liebert®iCOM[™] control. Open all local and remote electric power disconnect switches and verify with a voltmeter that power is Off before working on any component of the system.

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

NOTE: Release of refrigerant to the atmosphere is harmful to the environment. Refrigerant must be recycled or discarded in accordance with federal, state, and local regulations.

- 1. Attach suction and discharge gauges to access fittings.
- 2. Recover refrigerant using an approved recovery procedure and equipment. Use a filter drier when charging the system with recovered refrigerant.
- 3. Remove the marked pressure transducer and the discharge pressure switch. Disconnect all electrical connections.
- Detach service valves from the compressor. (Service valves not present on units with model digit 10 = W, N, R, or E.)
- 5. Remove the failed compressor.
- 6. Follow compressor manufacturer's suggested clean-out procedures.
- 7. Install the replacement compressor and make all connections. Replace the gaskets or seals on the service valves. (Service valves not present on units with model digit 10 = W, N, R, or E.)

Replace the unloading solenoid.

- 8. Evacuate, charge and operate per the appropriate procedure per local codes:
 - Evacuation, Leak Testing, and Charging Air Cooled Systems on page 55

NOTICE

Risk of improper component re-installation. Can cause equipment damage.

Identify and mark location of suction pressure transducer and discharge pressure switch. These devices look similar and they must be reinstalled in their original location.

11.5.7 Compressor Mechanical Failure

If mechanical failure of the compressor has occurred, only the compressor needs replaced. A full system clean out is not required.

11.5.8 Replacing a Compressor with Mechanical Failure - Unit with Rotalock Valves (model digit 10 = T or P)

WARNING! Risk of electric shock. Can cause serious injury or death. The Vertiv[™] Liebert[®]iCOM[™] microprocessor does not isolate power from the unit, even in the Unit Off mode. Some internal components require and receive power even during the unit off mode of the Liebert[®] iCOM[™] control. Open all local and remote electric power disconnect switches and verify with a voltmeter that power is Off before working on any component of the system.

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

NOTE: Release of refrigerant to the atmosphere is harmful to the environment. Refrigerant must be recycled or discarded in accordance with federal, state, and local regulations.

- 1. Front seat service valves to isolate the compressor. Recover refrigerant using an approved recovery procedure and equipment.
- 2. Remove the failed compressor.
- 3. Keep the replacement compressor sealed until installation is complete to the point that the system isolation valves are ready to be engaged. Keep exposure of the POE oil in the compressor to the atmosphere to a minimum.
- 4. Install the replacement compressor, replace the gaskets or seals on the service valves, and make all connections. Replace the unloading solenoid if equipped.
- 5. Once the compressor is completely installed, keep the isolation valves closed to the system and open to the compressor. Add dry nitrogen to the compressor and check all connections for leaks. With no leaks confirmed, evacuate the isolated compressor prior to introducing to the rest of the system.
- 6. When evacuating the isolated compressor volume, pull a vacuum of 500 microns with no decay above 1000 microns within 20 minutes.

Once evacuation requirements of the compressor are met, open the valves to open the compressor to the system.

7. Check the compressor and system operation. Make any necessary adjustments for proper equipment operation.

11.5.9 Replacing a Compressor with Mechanical Failure - Unit without Rotalock Valves (model digit 10 = W, N, R, E)

WARNING! Risk of electric shock. Can cause serious injury or death. The Vertiv[™] Liebert[®]iCOM[™] microprocessor does not isolate power from the unit, even in the Unit Off mode. Some internal components require and receive power even during the unit off mode of the Liebert[®] iCOM[™] control. Open all local and remote electric power disconnect switches and verify with a voltmeter that power is Off before working on any component of the system.

WARNING! Risk of over-pressurization of the refrigeration system. Can cause serious injury or death. Building and equipment damage may also result. Can cause explosive discharge of high-pressure refrigerant, loss of refrigerant, or environmental pollution. This unit contains fluids and gases under high pressure. Use extreme caution when charging the refrigerant system. Do not pressurize the system higher than the design pressure marked on the unit's nameplate.

NOTE: Release of refrigerant to the atmosphere is harmful to the environment. Refrigerant must be recycled or discarded in accordance with federal, state, and local regulations.

- 1. Attach suction and discharge gauges to access fittings.
- 2. Recover refrigerant using an approved recovery procedure and equipment. Use a filter drier when charging the system with recovered refrigerant.
- 3. Remove the marked pressure transducer and the discharge pressure switch. Disconnect all electrical connections.
- 4. Remove the failed compressor.
- 5. Install the replacement compressor and make all connections. Replace the unloading solenoid.
- 6. Evacuate, charge and operate per the appropriate procedure per local codes:
 - Evacuation, Leak Testing, and Charging Air Cooled Systems on page 55

NOTICE

Risk of improper component re-installation. Can cause equipment damage.

Identify and mark location of suction pressure transducer and discharge pressure switch. These devices look similar and they must be reinstalled in their original location.

11.6 Evaporator Coil

The DA250 and DA265 units contain single slab coils. This results in different evaporator (suction) temperatures between System 1 and System 2. The outer coil (System 1) will operate at a higher evaporator temperature than the inner coil (System 2) when operating at the same compressor loading.

11.7 Air Cooled Condenser Maintenance

Restricted airflow will reduce operating efficiency and could result in high compressor head pressure and loss of cooling.

- Clear the coil surface of all debris that will inhibit airflow.
- Check for bent or damaged coil fins and correct.
- Do not permit snow to accumulate around or under the outdoor unit.
- Periodically consider commercial cleaning of the coil surface
- Inspect fans, motors and controls for proper operation.
- Check all piping and capillaries for proper support.
- Inspect for leaks.
- Check contactors for pitting. Replace if pitted.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

12 Preventive Maintenance Checklist

Source: DPN002952, Rev. 4

Inspection Date			Job Name	
Indoor Unit Model #			Indoor Unit Serial Number #	
Condenser/Drycooler Model #			Condenser/Drycooler Serial #	
Room Temperature/Humidity	0	%	Ambient Temperature	0

Not all units will have all components. To determine your unit's configuration, compare the Indoor Unit Model # above and the information in the Components and Nomenclature section.

Good maintenance practices are essential to minimizing operation cost and maximizing product life. Read and follow all applicable maintenance checks listed below. At a minimum, these checks should be performed semi-annually. However, maintenance intervals may need to be more frequent based on site-specific conditions. Review the unit user manual for further information on unit operation. We recommend the use of trained and authorized service personnel, extended service contracts, and factory certified replacement parts. Contact your local sales representative for more details.

Check all that apply:

Evaporator/Filters

Check/Replace filters.

□ Make sure that the grille area is unrestricted.

□ Wipe section clean.

Coil clean

Clean the condensate pan.

Clean the trap in the condensate drain.

Check/test the filter-clog switch operation (if equipped).

Blower Section (EC fan)

□ Verify that the mounting bolts are tight.

□ Fan guard bolts tight

 \square Confirm that the impeller spins freely.

Check/test the air sail switch (if equipped).

Check the motor amp draw.

Compare to nameplate amps.

#1	L1	L2	L3
#2	L1	L2	L3
#3	L1	L2	L3

Check the belt tension and condition (replace if needed).

Check the sheave/pulley (replace if worn).

Condensate Pump (if equipped)

Check for debris in the sump.

Check the operation of float(s) (free movement).

Check/clean the discharge check valve.

Electrical Panel

Check the fuses.

Check the contactors for pitting (replace if pitted).

Check/re-torque the wire connections.

Controls

Check/verify the control operation (sequence).

Check/test the changeover device(s) (if equipped).

 \Box Check/test the water detection device(s) (if equipped).

Check/test the CAN connection between the indoor and outdoor units (if equipped).

Refrigeration Piping

Check the refrigerant lines (clamps secure/no rubbing/no leaks).

- Check for moisture (sight glass).
- Check for restriction temperature drop across filter drier.

Compressor Section

Check the oil level.

 \square Check for oil leaks

Check the compressor mounts (springs/bushings).

Uverify that the cap tubes are not rubbing.

 \square Check/re-torque the wire connections (inside the compressor box).

Check the compressor operation (vibration/noise).

□ Check the crank-case heater fuses/operation.

Check for refrigerant leaks.

□ Suction pressure	Circuit #1	 Circuit #2	
Discharge pressure	Circuit #1	 Circuit #2	
□ Superheat	Circuit #1	 Circuit #2	
Low pressure switch cut out	Circuit #1	 Circuit #2	
Low pressure cut in	Circuit #1	 Circuit #2	
High pressure cut out	Circuit #1	 Circuit #2	

🗖 Amp draw

Circuit #1A	L1	L2	L3	
Circuit #1B	L1	L2	L3	
Circuit #2A	L1	L2	L3	
Circuit #2B	L1	L2	L3	

Vertiv[™] Liebert[®] MCV Condenser

□ Make sure that the coil is clean of debris (clean coil if required).

Verify that the fans are free of debris.

Ensure that the fans are securely mounted.

Confirm that the motor bearings are in good condition.

Check all refrigerant lines for vibration isolation. Support as necessary.

Check for refrigerant leaks.

Check the surge protection device (if installed) status-indicator lights.

Check/Re-torque the wire connections.

Check the contactors for pitting (replace if pitted).

□ Verify the operation sequence/setpoints.

Charge verification:

Outdoor Ambient Temperature

Subcooling _____

Indoor unit return air temperature _____

Receiver sight-glass level _____

□ Motor amp draw

#1 L1	L2	L3	
#2 L1	L2	L3	
#3 L1	L2	L3	
#4 L1	L2	L3	
#5 L1	L2	L3	
#6 L1	L2	L3	
#7 L1	L2	L3	
#8 L1	L2	L3	
#9 L1	L2	L3	
#10 L1	L2	L3	
#11 L1	L2	L3	
#12 L1	L2	L3	
#13 L1	L2	L3	
#14 L1	L2	L3	
#15 L1	L2	L3	
#16 L1	L2	L3	
-			

Vertiv™ Liebert® EconoPhase Pumped Refrigerant Economizer

- Check for refrigerant leaks.
- Check/re-torque the wire connections.
- Check the contactors for pitting (replace if pitted).
- \square Verify the pump-speed control operation.
- Check the pump mounting.

MAINTENANCE NOTES

Company		
Signature		
Name		

Make photocopies for your records. Compare readings/information to previous maintenance worksheet.

To locate your local Vertiv representative for Vertiv-engineered parts, check https://www.Vertiv.com/en-us/support/ or Call 1-800-543-2778.

Appendices

Appendix A: Technical Support and Contacts

A.1 Technical Support/Service in the United States

Vertiv Group Corporation

24x7 dispatch of technicians for all products.

1-800-543-2378

Liebert® Thermal Management Products

1-800-543-2378

Liebert[®] Channel Products

1-800-222-5877

Liebert® AC and DC Power Products

1-800-543-2378

A.2 Locations

United States

Vertiv Headquarters

505 N. Cleveland Ave.

Westerville, OH, 43082, USA

Europe

Via Leonardo Da Vinci 8 Zona Industriale Tognana

35028 Piove Di Sacco (PD) Italy

Asia

7/F, Dah Sing Financial Centre

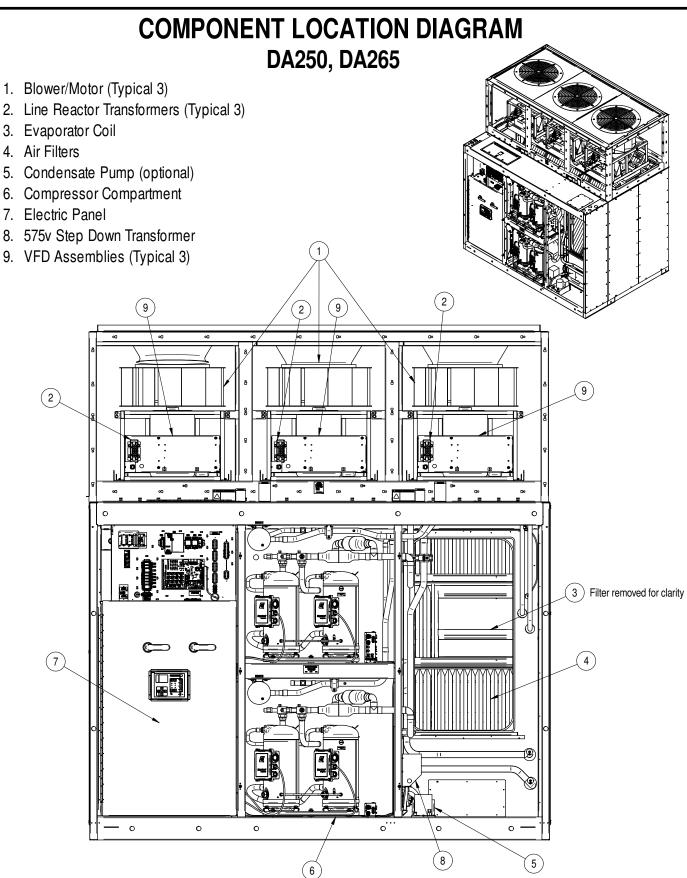
3108 Gloucester Road

Wanchai, Hong Kong

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

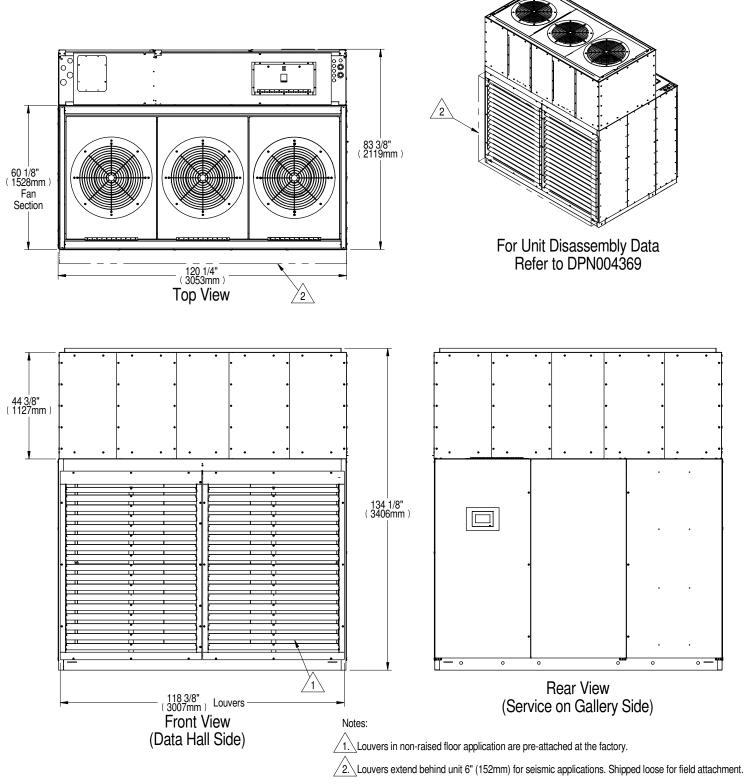
Appendix B: Submittal Drawings


Table B.1 Submittal Drawings Contents

Document Number	Title			
Component Location				
DPN004368	Liebert® DSE Component Location Diagram			
Dimension Planning Drawings — Evaporator	Units			
DPN004366	Liebert® DSE Cabinet Dimensional Data DA250, DA265 with Horizontal Discharge			
DPN004516	Liebert® DSE Cabinet Dimensional Data DA250, DA265 with Bottom Discharge			
DPN004514	Liebert® DSE Installation and Service Clearance Data DA250, DA265			
DPN004581	Liebert® DSE Floor Planning for Adjacent DA250, DA265 Units			
Dimension Planning Drawings — Floor Stand	ls			
DPN004511	Liebert® DSE Floor Stand Dimensional Data DA250, DA265			
Airflow Schematics				
DPN004367	Cabinet and Plenum Airflow Schematic, DA250 Downflow, Horizontal Discharge			
DPN004557	Cabinet and Plenum Airflow Schematic, DA250 Downflow, Bottom Discharge			
Dimension Planning Drawings - Condenser U	Inits			
DPN004259	Cabinet Dimensional Data, MCV440, Single skid			
DPN004261	Cabinet Dimensional Data, MCV440, Dual skid			
10032070	Cabinet & Anchor Dimensional Data, Liebert® EconoPhase + Base Assembly			
10032072	Cabinet & Anchor Dimensional Data, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + Base Assembly			
Electrical Field Connection Drawings				
DPN004797	Liebert® DSE Electrical Field Connections DA250, DA265 Downflow Models			
DPN003886	Liebert® Heat Rejection Skid CANbus and Interlock Connections Liebert® MCV and Liebert® MCV Liebert® EconoPhase and Base Assembly			
DPN005196	Automatic Transfer Switch			
Electrical Unit to Unit Networking	Electrical Unit to Unit Networking			
DPN004351	Liebert® iCOM™ Unit to Unit Network Connections (Liebert® CW, Liebert® CWA, Liebert® DS, Liebert® DS, Liebert® DSE, Liebert® PDX, Liebert® PCW			
Liebert® MCV Heat-rejection Skid Field-conr	Liebert® MCV Heat-rejection Skid Field-connection Drawings			
DPN004257	Condenser connection data, MCV440, Single skid			
DPN004262	Condenser connection data, MCV440, Dual skid			
10032073	Primary connection locations, Liebert® MCV MCV430 + Liebert® EconoPhase + base assembly			
10032075	Primary connection locations, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + base assembly			

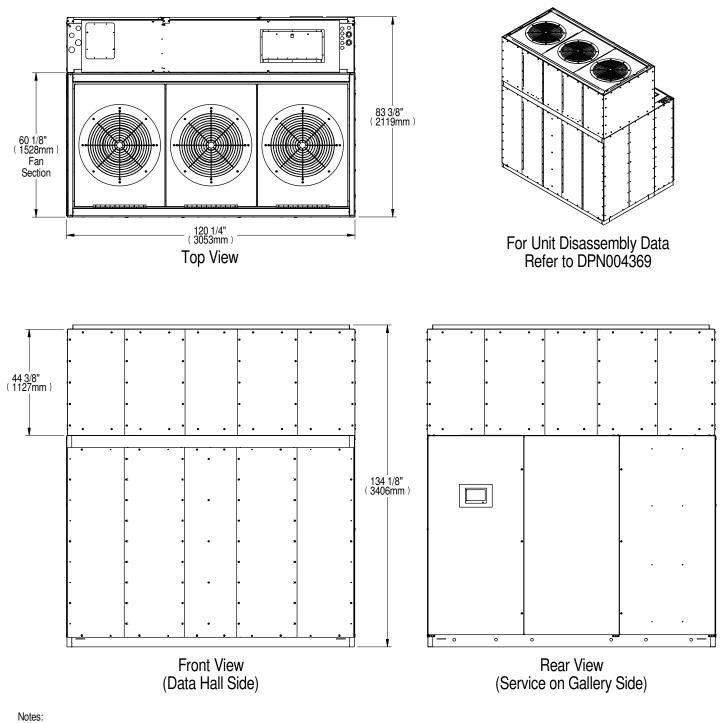
Document Number	Title			
Piping General Arrangement Drawings				
DPN004476	Piping Schematic DA125, DA150, DA165, DA250 with Liebert® MCV			
DPN005206	Piping Schematic, DA265 with Liebert® MCV			
20000028	Piping Schematic with Optional Oil Separator DA250 & DA265 with Liebert® MCV without Receivers			
Refrigeration Piping Layout and Condenser	Positioning Drawings			
DPN003965	Liebert® DSE Air Cooled Piping Schematic Liebert® MCV Mounted above Liebert® DA125-250			
DPN005207	Liebert® DSE Air Cooled Piping Schematic Liebert® MCV Mounted above DA265			
DPN004702	Gravity Condensate Piping - 250-265 kW			
DPN004259	Cabinet Dimensional Data, MCV440, Single skid			
DPN004261	Cabinet Dimensional Data, MCV440, Dual skid			
Piping Connection Drawings				
DPN004208	Liebert® DSE Primary Connection Locations DA250, DA265			
10032073	Primary connection locations, Liebert® MCV MCV430 + Liebert® EconoPhase + base assembly			
10032075	Primary connection locations, Liebert® MCV430 (2) + Liebert® EconoPhase (2) + base assembly			
Filter Replacement Drawings				
DPN005217	Liebert® DSE Filter Replacement DA250, DA265			

Table B.1 Submittal Drawings Contents (continued)



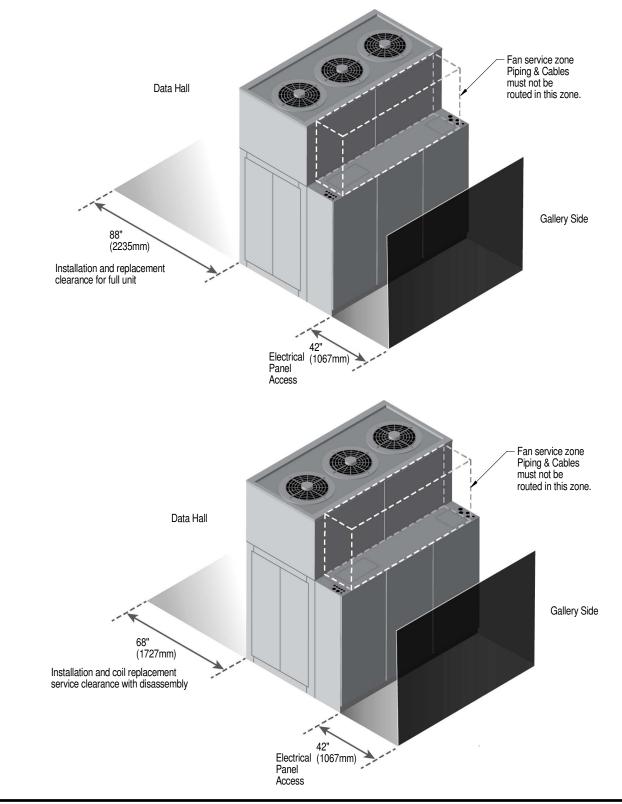
DPN004368 Page :1 /1

Form No.: DPN001040_REV4


CABINET DIMENSIONAL DATA DA250, DA265 W/ HORIZONTAL DISCHARGE

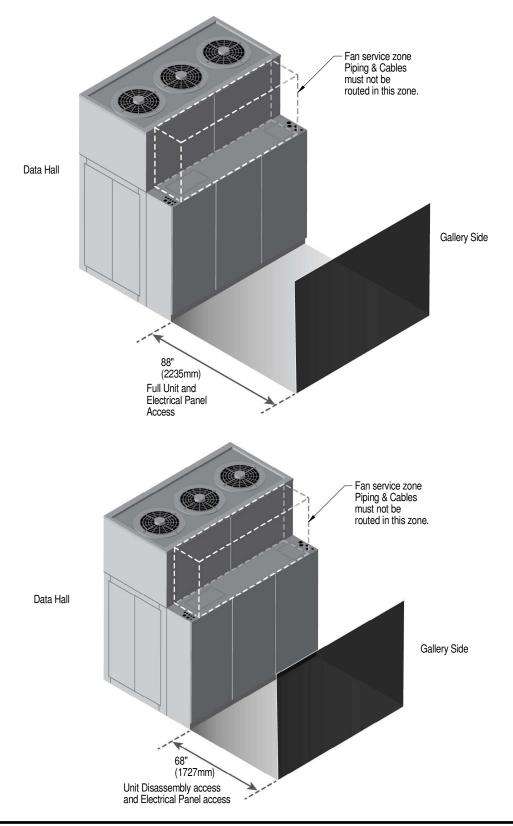
DPN004366 Page :1 /1

CABINET DIMENSIONAL DATA DA250, DA265 W/ BOTTOM DISCHARGE

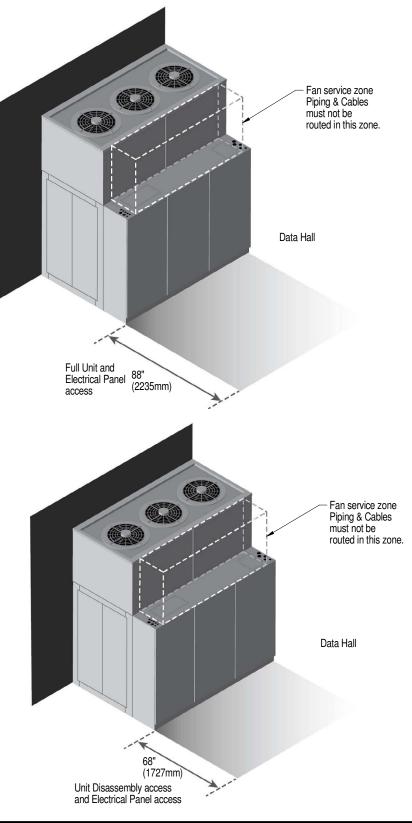


1. Optional Floorstand required with bottom discharge units.

Form No.: DPN001040_REV4

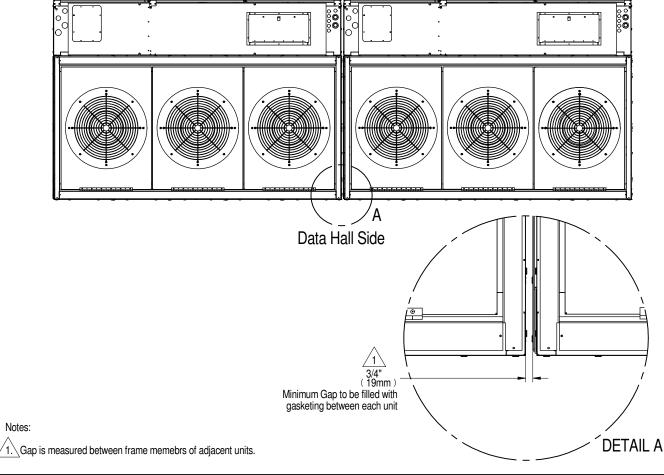


INSTALLATION & SERVICE CLEARANCE DATA DA250, DA265 INSTALLATION, REPLACEMENT FROM DATA CENTER SIDE, MAINTENANCE FROM GALLERY



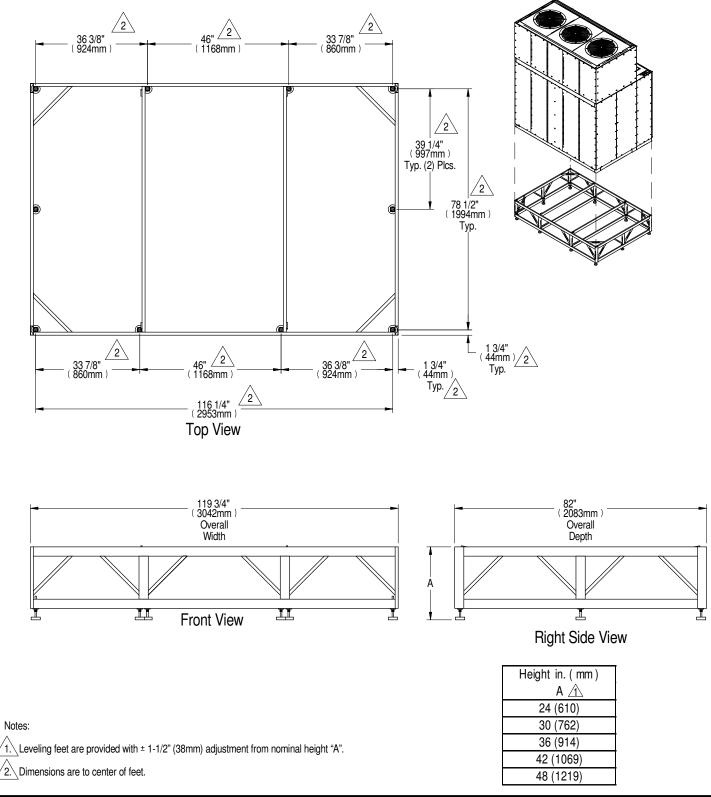
INSTALLATION & SERVICE CLEARANCE DATA DA250, DA265 INSTALLATION, SERVICE, AND MAINTENANCE FROM GALLERY

INSTALLATION & SERVICE CLEARANCE DATA DA250, DA265 PERIMETER INSTALLATION AND SERVICE CLEARANCE


Form No.: DPN001040_REV4

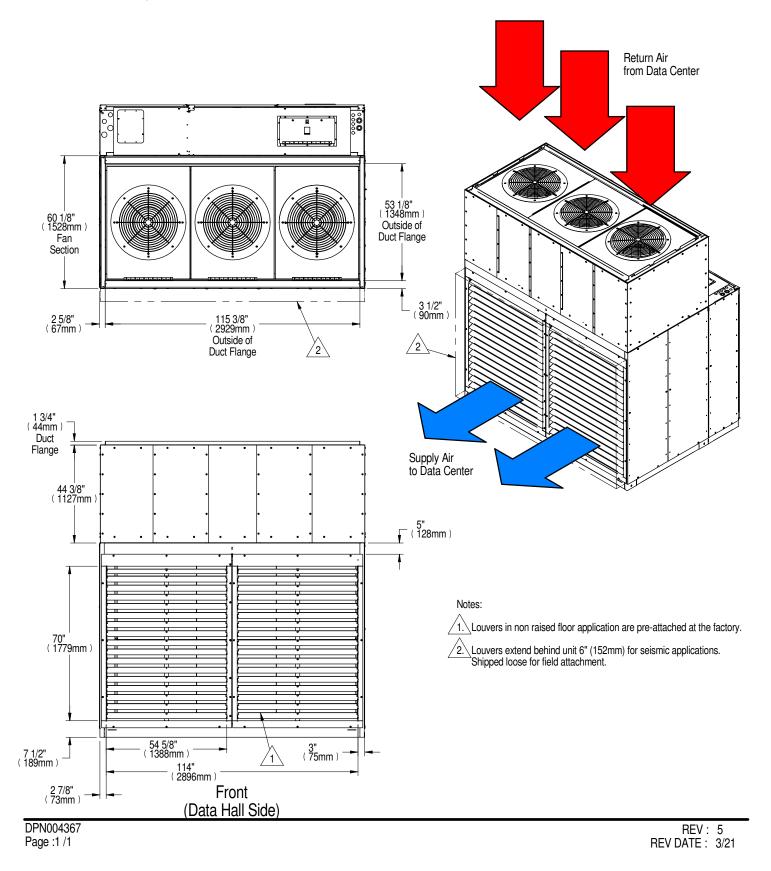
FLOOR PLANNING FOR ADJACENT DA250, DA265 UNITS

- Gasketing shown is for pictorial purposes only to show edges of unit that require gap sealing. Gasketing and method to be provided and applied by others in the field.

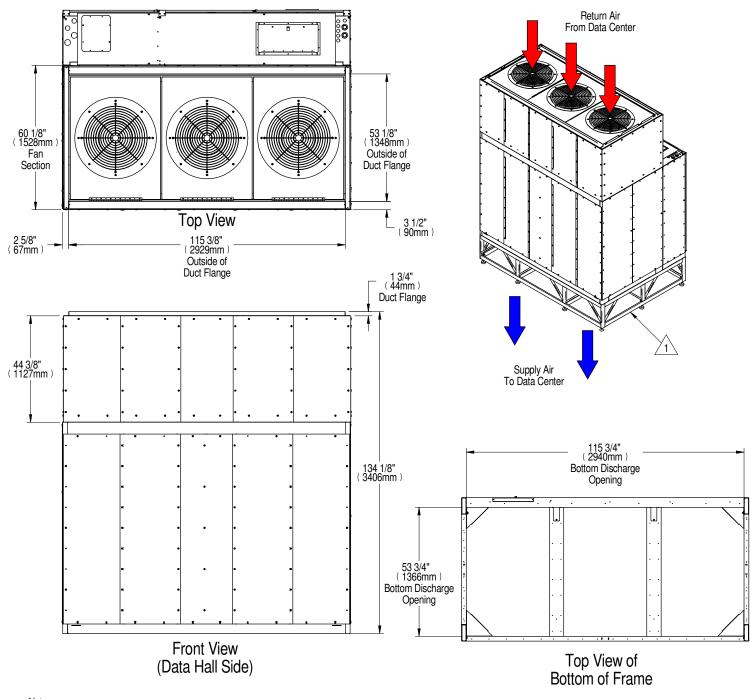


Form No.: DPN001040_REV4

Notes:

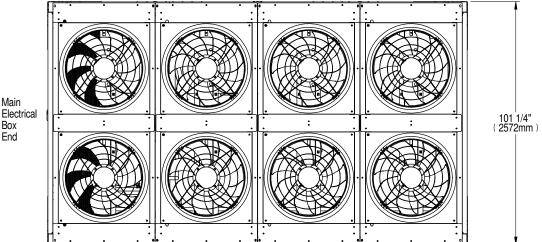

FLOORSTAND DIMENSIONAL DATA DA250, DA265

1.\



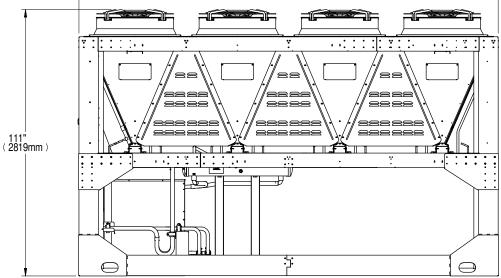
AIRFLOW SCHEMATIC DA250, DA265 DOWNFLOW UNIT W/ HORIZONTAL DISCHARGE

AIRFLOW SCHEMATIC DA250, DA265 W/ BOTTOM DISCHARGE


Notes:

1. Optional Floorstand required with bottom discharge units.

DPN004557 Page :1 /1



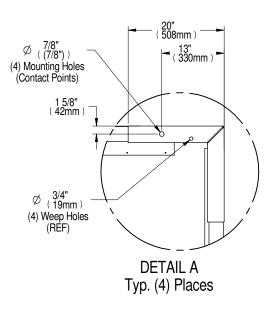
CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

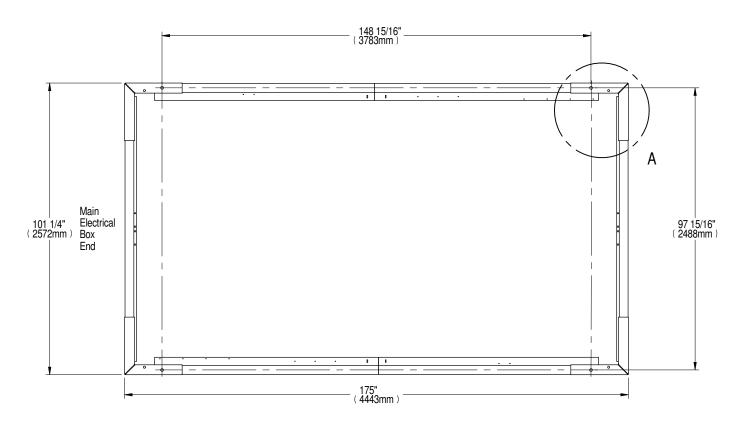
175" (4436mm) ⊐ſ⊂ <u>n</u>-Ÿ : ::..

Box End

Model	Domestic Shipping Weight Ib. (kg)	Export Shipping Weight Ib. (kg)
MCV440 Single Skid with Receiver	5900 (2676)	6140 (2785)
MCV440 Single Skid without Receiver	5800 (2630)	6040 (2740)

NOTES:


1) Minimum clearance on the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local code.

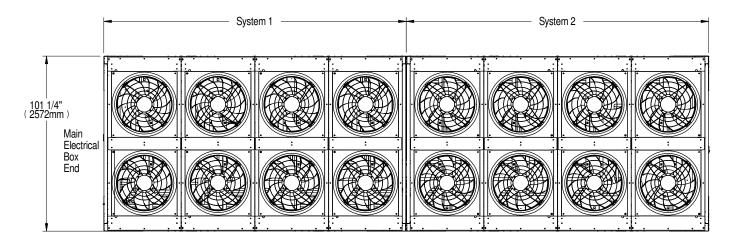

2) Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirements.

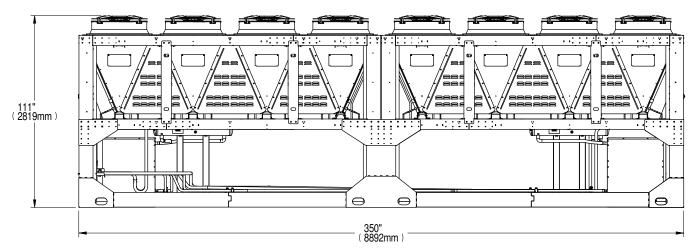
LIEBERT® HEAT REJECTION SKID

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

NOTES:

DPN004259


Page :2/2

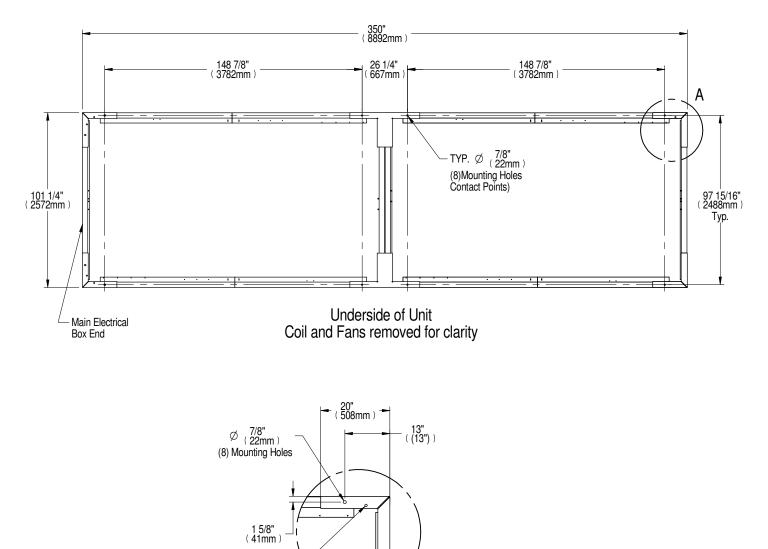

Underside of unit, coil and fan removed for clarity.
 Four mounting holes and four 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

LIEBERT® HEAT REJECTION SKID

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

Model	Domestic Shipping Weight Ib (kg)	Export Shipping Weight Ib (kg)
MCV440 Dual Skid with Receiver	11,580 (5252)	11,960 (5425)
MCV440 Dual Skid without Receiver	11,380 (5162)	11,760 (5434)

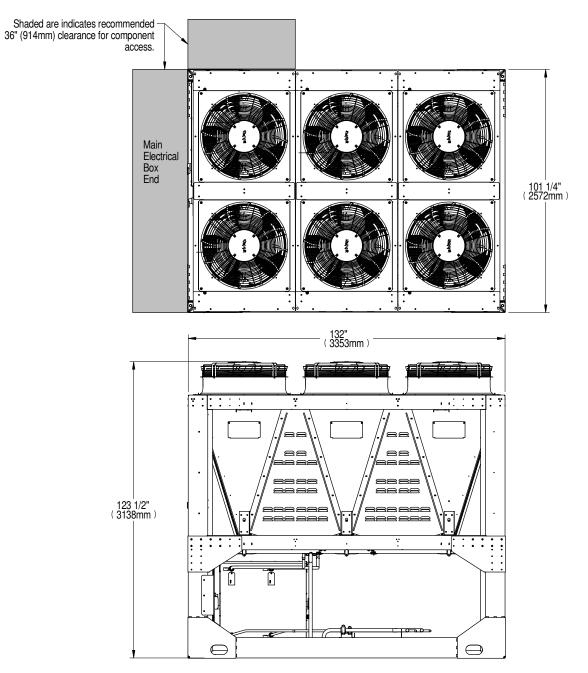
Notes:


1. Minimum clearance of the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local electrical code.

2. Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirments.

LIEBERT® HEAT REJECTION SKID

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

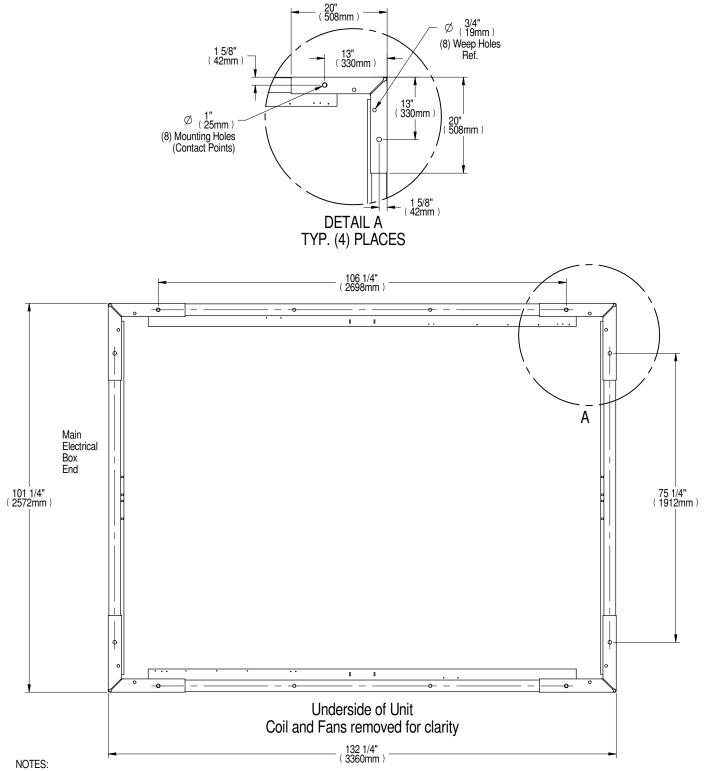

Notes:

1. Eight mounting holes and eight 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

DETAIL A Typical (4) Places

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV430 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

Domestic Shipping Weight	Export Shipping Weight	
Ib. (kg)	Ib. (kg)	
4,900 (2,223)	5,100 (2,313)	


NOTES:

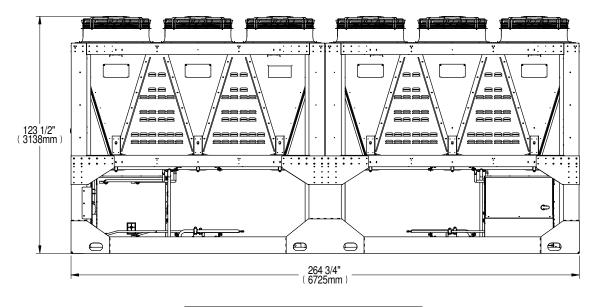
1) Minimum clearance on the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local code.

2) Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirements.

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV430 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

10032070

Page :2/2


Underside of unit, coil and fan removed for clarity.
 Four mounting holes and four 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

LIEBERT® HEAT REJECTION SKID

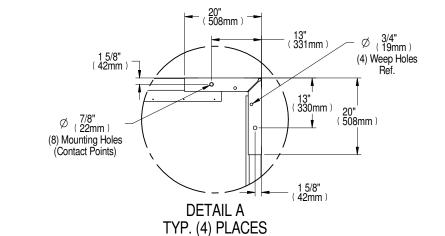
CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV430 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

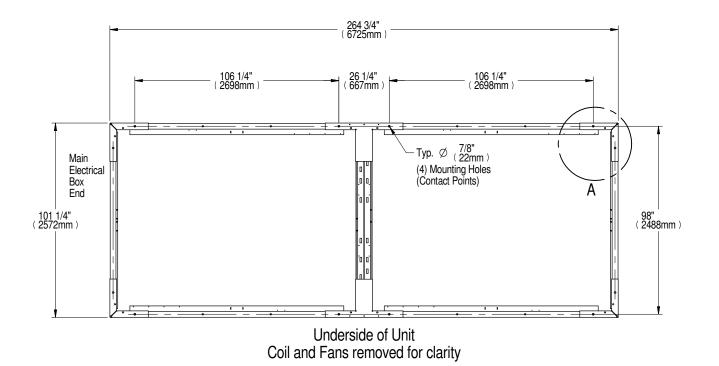
Shaded area indicates recommended clearance of 36" (914mm) for component access.

Domestic Shipping Weight	Export Shipping Weight	
lb (kg)	lb (kg)	
9,800 (4,445)	10,150 (4,604)	

Notes: 1. Mini

Form No.: DPN001040_REV4


1. Minimum clearance of the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local electrical code.


2. Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirments.

LIEBERT® HEAT REJECTION SKID

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV430 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

Notes:

10032072

Page :2/2

Underside of unit, coil and fan removed for clarity.
 Eight mounting holes and eight 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

ELECTRICAL FIELD CONNECTIONS DA250, DA265 DOWNFLOW MODELS

STANDARD ELECTRICAL CONNECTIONS

- 1) High voltage entrance Located in bottom and top of box (quantity 3)
- 2) Low voltage entrance Located in bottom and top of box (quantity 4)
- 3) Three phase electrical service Terminals are on top of disconnect switch. Three phase service not provided by Liebert.
- 4) Earth ground Terminal for field supplied earth grounding wire and component ground terminal strip. Earth grounding required for Liebert units.
- 5) Unit factory installed disconnect switch and Main Fuses Access to the high voltage electric panel compartment can be obtained only with the switch in the "off" position. Fused disconnects are provided with a defeater button that allows access to the electrical panel when power is on.
- 6) Remote unit shutdown Replace existing jumper between terminals 37 & 38 with field supplied normally closed switch having a minimum 75VA, 24VAC rating. Use field supplied Class 1 wiring.
- Customer alarm inputs Terminals for field supplied, normally open contacts, having a minimum 75VA, 24VAC rating, between terminals 24 & 50, 51, 55, 56. Use field supplied Class 1 wiring. Terminal availability varies by unit options.
- 8) Common alarm On any alarm, normally open dry contact is closed across terminals 75 & 76 for remote indication. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- Heat rejection interlock On any call for compressor operation, normally open dry contact is closed across terminals 70 & 71 & 230 to heat rejection equipment. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.

CANbus ELECTRICAL CONNECTIONS

- CANbus Connector Terminal block with terminals 49-1 (CAN-H) and 49-3 (CAN-L) + SH (shield connection). The terminals are used to connect the CANBus communication cable (provided by others) from the indoor unit to the Liebert MCV Condenser skid
- 11) CANbus Cable CANbus cable provided by others to connect to the outdoor condenser and optional PRE unit. No special considerations are required when the total external cable connection between the indoor unit and outdoor unit(s) is less than 450FT (137M). For total external cable connections greater than 450FT (137M). For external cable connections greater than 450FT (137M), but less than 800FT (243M) a CANbus isolator is required (Contact Factory).

Cable must have the following specifications:

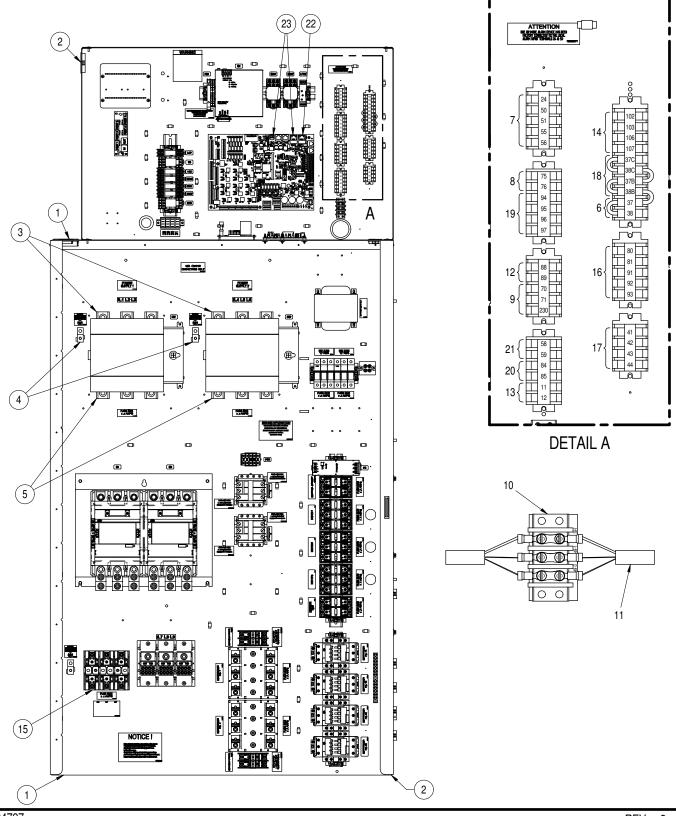
- Braided shield or foil shield with drain wire
- Shield must be wired to ground at indoor unit
- 22-18AWG stranded tinned copper
- Twisted pair (minimum 4 twists per foot)
- Low Capacitance (15pF/FT or less)
- Must be rated to meet local codes and conditions
- EXAMPLES BELDEN 89207 (PLENUM RATED), OR ALPHA WIRE 6454 CATEGORY 5, 5E, OR HIGHER
- Do not run in same conduit, raceway, or chase as high voltage wiring.
- For CANbus network lengths greater than 450FT (137M) call Factory.

ELECTRICAL FIELD CONNECTIONS DA250, DA265 DOWNFLOW MODELS

OPTIONAL ELECTRICAL CONNECTIONS

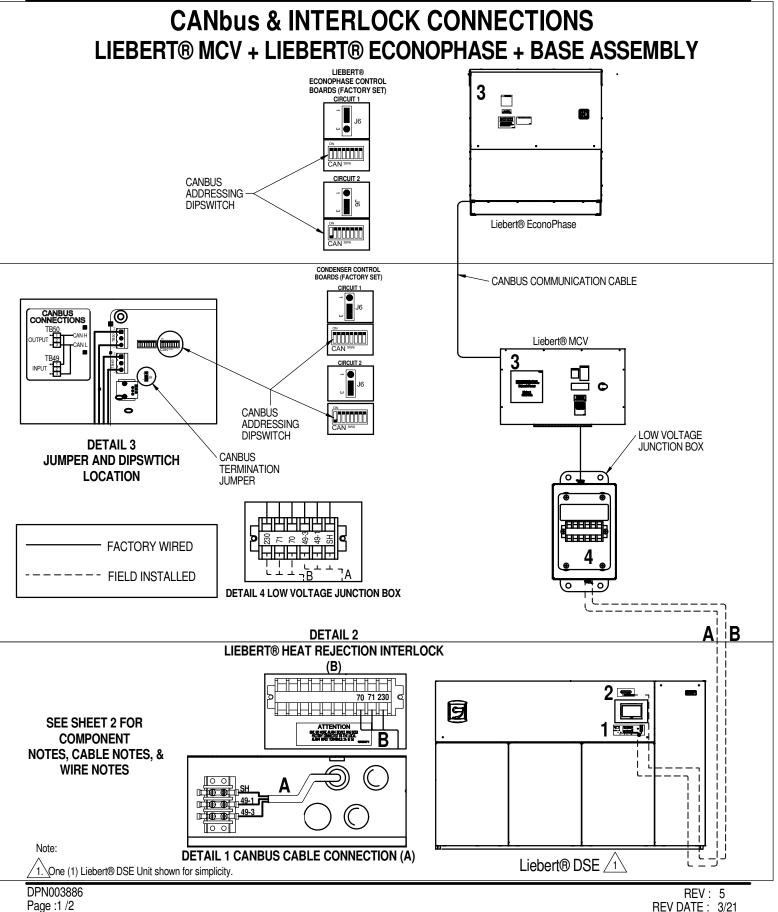
- 12) Condensate alarm (with condensate pump option) On pump high water indication, normally open dry contact is closed across terminals 88 & 89 for remote indication. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- 13) Remote humidifier On any call for humidification, normally open dry contact is closed across terminals 11 & 12 to signal field supplied remote humidifier. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- 14) Reverse Starter contacts Normally open dry contact is closed across terminals 102 & 103 for power supply 1 and 106 & 107 for power supply 2 to indicate the active power feed. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- 15) Heat Rejection Power Connection- Terminals are on bottom of fuse block. Use field supplied wiring per local codes for connection to Heat Rejection unit.
- 16) Smoke sensor alarm Factory wired dry contacts from smoke sensor are 91-common, 92-NO, and 93-NC. Supervised contacts, 80 & 81, open on sensor trouble indication. This smoke sensor is not intended to function as, or replace, any room smoke detection system that may be required by local or national codes. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- 17) Analog inputs- Terminals 41, 42, 43, and 44 are user configurable for 0-10V, 0-5V, or 4-20MA.

OPTIONAL LOW VOLTAGE TERMINAL PACKAGE CONNECTIONS


- Remote unit shutdown Two additional contact pairs available for unit shutdown (labeled as 37B & 38B, 37C & 38C). Replace jumpers with field supplied normally closed switch having a minimum 75VA, 24VAC rating. Use field supplied Class 1 wiring.
- 19) Common alarm On any alarm, two additional normally open dry contacts are closed across terminals 94 & 95 and 96 & 97 for remote indication. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- 20) Main fan enabled contact On VFD enable, normally open dry contact is closed across terminals 84 & 85 for remote indication. 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.
- LiquiTect shutdown and dry contact On LiquiTect activation, normally open dry contact is closed across terminals 58 & 59 for remote indication (LiquiTect sensor ordered separately). 1 AMP, 24VAC max load. Use Class 1 field supplied wiring.

OPTIONAL COMMUNICATION CONNECTIONS

- 22) Unit-to-Unit Plug 64 is reserved for U2U communication
- 23) Site and BMS Plug 74 and terminal block 3 are reserved for Site and BMS connections. Plug 74 is an eight pin RJ45 for a Cat 5 cable. Terminal block 3 is a two position screw terminal block for use with twisted pair wires.



ELECTRICAL FIELD CONNECTIONS DA250, DA265 DOWNFLOW MODELS

LIEBERT[®] HEAT REJECTION SKID

LIEBERT® HEAT REJECTION SKID

CANbus & INTERLOCK CONNECTIONS LIEBERT® MCV + LIEBERT® ECONOPHASE + BASE ASSEMBLY

COMPONENT NOTES:

1. COMPONENT APPEARANCE, ORIENTATION, AND POSITION MAY VARY BETWEEN PRODUCT LINES. TERMINAL NAMES REMAIN CONSTANT. 2. ALL CIRCUITS TO THESE CONNECTION POINTS REMAIN CONSTANT.

CAN & CABLE NOTES (A):

1. CABLE MUST HAVE THE FOLLOWING SPECIFICATIONS:

- BRAIDED SHIELD OR FOIL SHIELD WITH DRAIN WIRE
- SHIELD MUST BE WIRED TO GROUND AT INDOOR UNIT
- 22-18AWG STRANDED TINNED COPPER
- TWISTED PAIR (MINIMUM 4 TWISTS PER FOOT)
- LOW CAPACITANCE (15pF/FT OR LESS)
- MUST BE RATED TO MEET LOCAL CODES AND CONDITIONS.

- EXAMPLES BELDEN 89207 (PLENUM RATED), OR ALPHA WIRE 6454 CATEGORY 5, 5E, OR HIGHER.

- 2. DO NOT RUN IN SAME CONDUIT, RACEWAY, ŐR CHASE AS HIGH VOLTAGE WIRING.
- 3. FOR CANBUS NETWORK LENGTHS GREATER THAN 450FT(137M), CONTACT LIEBERT FACTORY.

INTERLOCK WIRE NOTES (B):

- 1. FIELD SUPPLIED WIRE
- 3 CONDUCTOR 18AWG OR GREATER

- RATED 600V

2. RUN FIELD SUPPLIED WIRES BETWEEN THE INDOOR UNIT AND THE LOW VOLTAGE JUNCTION BOX.

AUTOMATIC TRANSFER SWITCHVERTIV.CONTROL MODULE

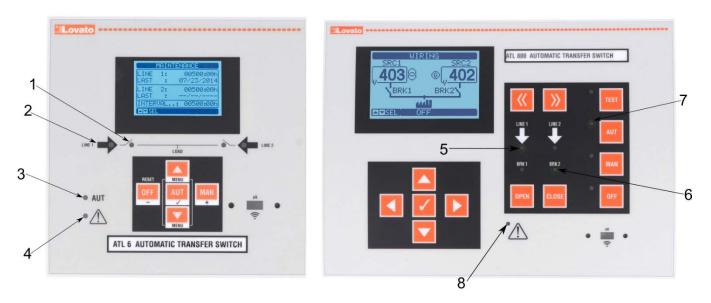
OVERVIEW OF LOVATO ATS, MODELS ATL610 & ATL800

Liebert Thermal Management units equipped with the optional Lovato ATS (automatic transfer switch) control, will automatically switch over to a secondary power source upon loss of primary power. It will also return to the primary power source when it is determined it is available.

When units are equipped with the optional Capacitive Buffer feature, it will not only keep the Liebert[®] iCOMTM control powered (minimum of 3 minutes) during a loss of power, but will also keep the ATS electronics powered when neither the primary or secondary source are available, allowing for a quick unit response when power is restored.

ATL610 (Units up to 460V)

ATL800 (575V Units)


Lovato ATS, model ATL610 (or ATL800) shown in images above, will be located within the cabinet of the units.

AUTOMATIC TRANSFER SWITCHVERTIV.CONTROL MODULE

KEY CAPABILITIES OF LOVATO ATS, MODELS ATL610 & ATL800

The Lovato ATS, model ATL610 (or ATL800), will be the primary unit level device for switching between power sources. This control will be capable of the following features:

- Determine if power is available in both primary and secondary sources
- Allow for selection of which source is primary and which is secondary
- Ability to automatically switch from primary to secondary source, in the event of primary power loss
- · Ability to automatically switch secondary to primary source when primary power returns
- Visible indication of available power sources
- Visible indication of power source that is currently active

Item #	Description for ATL610 Display	Item #	Description for ATL800 Display
item #	Description for ATLOTO Display	Item#	Description for ATE600 Display
1	LEDs indicate which source is active	5	LEDs indicate if a source is available
2	LEDs indicate if a source is available	6	LEDs indicate which source is active
3	Controller is in automatic mode	7	Controller is in automatic mode
4	Alarm is present	8	Alarm is present
	Λ TL 610 (Unite up to Λ 60\/)		ATL 800 (575)/ Inite)

ATL610 (Units up to 460V)

ATL800 (575V Units)

AUTOMATIC TRANSFER SWITCHVERTIV.CONTROL MODULE

INTERACTION OF LOVATO ATS WITH LIEBERT® iCOM™ CONTROL

The Liebert[®] iCOM[™] control will pull key information from the Lovato ATS, allowing for easy interpretation of the current operation without needing to open the unit's front panel, potentially interrupting operation.

*Identification of current power source and power source availability *Available via PA2.06.54.04R or greater

Power source availability

- GREEN circle w/ check mark = power source available
- RED circle w/ cross = power source not available

Power Source A/B utilization

 ORANGE highlighted & underlined power source title = current power source being utilized.

AUTOMATIC TRANSFER SWITCH CONTROL MODULE

KEY PARAMETERS OF LOVATO ATS, MODELS ATL610 & ATL800

There are multiple key parameters that are factory set by Vertiv to recommended values. Please consult a Vertiv factory technician before making any changes to these parameters.

- Priority power source selection (default = Source 1)
- Switching delay between power sources

VERTIV

- if secondary power source is present at time of primary failure, delay is up to 11s (default, adjustable via multiple parameters)
- if secondary power source is <u>NOT</u> present at time of primary failure, delay is 10s (default, adjustable) after secondary power source is available
- Unit would be removed from active power source in following conditions:
 - Voltage Limit: If voltage is outside of a set limit for a set period (default = 5s)
 - Min Voltage Limit = 85% (default) of nominal
 - Max Voltage Limit = 115% (default) of nominal
 - Voltage Imbalance: If voltage imbalance (asymmetry) is greater than 15% (default) for a set period (default = 5s)
 - Phase Loss: If a phase falls below 70% (default) of nominal for a set period (default = 0.1s)
 - > Frequency Limit: If frequency is outside of a set limit for a set period (default = 3s)
 - Min Freq Limit = 95% (default)
 - Max Frequency Limit = 105% (default)

Please note that not all parameters are applicable to Vertiv equipment operation. Consult a Vertiv factory technician before making any changes to these parameters.

AUTOMATIC TRANSFER SWITCH CONTROL MODULE

MONITORING FUNCTIONS OF LOVATO ATS, MODELS ATL610 & ATL800

The voltage and frequency information from the ATS can be displayed on the Liebert® iCOM[™] user interface, as shown in the below image. Further information is available via BMS monitoring through the Liebert® iCOM[™] Unity Card / Embedded Unity (BACnet MSTP, BACnet IP, Modbus TCP/IP, Modbus RTU, SNMP v2, v3). The items are outlined in the table on the following page.

2	8_064 01/01	
USER SERVICE ADVANC	CED	🔍 🧐 Power 🎦 Unlocked
AUTOMATIC TRANSFER SW		
Device 21	ATS Line 1 L1- ATS Line 1 L L2 Volts L3 Volts	2- ATS Line 1 L3- ATS Line 1 L1 Volts Frequency
ATL610	473 V 479 V	477 V 60.1 Hz
	ATS Line 2 L1- ATS Line 2 L L2 Volts L3 Volts	2- ATS Line 2 L3- ATS Line 2 L1 Volts Frequency
	485 V 480 V	475 V 60.2 Hz
	<u>"</u>	

ATS voltage & frequency summary page

VERTIV

AUTOMATIC TRANSFER SWITCH CONTROL MODULE

MONITORING POINTS

The below ATS specific points can be monitored through a BMS system. Alarm codes at the ATS panel will not match the BMS alarm but can be cross referenced in this chart. Please note that these points are read only.

Lovato Code (at ATS)	Vertiv Alarm (BMS)	Description	
ATS_EvLdTO	ATS Load Not Powered Timeout	Unit has not been powered after preset delay (default = 60s).	
ATS1_L1L2	Power Source: L1-L2 voltage	Voltage reading phase L1-L2	
ATS1_L2L3	Power Source: L2-L3 voltage	Voltage reading phase L2-L3	
ATS1_L3L1	Power Source: L3-L1 voltage	Voltage reading phase L3-L1	
ATS1_Freq	Power Source: Line Frequency	Measured frequency, per source.	
ATS1_BrkOp	Power Source: Breaker Operation Count	Available to be turned on by customer, would indicate number of operations per source.	
ATS1VAllOk	Power Source: All status are okay	All parameters are within limits, per source.	
ATS1VLo	Power Source: Voltage Is Too Low	Voltage on active source is below acceptable range.	
ATS1VHi	Power Source: Voltage Is Too High	Voltage on active source is above acceptable range.	
ATS1VAsymm	Power Source: Voltages Are Asymmetric	Voltages imbalance alarm	
ATS1VPhsLs	Power Source: Voltage Phase Loss	Indicates one of the phases voltage has dropped below 70% nominal.	
ATS2VPhsSq	Power Source: Phase Sequence Issue	Indicates the incoming power wasn't wired per the phase sequence configured (L1-L2-L3).	
ATS1VFrqLo	Power Source: Frequency Is Too Low	Frequency on active source is below acceptable range.	
ATS1VFrqHi	Power Source: Frequency Is Too High	Frequency on active source is above acceptable range.	
ATS2BClsd	Power Source: Breaker is closed	ATS is receiving feedback that the indicated contactor as closed.	
ATS2BCClsd	Power Source: Breaker command status closed	ATS is directing the indicated contactor to close.	
ATS1EvBTim	Power Source: Breaker Timeout Issue	The indicated changeover device did not complete the closing operation within the max set time.	
ATS1EvHrsS	Power Source: Line Operating Hour Exceeded	Available to be turned on by customer, would indicate number of hours in operation per source	

CONTROL MODULE

CHANGE OVER CIRCUIT SEQUENCE OF OPERATIONS

Source 1 is out of range

- 1) Source 1 exceeds one or more limits of voltage, frequency, phase, or voltage symmetry.
- 2) A delay timer will begin to count. The amount of time depends on which Source 1 parameter is out of spec, and the value saved in the following parameters. The parameters below are the delays for each condition.

Description	Default	Para	Parameter	
Description		ATL610	ATL800	
voltage below the minimum limit	5s	P06.03	P09.01.03	
voltage above the maximum limit	5s	P06.06	P09.01.06	
phase failure	0.1s	P06.10	P09.01.10	
voltage exceeds the asymmetry limits	5s	P06.12	P09.01.12	
frequency exceeds the maximum limit	3s	P06.14	P09.01.14	
frequency exceeds the minimum limit	5s	P06.16	P09.01.16	

- 3) Once the delay timer is finished, the following events will occur.
 - a) the transfer controller will de-energize Source 1 contactor coil
 - b) the transfer controller will signal the unit is no longer being powered by Source 1
 - c) An auxiliary switch NO contact on Source 1's contactor will open, sending a signal to the transfer controller. This signal verifies that the load is not connected to Source 1.
 - d) The NC contacts of the same auxiliary switch will close to allow the coil of the Source 2 contactor to be energized. The Source 2 contactor coil is not energized at this time.
- 4) Once the transfer controller output has opened, a delay timer will begin using the value entered under parameter P05.03 (ATL610) or P07.01.02 (ATL800), default = 6s. This value should not be decreased without consent from Vertiv.
- 5) A presence delay is used to determine if Source 2 is a valid source. This delay will start as soon as Source 2 is available. The presence delay is based on the value entered in parameter P07.07 (ATL610) or P09.02.07 (ATL800), default = 10s. If Source 2 is available before Source 1 fails, it is possible that the delay will already be satisfied at the time Source 1 fails. If this is a manual transfer to Source 2 and Source 1 is still available, the presence delay will refer to the value in parameter P07.08 (ATL610) or P09.02.08 (ATL800), default = 60s.
- 6) When the timer in both step 4 and 5 are finished,
 - a) the transfer controller will energize the Source 2 contactor
 - b) An auxiliary switch NO contact on Source 2's contactor will close, sending a signal to the transfer controller. This signal verifies that the load is connected to Source 2.
 - c) The NC contacts of the same auxiliary switch will open to prevent the coil of Source 1 contactor from energizing.
 - d) the transfer controller will signal the unit is being powered by Source 2

Transfer back to Source 1 when Source 2 is present

- 1) When Source 1 has reached acceptable levels, a presence delay will start. The presence delay is based on the value entered in parameter P06.08 (ATL610) or P09.01.08 (ATL800), default = 60s.
- 2) Once this timer is finished,
 - a) the transfer controller will de-energize Source 2 contactor coil
 - b) An auxiliary switch NO contact on Source 2's contactor will open, sending a signal to the transfer controller. This signal verifies that the load is not connected to Source 2.
 - c) The NC contacts of the same auxiliary switch will close to allow the coil of the Source 1 contactor to be energized. The Source 1 contactor coil is not energized at this time.
 - d) the transfer controller will signal the unit is no longer being powered by Source 2
- 3) A delay timer starts using the value in parameter P05.04 (ATL610) or P07.02.02 (ATL800), default = 6s. This value should not be decreased without consent from Vertiv.
- 4) When the timer in step 3 is finished,
 - a) the transfer controller will energize the Source 1 contactor
 - b) An auxiliary switch NO contact on Source 1's contactor will close, sending a signal the transfer controller. This signal verifies that the load is connected to Source 1.
 - c) The NC contacts of the same auxiliary switch will open to prevent the coil of Source 2 contactor from energizing.
 - d) the transfer controller will signal the unit is being powered by Source 1

DPN005196 Page :7/10

CONTROL MODULE

CHANGE OVER CIRCUIT SEQUENCE OF OPERATIONS

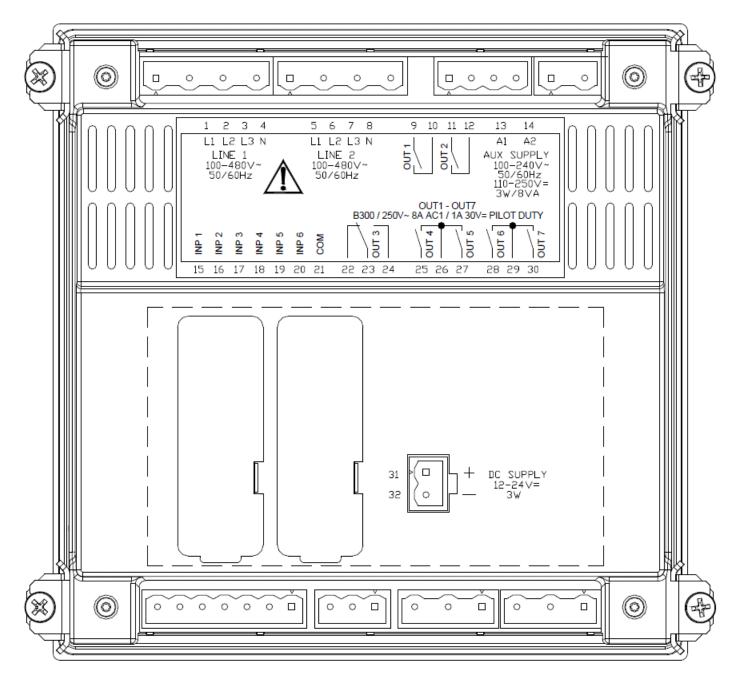
Source 2 is out of range when unit is powered by Source 2

- 1) Source 2 exceeds one or more limits of voltage, frequency, phase, or voltage symmetry.
- 2) A delay timer will begin to count. The amount of time depends on which Source 2 parameter is out of spec, and the value saved in the following parameters. The parameters below are the delays for each condition.

Description	Default	Parameter	
Description		ATL610	ATL800
voltage below the minimum limit	5s	P07.03	P09.02.03
voltage above the maximum limit	5s	P07.06	P09.02.06
phase failure	0.1s	P07.10	P09.02.10
voltage exceeds the asymmetry limits	5s	P07.12	P09.02.12
frequency exceeds the maximum limit	3s	P07.14	P09.02.14
frequency exceeds the minimum limit	5s	P07.16	P09.02.16

- 3) Once the delay timer is finished, the following events will occur.
 - a) the transfer controller will de-energize Source 2 contactor coil
 - b) the transfer controller will signal the unit is no longer being powered by Source 2
 - c) An auxiliary switch NO contact on Source 2's contactor will open, sending a signal to the transfer controller. This signal verifies that the load is not connected to Source 2.
 - d) The NC contacts of the same auxiliary switch will close to allow the coil of Source 1 contactor to be energized. The Source 1 contactor coil is not energized at this time.
- 4) Once the transfer controller output has opened, a delay timer will begin using the value entered under parameter P05.04 (ATL610) or P07.02.02 (ATL800), default = 6s. This value should not be decreased without consent from Vertiv.
- 5) A presence delay is used to determine if Source 1 is a valid source. This delay will start as soon as Source 1 is available. The presence delay is based on the value entered in parameter P06.07 (ATL610) or P09.01.07 (ATL800), default = 10s. If Source 1 is available before Source 2 fails, it is possible that the delay will already be satisfied at the time Source 2 fails. If this is a manual transfer to Source 1 and Source 2 is still available, the presence delay will refer to the value in parameter P06.08 (ATL610) or P09.01.08 (ATL800), default = 60s.
- 6) When the timer in both step 4 and 5 are finished,
 - a) the transfer controller will energize the Source 1 contactor
 - b) An auxiliary switch NO contact on Source 1's contactor will close, sending a signal to the transfer controller. This signal verifies that the load is connected to Source 1.
 - c) The NC contacts of the same auxiliary switch will open to prevent the coil of Source 2 contactor from energizing.
 - d) the transfer controller will signal the unit is being powered by Source 1

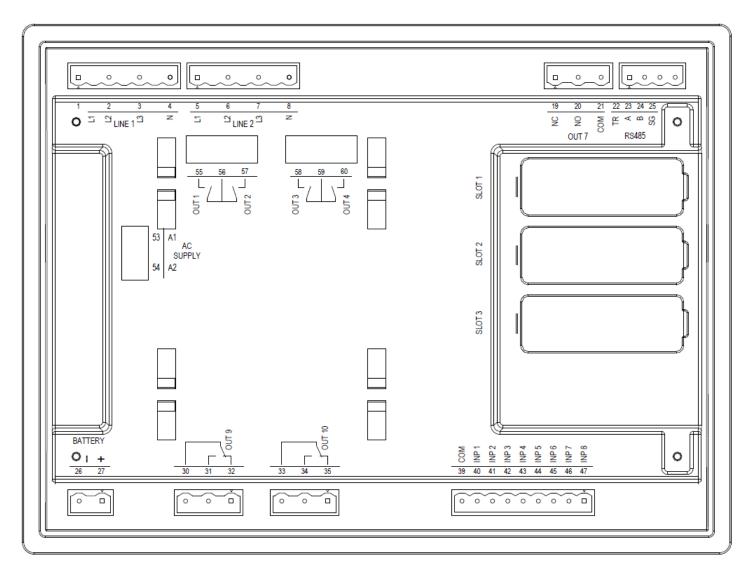
Transfer when Source 1 and Source 2 fails


1) If both Source 1 and Source 2 fail and are restored, the transfer controller will transfer the load to the preferred Source defined in parameter P05.02 (ATL610) or P06.01.02/P06.02.02 (ATL800), default = 1.

CONTROL MODULE

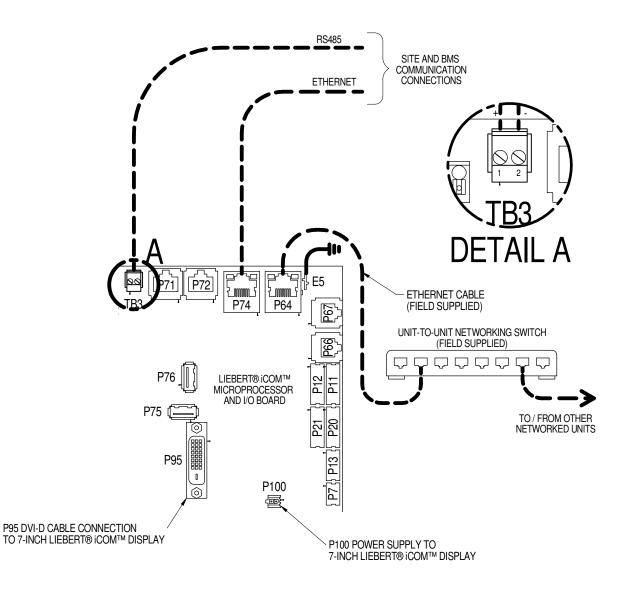
CHANGE OVER CIRCUIT SEQUENCE OF OPERATIONS

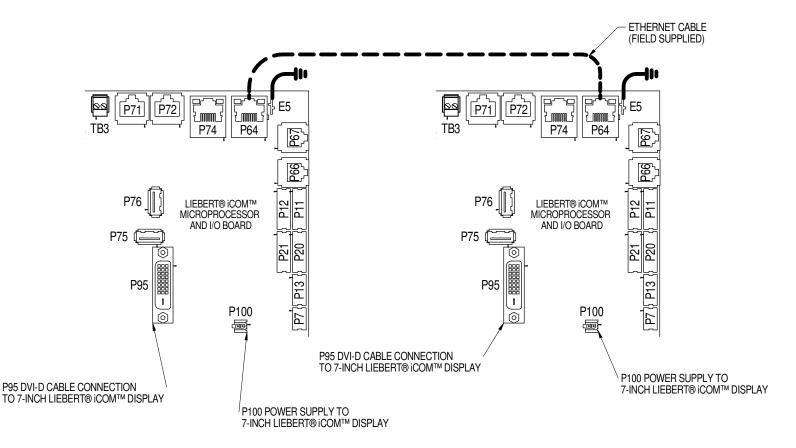
Transfer Controller Terminal Labels – ATL610



CONTROL MODULE

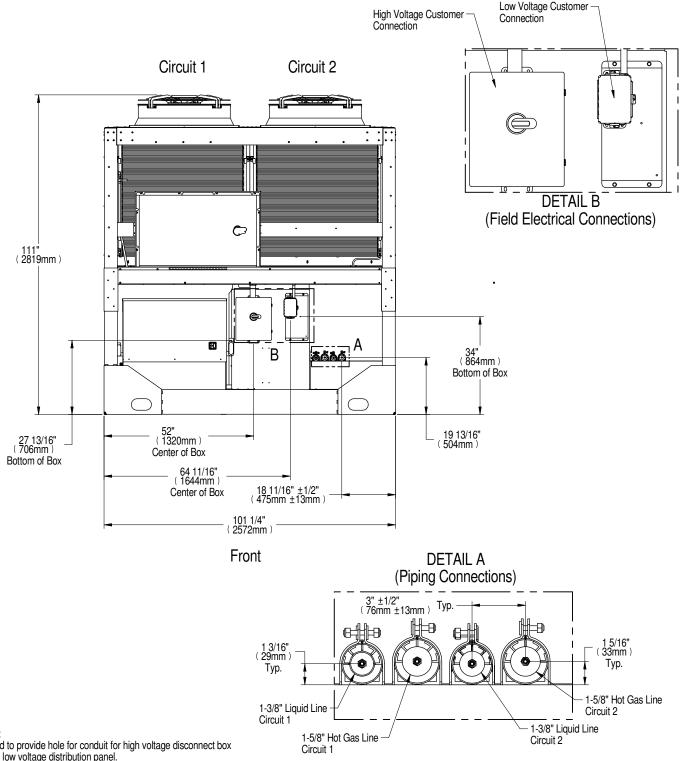
CHANGE OVER CIRCUIT SEQUENCE OF OPERATIONS


Transfer Controller Terminal Labels – ATL800


LIEBERT[®] iCOM™

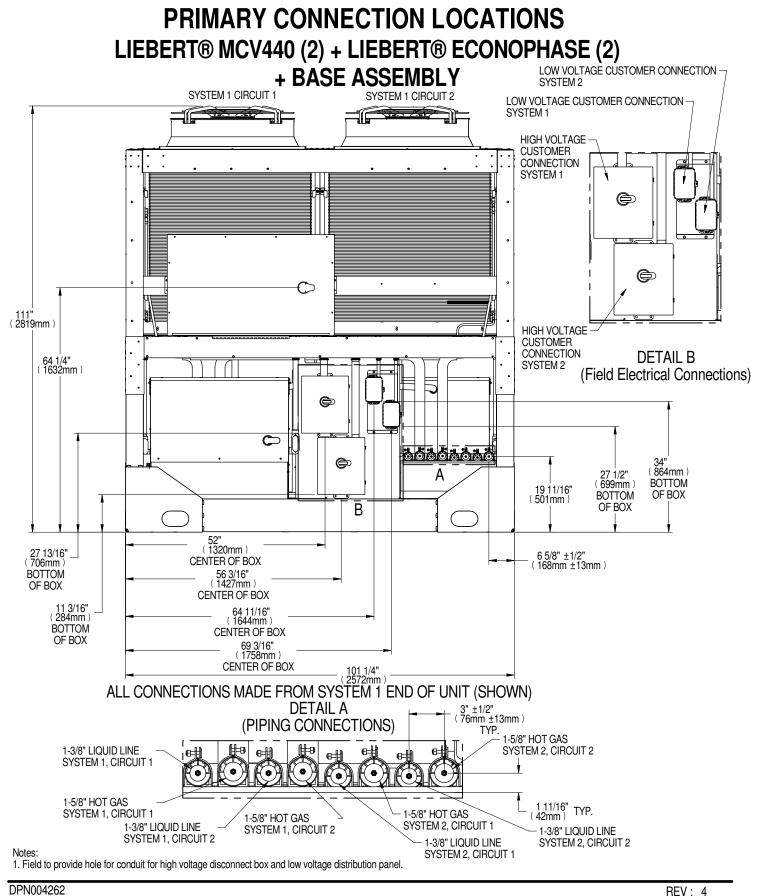
UNIT TO UNIT NETWORK CONNECTIONS LIEBERT® CW, LIEBERT® CWA, LIEBERT® DS, LIEBERT® DSE, LIEBERT® PDX, LIEBERT® PCW

UNIT TO UNIT NETWORK CONNECTIONS LIEBERT® CW, LIEBERT® CWA, LIEBERT® DS, LIEBERT® DSE, LIEBERT® PDX, LIEBERT® PCW


NOTE* For dual-unit network configurations only

LIEBERT® HEAT REJECTION SKID

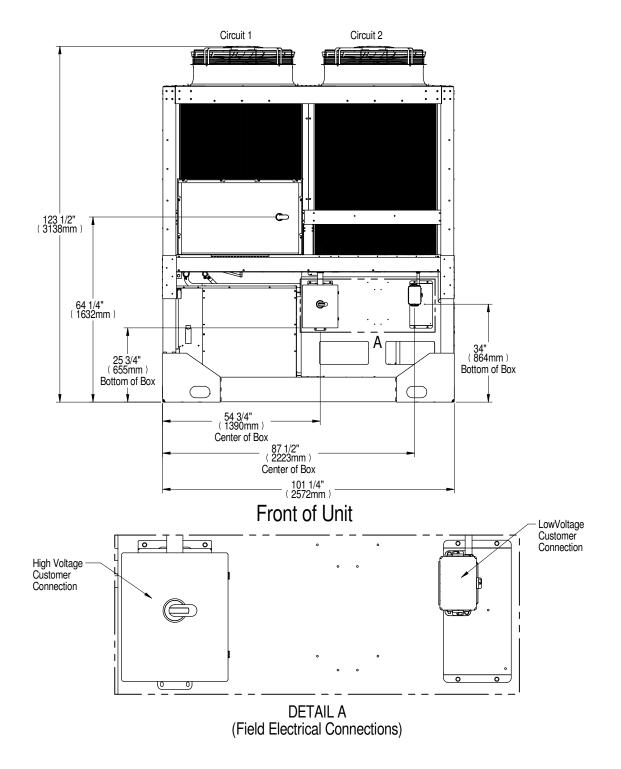
PRIMARY CONNECTION LOCATIONS LIEBERT® MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY


Notes:

DPN004257

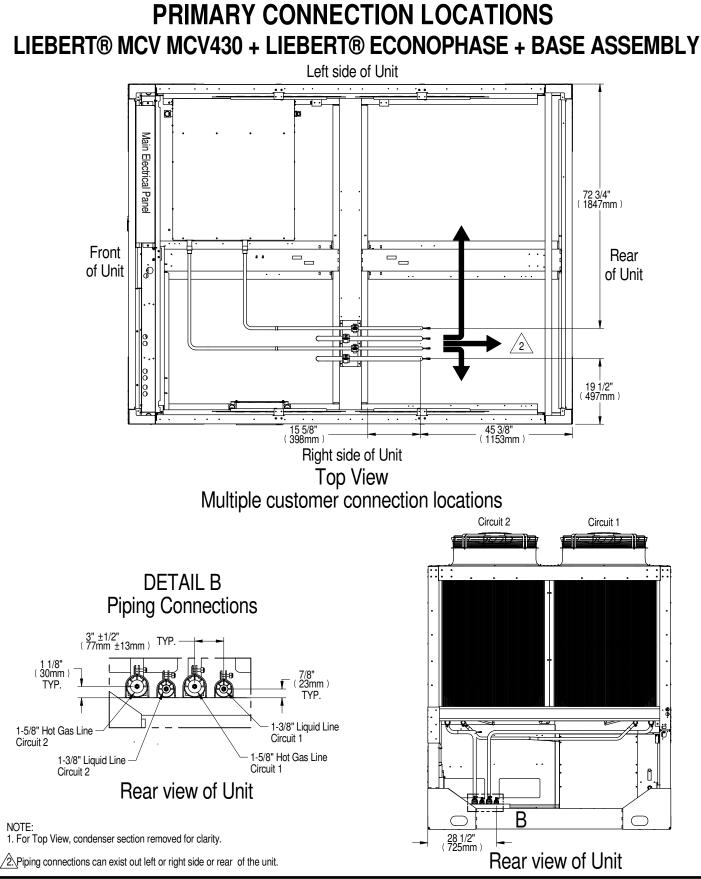
Page :1 /1

1. Field to provide hole for conduit for high voltage disconnect box and low voltage distribution panel.



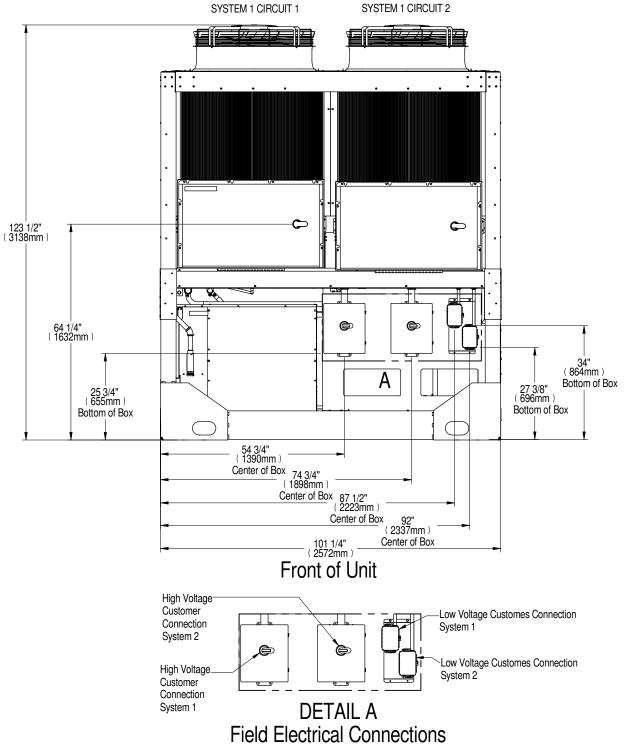
Page :1 /1

PRIMARY CONNECTION LOCATIONS LIEBERT® MCV MCV430 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

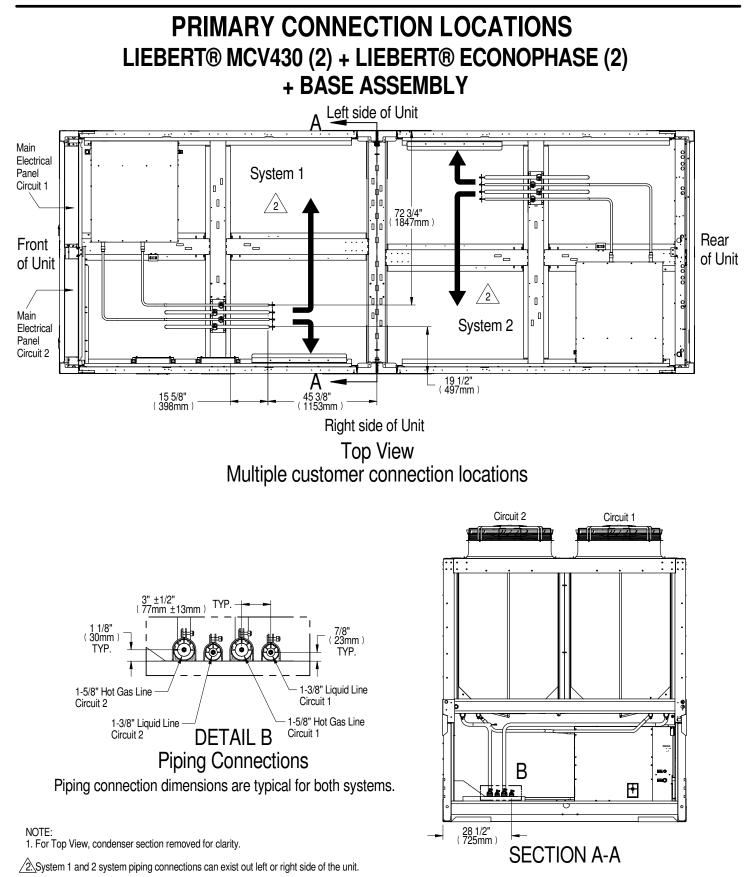


Notes:

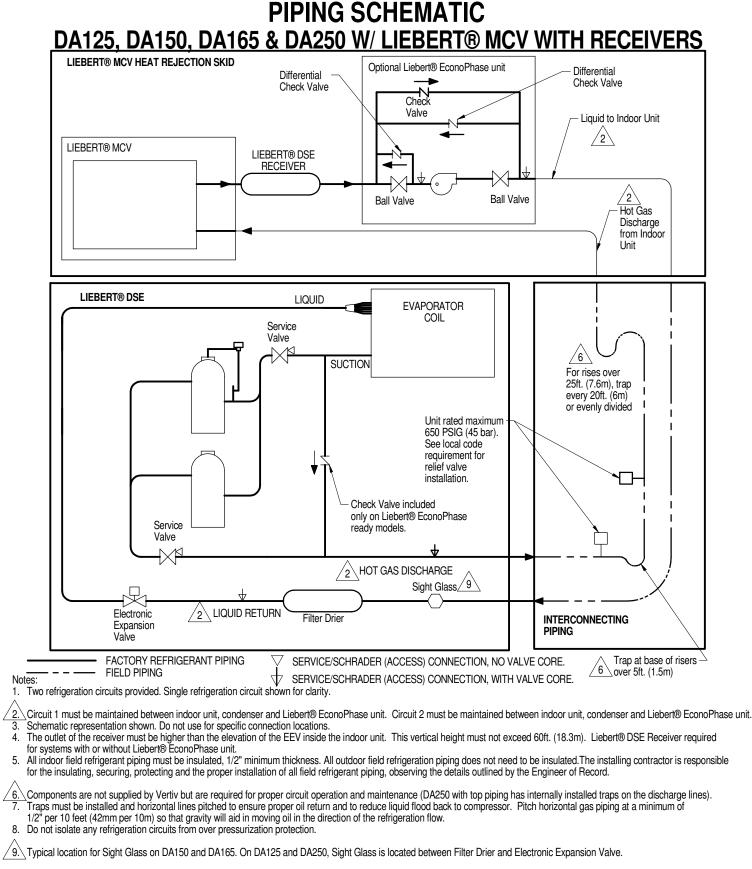
1. Field to provide hole for conduit for high voltage disconnect box


and low voltage distribution panel.

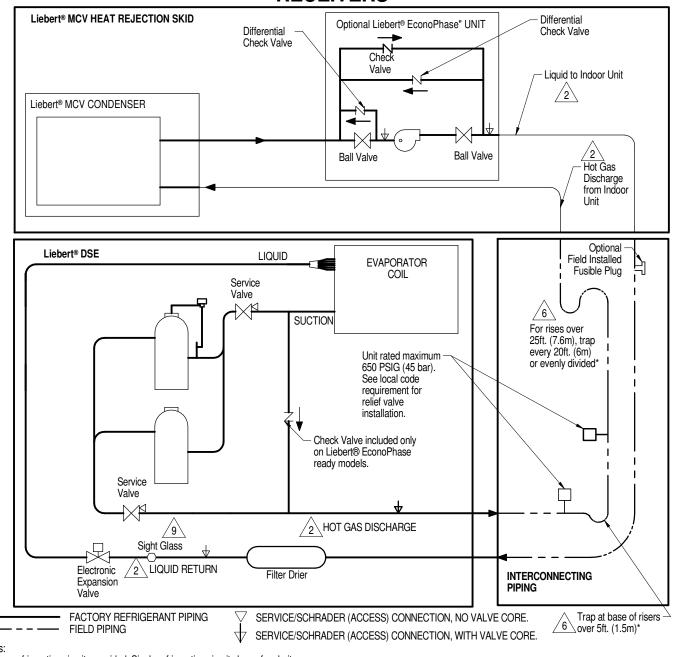
PRIMARY CONNECTION LOCATIONS LIEBERT® MCV430 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY



Form No.: DPN001040_REV4


1. Field to provide hole for conduit for high voltage disconnect box and low voltage distribution panel.

Notes:


DPN004476 Page :1/1

DPN001040 REV 4

PIPING SCHEMATIC

DA125, DA150, DA165, DA250, & DA265 W/ LIEBERT® MCV WITHOUT RECEIVERS

Notes:

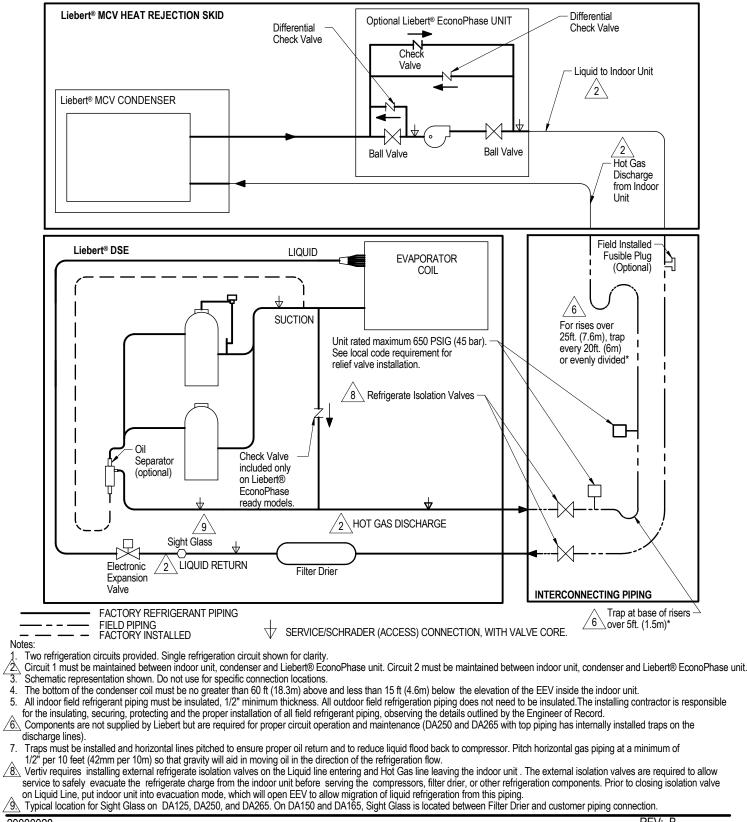
1. Two refrigeration circuits provided. Single refrigeration circuit shown for clarity.

Circuit 1 must be maintained between indoor unit, condenser and EconoPhase unit. Circuit 2 must be maintained between indoor unit, condenser and Liebert® EconoPhase unit.
 Schematic representation shown. Do not use for specific connection locations.

4. The bottom of the condenser coil must be no greater than 60 ft (18.3m) above and less than 15 ft (4.6m) below the elevation of the EEV inside the indoor unit.

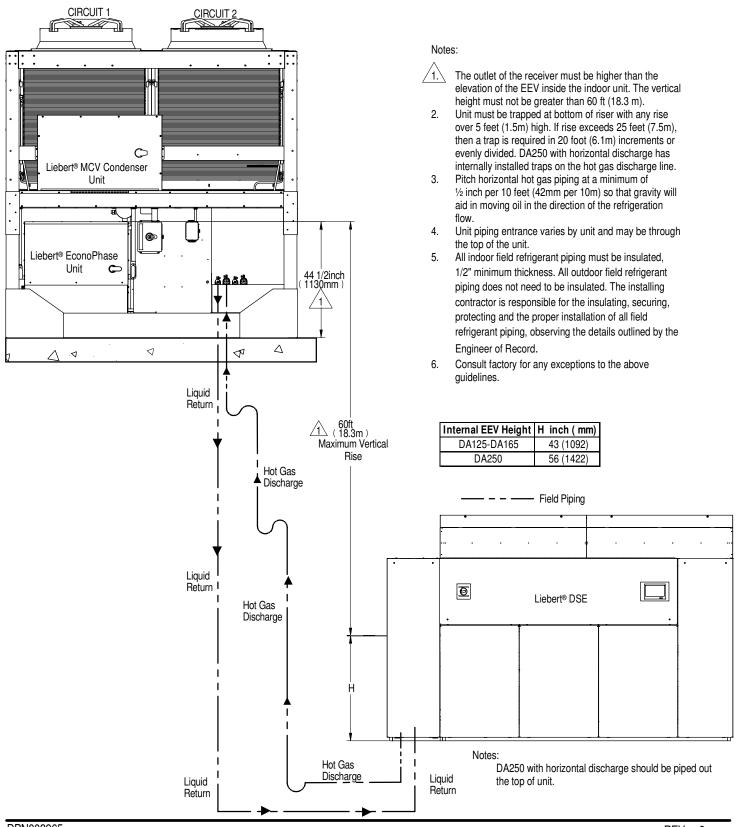
All indoor field refrigerant piping must be insulated, 1/2" minimum thickness. All outdoor field refrigeration piping does not need to be insulated. The installing contractor is responsible for the insulating, securing, protecting and the proper installation of all field refrigerant piping, observing the details outlined by the Engineer of Record.

Components are not supplied by Liebert but are required for proper circuit operation and maintenance (DA250 and DA265 with top piping has internally installed traps on the discharge lines).

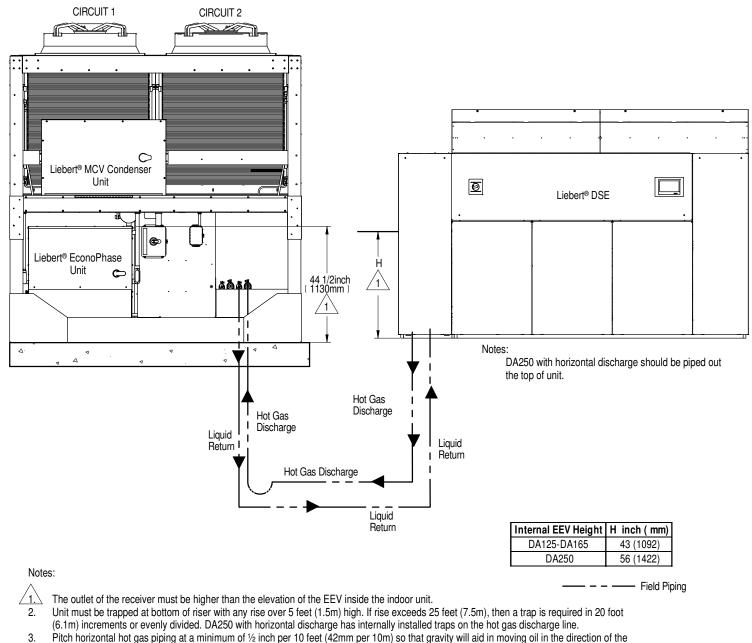

7. Traps must be installed and horizontal lines pitched to ensure proper oil return and to reduce liquid flood back to compressor. Pitch horizontal gas piping at a minimum of 1/2" per 10 feet (42mm per 10m) so that gravity will aid in moving oil in the direction of the refrigeration flow.

8. Do not isolate any refrigeration circuits from over pressurization protection.

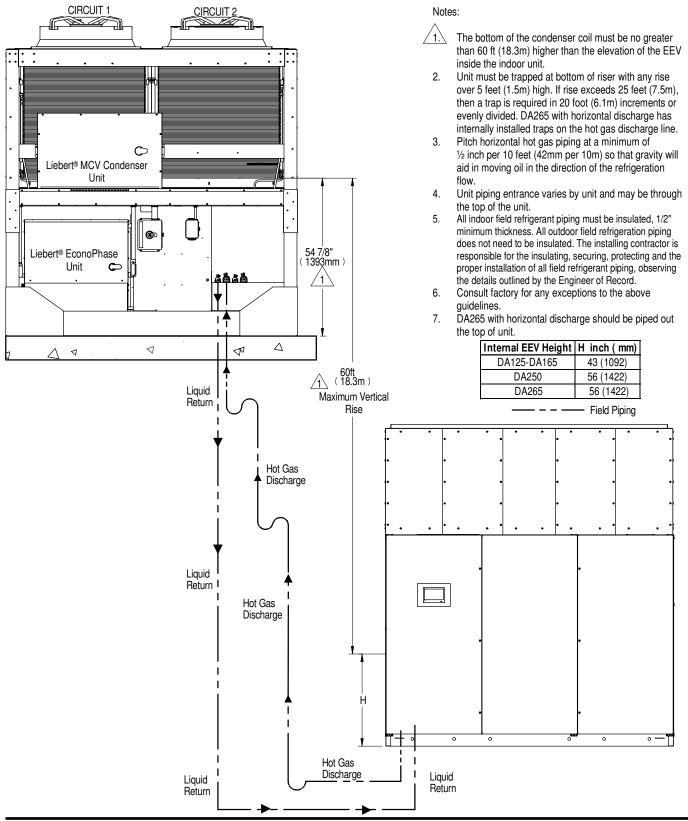
9. Typical location for Sight Glass on DA125, DA250, and DA265. On DA150 and DA165, Sight Glass is located between Filter Drier and customer piping connection.



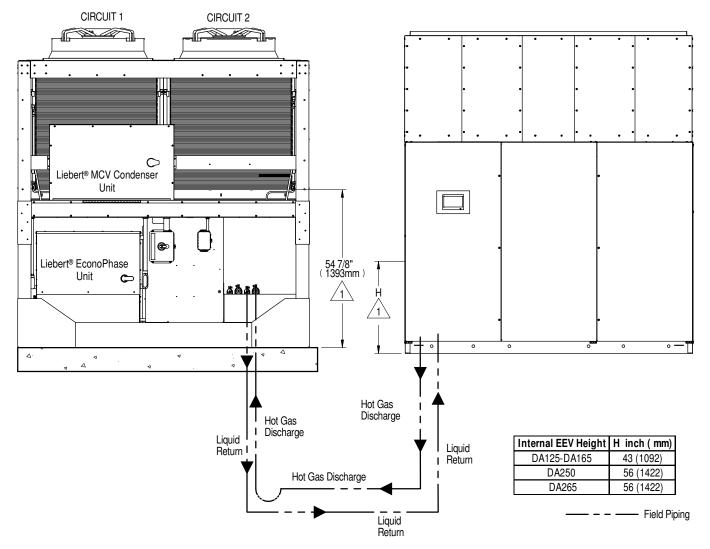
PIPING SCHEMATIC WITH OPTIONAL OIL SEPARATOR DA250 & DA265 W/ LIEBERT® MCV WITHOUT RECEIVERS



AIR COOLED PIPING SCHEMATIC LIEBERT® MCV WITH RECEIVERS MOUNTED ABOVE DA125-250

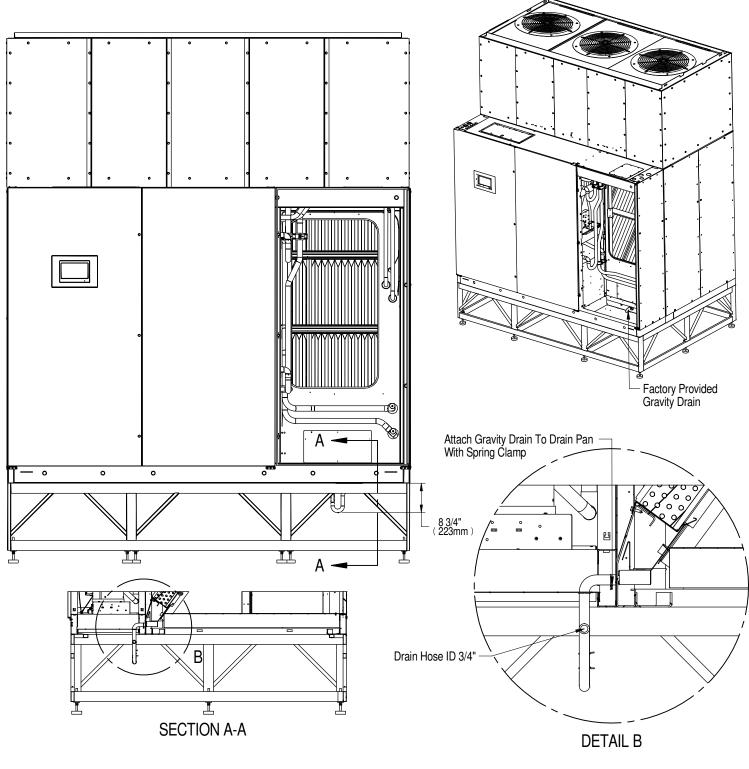

AIR COOLED PIPING SCHEMATIC DA125-250 AND LIEBERT® MCV WITH RECEIVERS AT SIMILAR LEVELS

- refrigeration flow.
- 4. Unit piping entrance varies by unit and may be through the top of the unit.
- 5. All indoor field refrigerant piping must be insulated, 1/2" minimum thickness. All external field refrigeration piping between the indoor and Liebert® Heat Rejection unit do not need to be insulated. The installing contractor is responsible for the insulating, securing, protecting and the proper installation of all field refrigerant piping, observing the details outlined by the Engineer of Record.
- 6. Consult factory for any exceptions to the above guidelines.



AIR COOLED PIPING SCHEMATIC Liebert® MCV WITHOUT RECEIVERS MOUNTED ABOVE DA125-265

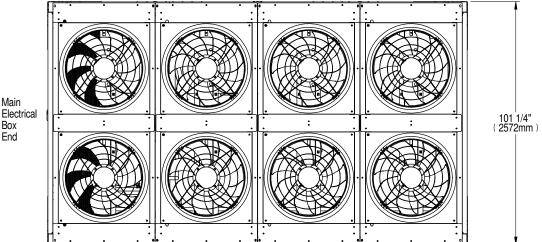
AIR COOLED PIPING SCHEMATIC DA125-265 AND Liebert® MCV WITHOUT RECEIVERS AT SIMILAR OR BELOW LEVELS


Notes:

- 1. The bottom of the condenser coil must be less than 15ft(4.6m) below the elevation of the EEV inside the indoor unit. 2. Unit must be trapped at bottom of riser with any rise over 5 feet (1.5m) high. If rise exceeds 25 feet (7.5m), then a trap is required in 20 foot (6.1m) increments or evenly divided. DA265 with horizontal discharge has internally installed traps on the hot gas discharge line.
- Pitch horizontal hot gas piping at a minimum of ½ inch per 10 feet (42mm per 10m) so that gravity will aid in moving oil in the direction of the refrigeration flow.
- 4. Unit piping entrance varies by unit and may be through the top of the unit.
- 5. All indoor field refrigerant piping must be insulated, 1/2" minimum thickness. All outdoor field refrigeration piping does not need to be insulated. The installing contractor is responsible for the insulating, securing, protecting and the proper installation of all field refrigerant piping, observing the details outlined by the Engineer of Record.
- 6. Consult factory for any exceptions to the above guidelines.
- 7. DA265 with horizontal discharge should be piped out the top of unit.

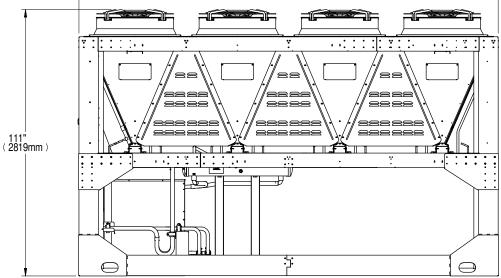
LIEBERT[®] DSE

GRAVITY DRAIN INSTALLATION DA250, DA265 WITH FLOORSTAND



DPN004702 Page :1 /1

Form No.: DPN001040_REV4

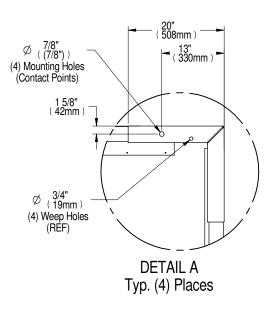


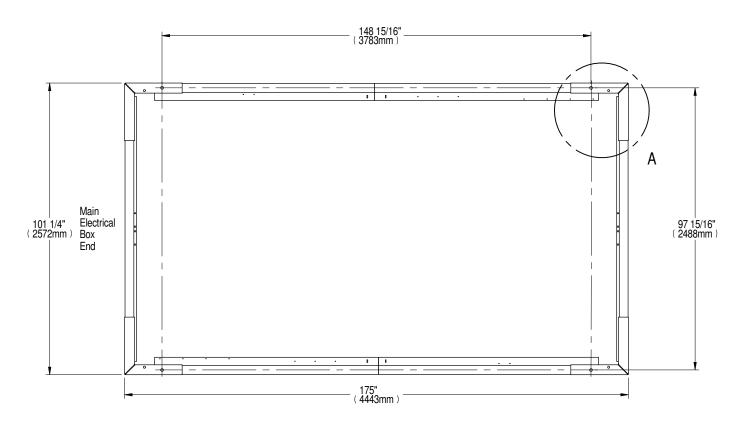
CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

175" (4436mm) ⊐ſ⊂ <u>n</u>-Ÿ : ::..

Box End

Model	Domestic Shipping Weight Ib. (kg)	Export Shipping Weight Ib. (kg)		
MCV440 Single Skid with Receiver	5900 (2676)	6140 (2785)		
MCV440 Single Skid without Receiver	5800 (2630)	6040 (2740)		

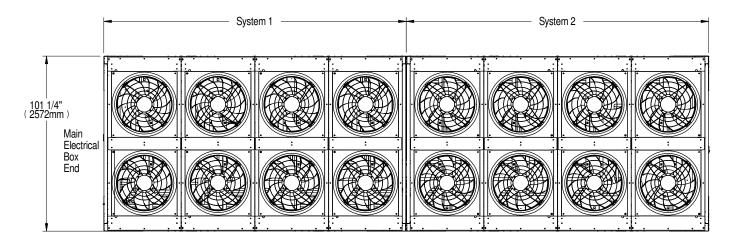

NOTES:

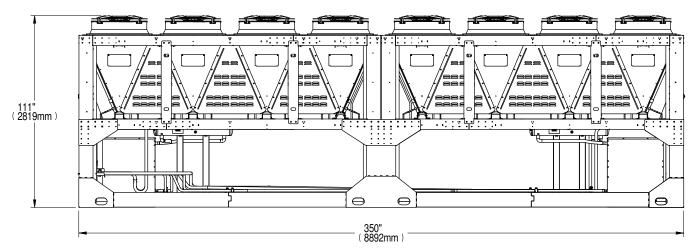

1) Minimum clearance on the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local code.

2) Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirements.

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

NOTES:

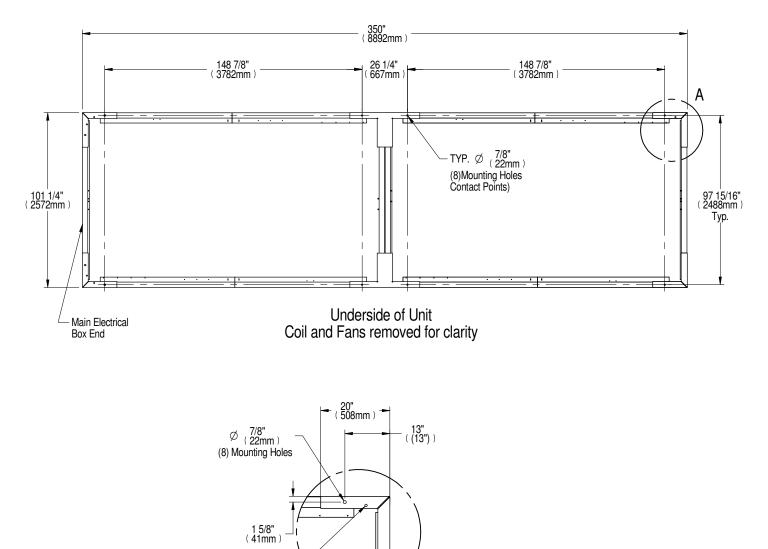

DPN004259


Page :2/2

Underside of unit, coil and fan removed for clarity.
 Four mounting holes and four 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

Model	Domestic Shipping Weight Ib (kg)	Export Shipping Weight Ib (kg)		
MCV440 Dual Skid with Receiver	11,580 (5252)	11,960 (5425)		
MCV440 Dual Skid without Receiver	11,380 (5162)	11,760 (5434)		

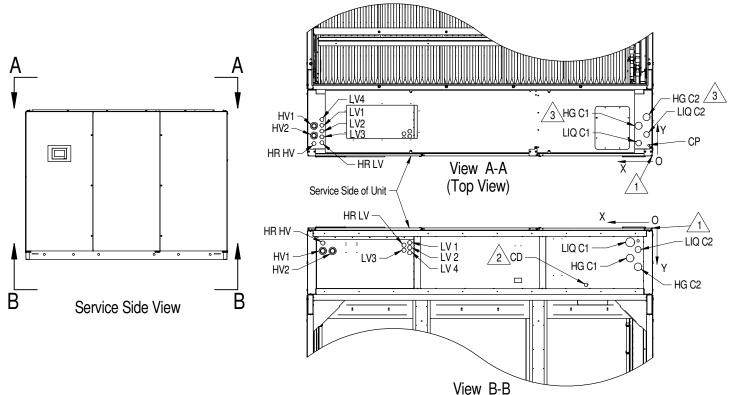

Notes:

1. Minimum clearance of the Main Unit Disconnect Enclosure shall be 48" (1219mm) or per local electrical code.

2. Recommended minimum 48" (1219mm) clearance when multiple skids are mounted side by side to ensure proper airflow. Contact the factory for other spacing requirments.

CABINET & ANCHOR DIMENSIONAL DATA LIEBERT® MCV MCV440 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

Notes:


1. Eight mounting holes and eight 3/4" field supplied bolts required to secure skid base assembly to customer support structure. Bolt grade to be specified by local requirements.

DETAIL A Typical (4) Places

LIEBERT[®] DSE

PRIMARY CONNECTION LOCATIONS DA250, DA265

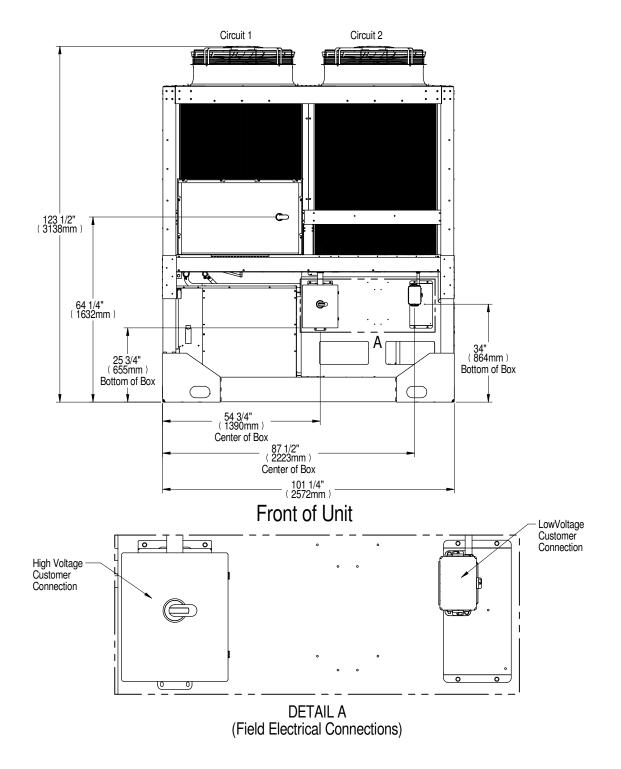
(Bottom View)

POINT	Description	Top View		Bottom View		Connection Size/Opening	
FOINT		X in. (mm)	Yin. (mm)	X in. (mm)	Yin. (mm)	Connection Size/Opening	
HR HV	Heat Rejection High Voltage	117-3/8 (2981)	4-1/4 (109)	114-1/4 (2903)	5-1/8 (132)	1-3/8"	
HR LV	Heat Rejection Low Voltage	114-5/8 (2911)	4-5/8 (117)	86-1/8 (2188)	5-7/8 (151)	1-5/6	
HV1	Electrical Conn. (High Volt)	117-3/8 (2981)	10-3/8 (264)	114-1/4 (2903)	7-7/8 (202)	2-1/2", 1-3/4", 1-3/8"	
HV2		117-3/0 (2901)	7 (179)	110-7/8 (2818)	7-770 (202)	Concentric Knockouts	
LV1			10-5/8 (270)	84-1/8 (2137)	5 (129)		
LV2	Electrical Conn. (Low Volt)	114-5/8 (2911)	8-5/8 (219)		6-3/4 (173)	1-3/8"	
LV3			6-5/8 (168)	86-1/8 (2188)	7-5/8 (195)	1-3/6	
LV4			12-5/8 (320)	84-1/8 (2137)	8-1/2 (217)		
CD	Condensate Drain 🖄	N/A	N/A	22-7/8 (581)	19-3/4 (501)	3/4" NPT Female	
СР	Condensate Drain w/ Optional Pump	1-1/8 (29)	3-3/4 (94)	N/A	N/A	1/2" O.D. Cu	
LIQ C1	Liquid Circuit 3	4-5/8 (118)	4-1/2 (113)	7-5/8 (193)	4-7/8 (125)	1-3/8" O.D. Cu	
LIQ C2		1-7/8 (48)	7-3/8 (189)	4-7/8 (123)	7-1/2 (189)	1-3/6 O.D. Cu	
HG C1	Hot Gas Circuit 🖄	4-5/8 (118)	10-1/2 (265)	7-5/8 (193)	10-1/2 (265)	1-5/8" O.D. Cu	
HG C2		1-7/8 (48)	13-3/8 (341)	4-7/8 (123)	13-1/2 (342)	1-5/6 O.D. Cu	

Notes:

1. Drawing not to scale. All dimensions from right corner on service side and have a tolerance of ± 1/2" (13mm).

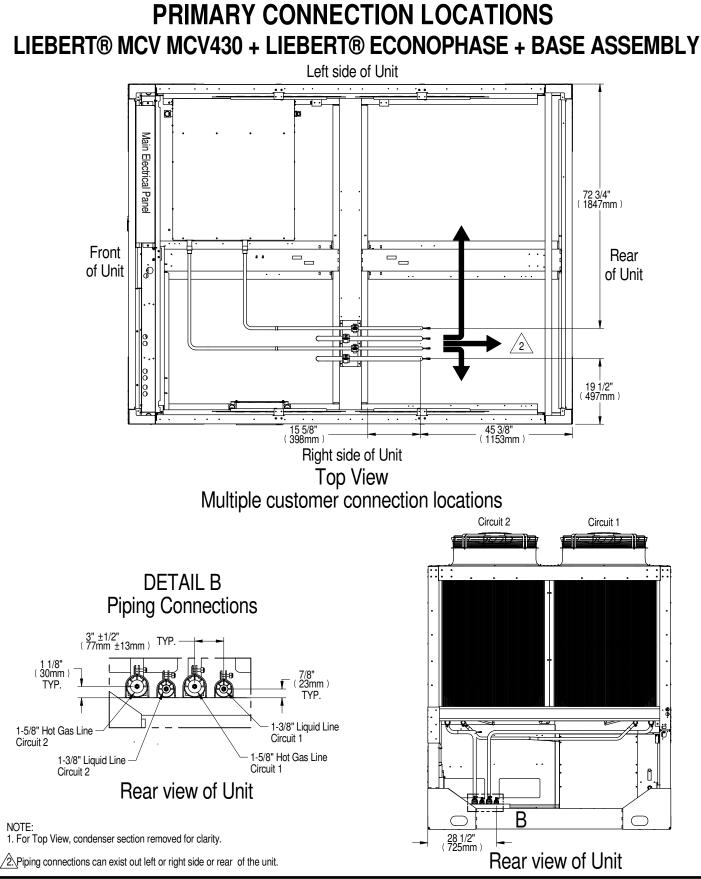
Field pitch Condensate Drain line a minimum of 1/8" (3.2mm) per 12" (305mm). All units contain a factory installed condensate trap. Do not trap external to the unit. Select appropriate drain system materials. The drain must comply with all local codes. 2.\


3.

Unit has internally installed traps on the discharge lines. For rises over 25ft. (7.6m), trap every 20ft. (6m) or evenly divided.

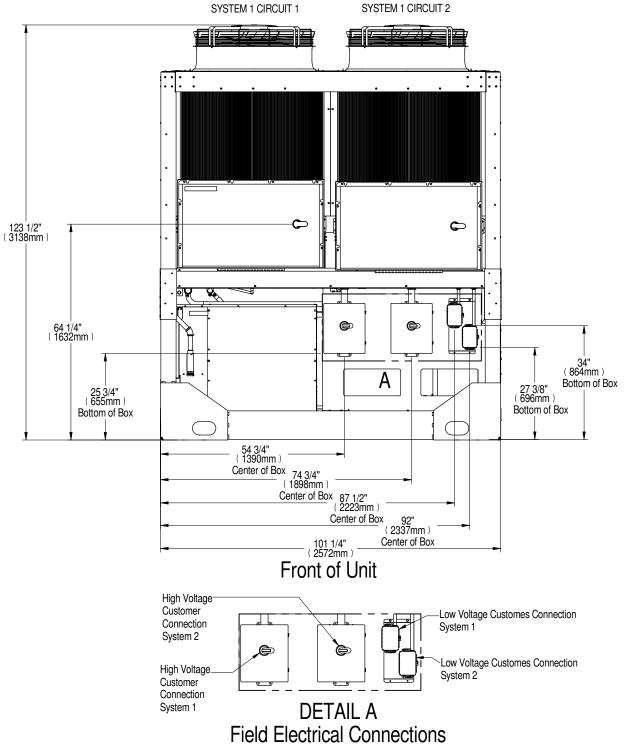
4. Piping connection can be made at the top or bottom of the unit.

PRIMARY CONNECTION LOCATIONS LIEBERT® MCV MCV430 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

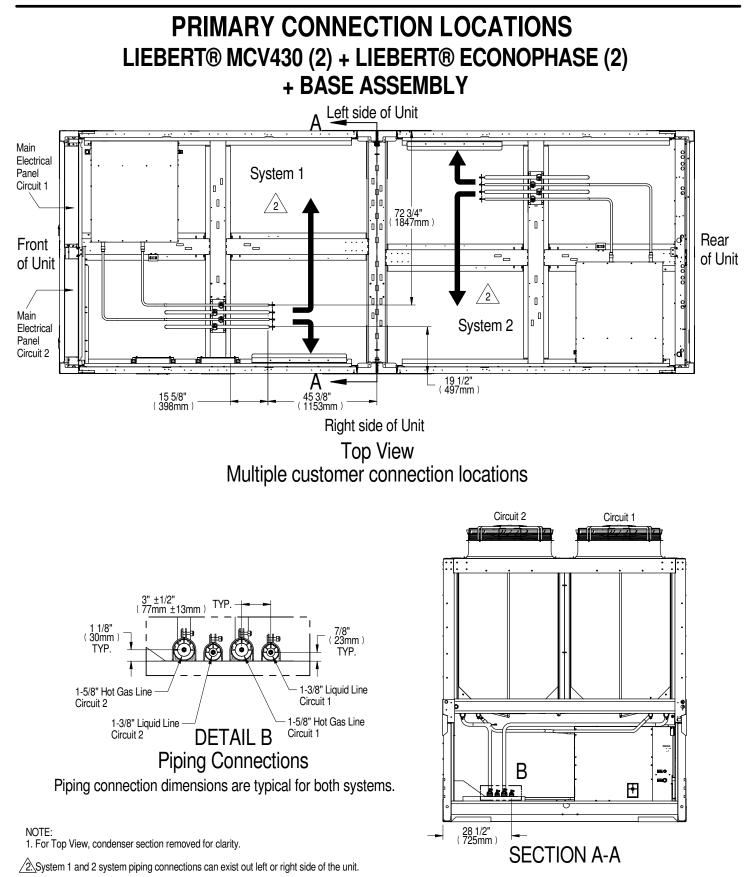


Notes:

1. Field to provide hole for conduit for high voltage disconnect box


and low voltage distribution panel.

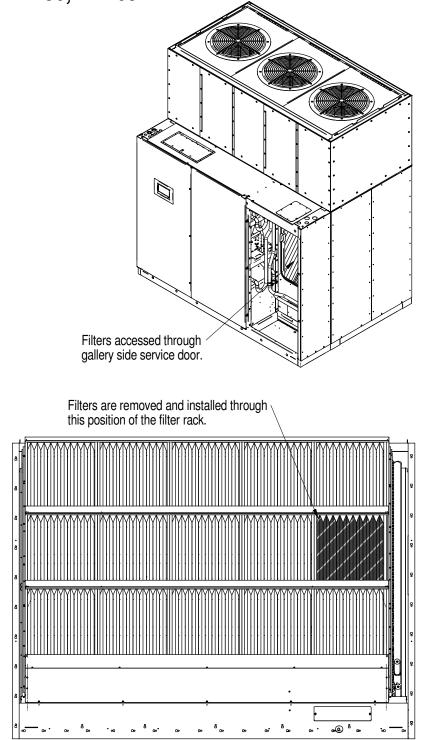
PRIMARY CONNECTION LOCATIONS LIEBERT® MCV430 (2) + LIEBERT® ECONOPHASE (2) + BASE ASSEMBLY

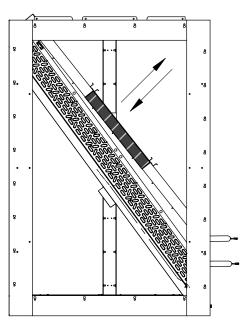


Form No.: DPN001040_REV4

1. Field to provide hole for conduit for high voltage disconnect box and low voltage distribution panel.

Notes:





DA250, DA265

Form No.: DPN001040_REV4

Appendix C: Seismic Submittal Drawings

Table C.1 Seismic Submittal Drawings Contents

Document Number	Title
DPN005109	Liebert® DSE Seismic, Downflow – 250-265 kW
10024248	Liebert® MCV Seismic

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

SEISMIC APPLICATION ASSUMPTIONS AND REQUIREMENTS DA250/DA265 HORIZONTAL & BOTTOM DISCHARGE UNIT

Vertiv has conducted analytical modeling of the Liebert® DSE DA250/DA265 product to provide an option for those systems requiring seismic certification of compliance. This certification goes beyond the equipment's ability to withstand the seismic forces: the IBC (International Building Code) and ASCE (American Society of Civil Engineers) system approach includes the equipment, equipment anchorage, and the connections to the equipment [power, piping, and ducting].

Certification Criteria

The Liebert® DSE DA250/DA265 certification is based on a maximum mapped, maximum considered earthquake spectral response acceleration value, S_s , of 3.75g adjusted by the soil site coefficient to Soil Site Class D as the default when the site soil properties or final equipment installation location is not known. The certification maximum spectral response coefficient is S_{ds} value of 2.50g including Soil Class and Seismic Use group corrections. Soil Classes A, B, C, D, and E, and Seismic Design Categories A, B, C, D, E, and F are all covered under this certification, limited by the Sds value stated above. Structural analysis has been conducted to demonstrate that the equipment meets performance objectives required for a component importance factor (Ip) of 1.0. Specifically, structural integrity is demonstrated such as to not pose a life safety hazard. Although this unit is not certified for the performance objective associated with an Ip=1.5 (continued functionality after a seismic event), the analyses of non-active components has been conducted with increased seismic demands associated with Ip=1.5 to ensure a seismically robust unit (structural integrity).

A Liebert® DSE DA250/DA265, as described above, is approved for seismic application as a system when properly installed in the following configurations:

- Liebert® DSE DA250/DA265 unit, with factory-installed seismic option, attached directly to a housekeeping pad using the anchoring system defined in this document.
- Liebert® DSE DA250/DA265 unit, with factory-installed seismic option, installed on a Vertiv-supplied, IBC-certified floor stand and attached securely to the building structure. The floor stand and mounting system must be Vertiv catalog items, purchased from Vertiv. The system must be anchored as specified in this document.
- The certification excludes all non-Vertiv supplied accessories, including but not limited to floor stands, and isolators.

Certificati	on IE	3C
Internal Bracing Opti	on Y	es
Floorstand attachme	ent Wel	ded
Unit	Sds	lp
DA250/DA265	2.5 1.0	

SEISMIC APPLICATION ASSUMPTIONS AND REQUIREMENTS DA250/DA265 HORIZONTAL & BOTTOM DISCHARGE UNIT

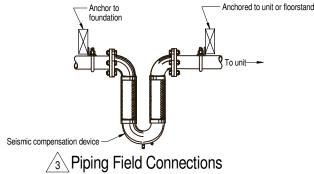
Requirements for Anchorage

Anchors

1. Mounting requirement details such as brand, type, embedment depth, edge spacing, anchor spacing, concrete strength, wall bracing, and special inspection must be outlined and approved by the project Structural Engineer of Record.

Anchorage Surface

2. Structural floors and housekeeping pads must also be seismically designed and approved by the project Structural Engineer of Record to withstand the seismic anchor loads as defined on the installation drawings. The installing contractor is responsible for the proper installation of all anchors and mounting hardware, observing the mounting requirement details outlined by the Engineer of Record. Contact the Manufacturer's Representative if a detailed Seismic Installation Calculation Package is required.


Unit Field Connections

- 3. Piping Field Connections:
 - All units, either rigidly mounted or mounted on vibration isolators, shall be attached to the piping system using flexible loops designed for seismic movement.

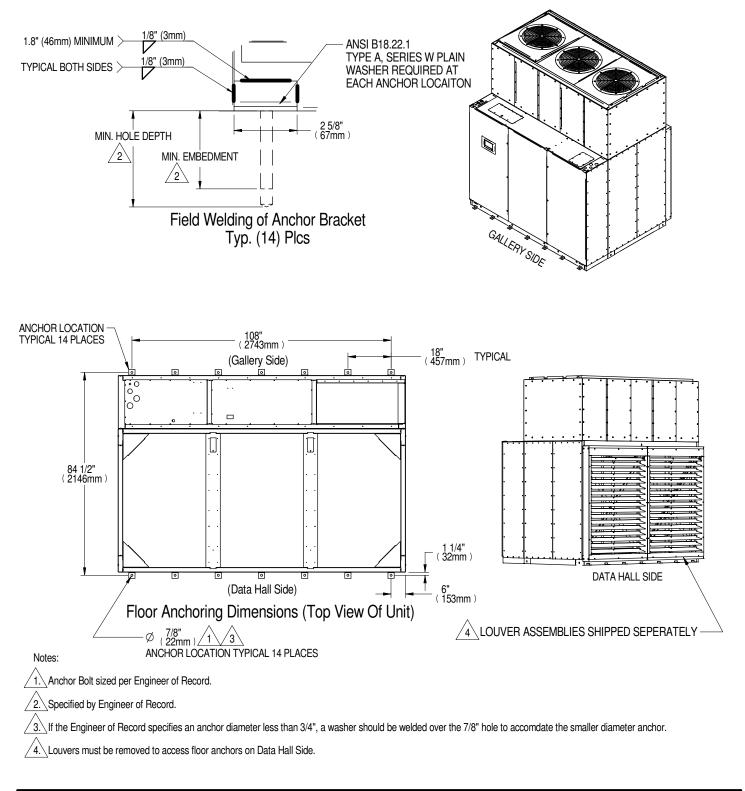
Flexible loops shall be capable of movement in the three axes and must completely isolate the equipment from the piping.

The loops shall be suitable for an operating pressure and temperature of the system, refer to Vertiv installation instructions.

This includes condensate drainage, and refrigerant supply and return. Follow manufacturer's installation instructions for proper seismic application of flexible looping.

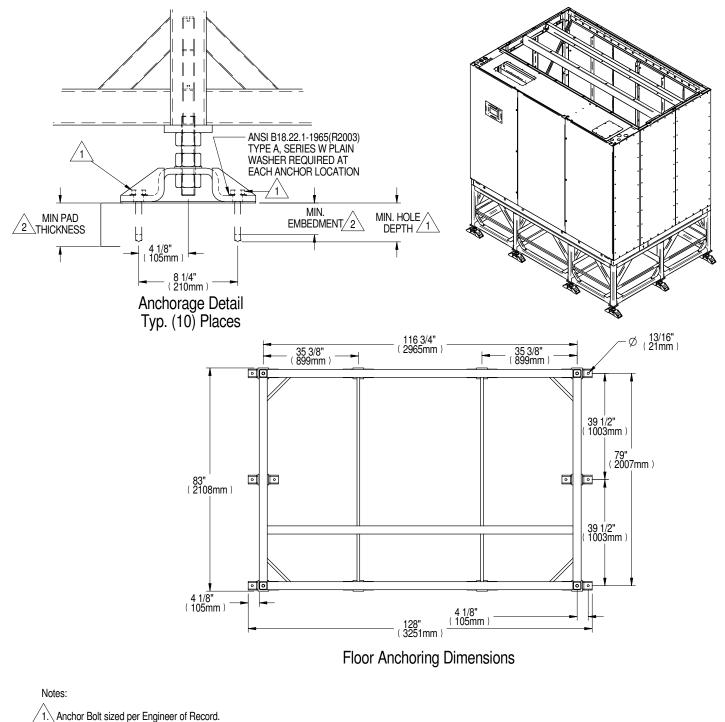
4. Electrical Connections:

Must have adequate flexibility for seismic movement. Electrical wiring, conduit, and/or other connections to the equipment is the responsibility of others. Data and recommendations are supplied here and in the unit installation supplement for seismic installation.

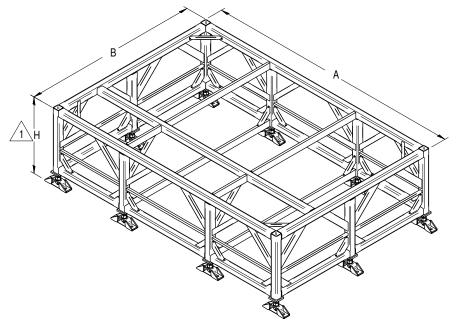

5. Duct Considerations:

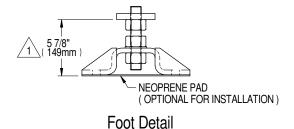
Seismic compensation shall be field supplied between the field supplied duct work and unit. Flexible joints shall be capable of movement in the three axes and must completely isolate the equipment from the duct work. Follow duct manufacturer's installation instructions for proper seismic application of flexible ducts.

Form No.: DPN001040_REV4


DIMENSIONAL DATA SEISMIC ANCHORAGE FOR DA250/DA265 HORIZONTAL DISCHARGE UNITS

Form No.: DPN001040_REV4



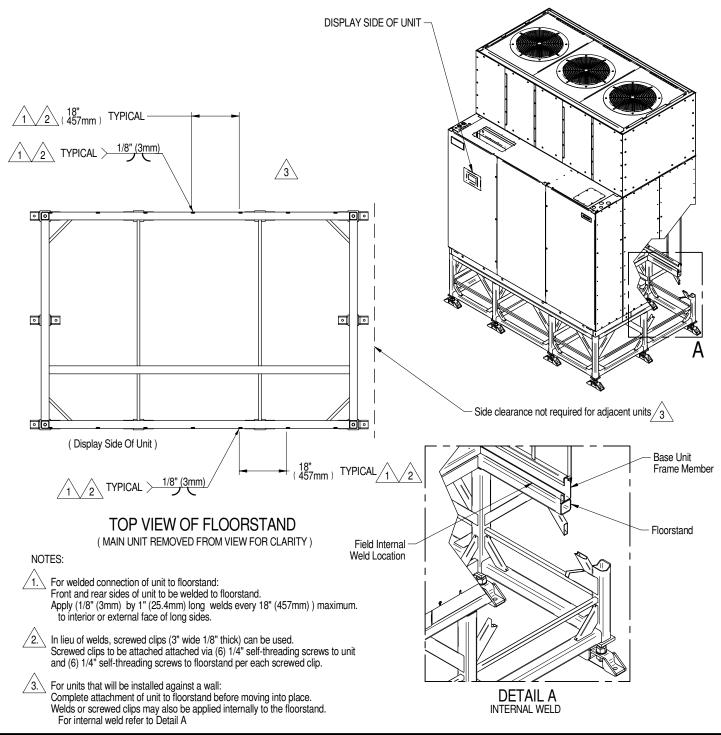

2. Specified by Engineer of Record.

3. Floorstand feet can be oriented in any direction.

DIMENSIONAL DATA SEISMIC ANCHORAGE RIGID FLOORSTAND FOR DA250/DA265 HORIZONTAL & BOTTOM DISCHARGE UNIT

MODEL	A		В		
	INCHES	MM	INCHES	MM	
DA250	119.8	3042	82.0	2083	

HEIGHT					
"H" NOMINAL					
INCHES MM					
24.0	610				
30.0	762				
36.0	914				
42.0	1067				
48.0	1219				


Form No.: DPN001040_REV4

2. Floorstand is used on DA250 units with both Bottom Discharge or Horizontal Discharge configurations.

3. Floorstand feet can be oriented in any direction.

DIMENSIONAL DATA SEISMIC ANCHORAGE RIGID FLOORSTAND FOR DA250/265 HORIZONTAL & BOTTOM DISCHARGE UNIT

DPN005109 Page :6 / 6

Form No.: DPN001040_REV4

SEISMIC APPLICATION ASSUMPTIONS & REQUIREMENTS

Vertiv has conducted analytical modeling of the Liebert® MCV product to provide an option for those systems requiring seismic certification of compliance. This certification goes beyond the equipment's ability to withstand the seismic forces: the IBC (International Building Code) and ASCE (American Society of Civil Engineers) system approach includes the equipment, equipment anchorage, and the connections to the equipment [power and piping].

Certification Criteria

The Liebert® MCV certification is based on a maximum mapped, maximum considered earthquake spectra response acceleration value, Ss (in table below) adjusted by the soil site coefficient to Soil Site Class D as the default when the site soil properties or final equipment installation location is not known. The certification maximum spectral response coefficient is Sds (table below) including Soil Class and Seismic Use group corrections. Soil Classes A, B, C, D, and E, and Seismic Design Categories A, B, C, D, E, and F are all covered under this certification, limited by the Sds value shown in the table below.

Liebert® MCV unit, with factory-installed seismic option, attached directly to a pad and steel substrate using the anchoring system defined in this document.

Certification	IBC		IBC			
Unit	Sds	Ss	lp	Sds	Ss	lp
MCV 440 - 8 Fan with PRE	2.5	2.5 3.75	1.0	1.25	1.875	1.5
MCV440 - 16 Fan with PRE		3.75				

Note :

1. lp=1.0 - Structural analysis has been conducted to demonstrate that the equipment meets performance objectives required for a component importance factor (lp) shown in the table below. Specifically, structural integrity is demonstrated such as to not pose a life safety hazard.

2. Ip=1.5 - Although this unit is not certified for the performance objective associated with the Ip shown in the above table (continued functionality after a seismic event), the analyses of non-active components has been conducted with increased seismic demands associated with Ip to ensure a seismically robust unit (structural integrity).

DPN001040_REV 4

SEISMIC APPLICATION ASSUMPTIONS & REQUIREMENTS

Requirements for Anchorage

Anchors

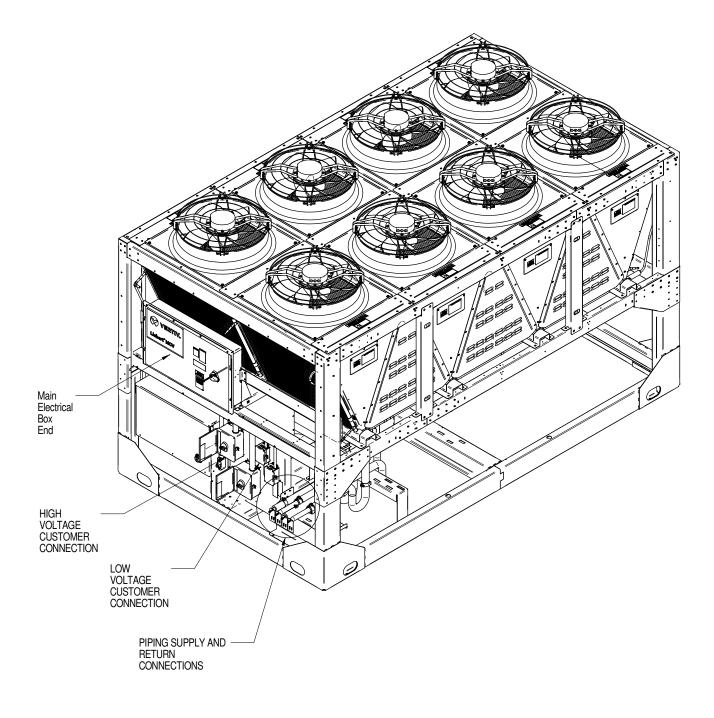
1. Mounting requirement details such as brand, type, embedment depth, edge spacing, anchor spacing, concrete strength, wall bracing, and special inspection must be outlined and approved by the project Structural Engineer of Record.

Anchorage Surface

2. Structural floors and housekeeping pads must also be seismically designed and approved by the project Structural Engineerof Record to withstand the seismic anchor loads as defined on the installation drawings. The installing contractor is responsiblefor the proper installation of all anchors and mounting hardware, observing the mounting requirement details outlined by the Engineer of Record. Contact the Manufacturer's Representative if a detailed Seismic Installation Calculation Package is required.

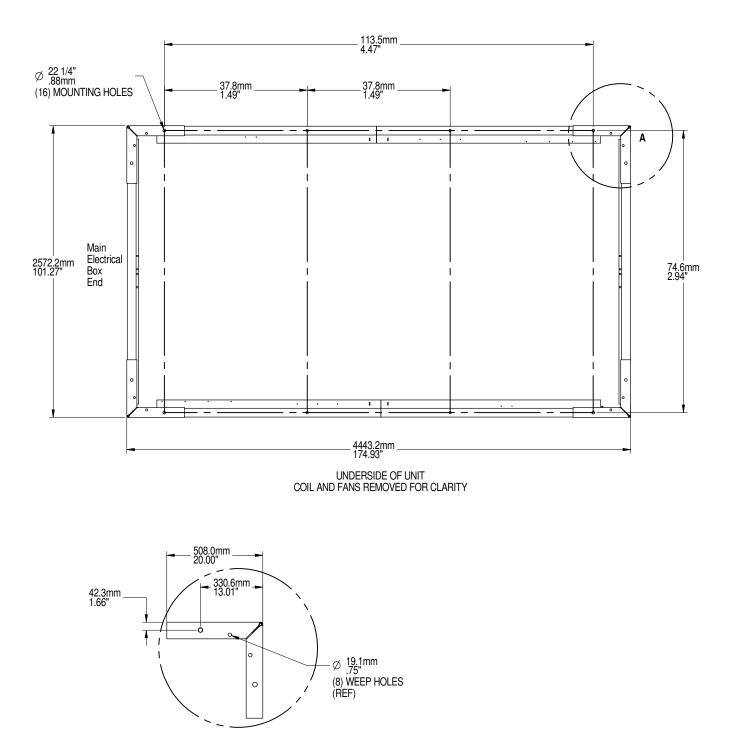
Unit Field Connections

3. Piping Considerations


Condensers for seismic application, shall be attached to the piping system using field supplied flexible loops designed for seismic movement. Flexible loops shall be capable of movement in three dimensions and must isolate the condenser from field piping. The loops shall be suitable for an operating pressure and temperature of the system. Follow manufacturer's installation instructions for proper seismic application of flexible loops. The selection of isolation brand and type must be outlined and approved by the engineer of record for the project or building.

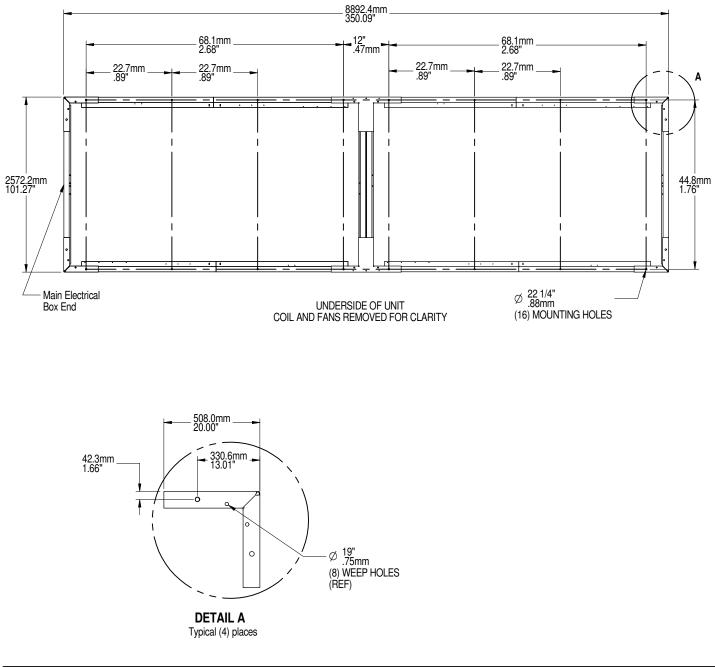
4. Electrical Wiring Considerations

Condensers for seismic application, shall be connected to power and control circuits using field supplied flexible conduit and conductors to allow for movement of the condenser in three dimensions during a seismic event. The flexible conduit shall have at least one bend between the rigid connection at the unit cabinet and the connection to rigid conduit or foundation. The selection of flexible conduit and type must be outlined and approved by the engineer of record for the project or building.



SEISMIC ANCHORAGE DATA LIEBERT® MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY

SEISMIC ANCHORAGE DATA LIEBERT® MCV440 + LIEBERT® ECONOPHASE + BASE ASSEMBLY



DETAIL A Typical (4) places

SEISMIC ANCHORAGE DATA

LIEBERT® MCV440(2) + LIEBERT® ECONOPHASE(2) + BASE ASSEMBLY

Appendix D: Guide Specifications

The following are the guide specifications for the Vertiv[™] Liebert[®] DSE.

Vertiv™ Liebert® DSE Thermal Management System System Design and User Guide

This page intentionally left blank

Vertiv[™] Liebert [®] DSE Model DA250 and DA265 Guide Specifications

1.0 GENERAL

1.1 Summary

These specifications describe requirements for a Thermal Management system. The system shall be designed to control temperature in rooms containing electronic equipment, with good insulation and a vapor barrier. The manufacturer shall design and furnish all equipment to be fully compatible with the heat dissipation requirements of the room.

1.2 Design Requirements

The Thermal Management system shall be a factory assembled self-contained unit. Standard 60 Hz units shall be CSA-certified to the harmonized U.S. and Canadian product safety standard, "CSA C22.2 No 236/UL 1995 for Heating and Cooling Equipment" and are marked with the CSA c-us logo.

The system sensible coefficient of performance (SCOP) shall meet ASHRAE 90.1

The unit is to be supplied for operation using a ____ volt, 3 phase, ____ Hz power supply.

1.3 Submittals

Submittals shall be provided with the agreement of the proposal and shall include single-line diagrams, as well as dimensional, electrical and capacity data, piping, and electrical connection drawings.

1.4 Serviceability/Access

The cabinet shall be designed so that all components are easily accessible for service and maintenance through the unit's service (non-data center) side.

1.5 Acceptable Alternatives

Acceptable alternatives shall be permitted with engineer's prior approval only. Contractor to submit a detailed summary form listing all variations to include size deviations, electrical load differences, functional and component changes, and savings to the end user.

1.5.1 Quality Assurance

The specified system shall be factory-tested before shipment. Testing shall include, but not be limited to: Quality Control Checks, "Hi-Pot." The system shall be designed and manufactured according to world-class quality standards. The manufacturer shall be ISO 9001 certified.

2.0 PRODUCT

2.1 Frame DA250 and DA265

The unit frame section and fan plenum frame shall be welded, formed sheet metal. They shall be protected against corrosion using the autophoretic coating process. The unit section and the fan plenum shall be shipped as two separate sections. The fan plenum shall be field mounted on top of the unit frame section.

2.1.1 IBC Seismic Rated Option

The unit frame shall be rated for IBC certification with Sds = 2.5 and Ip = 1.0, using optional bracing and when installed properly per DPN005109.

2.1.2 Downflow Air-Supply Configurations

2.1.2.1 Downflow Air Bottom Discharge

The supply air shall exit from the bottom of the unit.

2.1.2.2 Downflow Air Horizontal Discharge

The supply air shall exit from the front (data hall side) of the unit.

2.1.3 Downflow Air Return

The return air shall enter the unit from the top.

2.1.4 Exterior Panels

The exterior panels shall be insulated with a minimum 1 in. (25mm), 1.5 lb. (0.68 kg) density fiber insulation. The main front panel shall have captive quarter-turn fasteners. The main unit color shall be _RAL-7021 (gray black). The fan plenum shall be painted to match the color of the main unit.

2.2 Filters—DA250 and DA265

The filter chamber shall be located within the evaporator coil cabinet, and filters shall be removable from the service side (non-data center side) of the unit.

2.2.1 Filters, 4 in. MERV 8 or MERV11

Filters shall be deep-pleated, 4 in. (102 mm) filters with an ASHRAE 52.2-2007 MERV8 or MERV11 rating.

Extra Filter Set

____ extra set(s) of filters shall be provided per system.

2.3 Locking Disconnect Switch

The manual disconnect switch shall be mounted in the high voltage section of the electrical panel. The switch shall prevent access to the high voltage electrical components until switched to the OFF position.

2.4 Short-Circuit Current Rating (SCCR)

The electrical panel shall provide at least 65,000A SCCR.

Short-circuit current rating (SCCR) is the maximum short-circuit current a component or assembly can safely withstand when protected by a specific overcurrent protective device(s) or for a specified time.

2.5 Fan Section

Plenum Fans with Direct Drive Motors and Variable Speed Drive

The fans shall be plug/plenum type, motorized impellers, single inlet and dynamically balanced. The drive package shall be direct drive and provided with variable speed drives (three (3) drives per unit). The fans shall be located to blow air over the slab coil to ensure even air distribution and maximum coil performance.

• Downflow DA250 and DA265 fan motors shall be nominal 15hp (11.2 kW) each, with a maximum operating speed of 1800 rpm; quantity, three.

2.6 Fan Overload

The fan fault alarm shall be standard on all models.

2.7 Refrigeration System

2.7.1 Dual Circuit - DA250 and DA265

Each unit shall include two (2) independent refrigeration circuits and each circuit shall include liquid line filter driers, refrigerant sight glass with moisture indicator and electronic expansion valves. Compressors shall be located outside the air stream and shall be removable and serviceable from the service side of the unit. Each compressor circuit shall be connected to the full-face area of the evaporator coil.

2.8 Compressors

2.8.1 Tandem Digital Scroll Compressors—DA250 and DA265

The compressors shall be tandem, scroll-type with a variable capacity operation capability of one compressor of the pair. Compressor solenoid valve shall unload the compressor and allow for variable capacity operation. The compressor shall have vibration isolators, thermal overloads, automatic reset high pressure switch with lockout after three (3) failures, rotalock service valves, suction line strainer and a maximum operating speed of 3500 rpm. The compressor motor shall be suction gas cooled.

2.8.2 Compressor Overload

A pair of N/O contacts shall be factory installed and wired to each compressor to indicate Compressor Overload.

2.9 Crankcase Heaters

The compressors shall include crankcase heaters, powered from the indoor unit electric panel.

2.10 Evaporator Coil

2.10.1 DA250

The evaporator coil shall be Slab design for bottom/horizontal discharge units and have ___67.5___ sq. ft. (___6.3___ sq m) face area, __4__ rows deep. It shall be constructed of rifled copper tubes and aluminum fins with a maximum face velocity of __541___ ft. per minute (__2.7___ m/s) at __36,500___ CFM (__62,014___ CMH). A stainless steel condensate drain pan shall be provided.

2.10.2 DA265

The evaporator coil shall be Slab design for bottom/horizontal discharge units and have ___67.5___ sq. ft. (___6.3___ sq m) face area, __5__ rows deep. It shall be constructed of rifled copper tubes and aluminum fins with a maximum face velocity of __541___ ft. per minute (__2.7___ m/s) at __36,500___ CFM (__62,014___ CMH). A stainless steel condensate drain pan shall be provided.

2.11 R-410A Refrigerant

The system shall be designed for use with R-410A refrigerant, which meets the U.S. Clean Air Act for phase-out of HCFC refrigerants. Refrigerant shall be field supplied and field charged by the installing contractor.

2.12 Air Cooled Systems

The indoor evaporator unit shall include refrigerant piping and shall have a factory holding charge of nitrogen. The hot gas and liquid lines shall be spun shut and each shall include a factory-installed Schrader valve. Field-relief of the Schrader valve shall indicate a leak free system from the factory. The installing contractor shall cut the evaporator piping and shall evacuate and charge the system. Refrigerant shall be supplied by the installing contractor.

3.0 CONTROLS

3.1 Vertiv[™] Liebert[®] iCOM[™] Microprocessor Control with 7-inch Color Touchscreen

The Liebert[®] iCOM[™] shall be microprocessor-based with a 7-inch, high definition, capacitive, color touchscreen display and shall be mounted in an ergonomic, aesthetically pleasing housing. The display and housing shall be viewable while the front panel is open or closed. The controls shall be menu driven. The system shall display user menus for active alarms, event log, graphic data, unit view/status overview (including the monitoring of room conditions, operational status in percentage of each function, date, and time), total run hours, various sensors, display setup and service contacts. A password shall be required to make system changes. Service menus shall include setpoints, standby settings (lead/lag), timers/sleep mode, alarm setup, sensor calibration, maintenance/wellness settings, options setup, system/network setup, auxiliary boards, and diagnostics/service mode. The Liebert[®] iCOM[™] control shall provide Ethernet/RS-485 ports dedicated for BMS connectivity (i.e., Base Comms).

- Password Protection The Liebert[®] iCOM[™] shall contain two unique passwords to protect against unauthorized changes. An auto hide/show feature allows the user to see applicable information based on the login used.
- Unit Backup and Restore The user shall be able to create safe copies of important control parameters. The Liebert[®] iCOM[™] shall have the capacity for the user to automatically backup unit configuration settings to internal memory or USB storage drive. Configuration settings may be transferred to another unit for a more streamlined unit startup.
- Parameter Download The Liebert[®] iCOM[™] shall enable the user to download a report that lists parameter names, factory default settings and user-programmed settings in .csv format for remote reference.
- Parameter Search The Liebert[®] iCOM[™] shall have search fields for efficient navigation and parameter lookup.
- Parameter Directory The Liebert[®] iCOM[™] shall provide a directory that lists all parameters in the control. The list shall provide Line ID numbers, parameter labels, and current parameter values.
- Context-sensitive Help The Liebert[®] iCOM[™] shall have an on-board help database. The database shall provide context sensitive help to assist with setup and navigation of the menus.
- Display Setup The user shall have the ability to configure the Liebert[®] iCOM[™] information based on the specific user's preference. Language, units of measure, screen contrast, home screen layout, back-light timer and the hide/show of certain readouts shall be configurable through the display.
- Additional Readouts The Liebert[®] iCOM[™] shall permit the user to configure custom widgets on the main screen. Widget options shall include items such as fan speed, call for cooling, call for free-cooling, maintenance status, call for hot water reheat, call for electric reheat, call for dehumidification, call for humidification, airflow, static pressure, fluid flow rate and cooling capacity.
- Status LEDs The Liebert[®] iCOM[™] shall provide the user with the unit's operating status using an integrated LED. The LED shall indicate if the unit has an active alarm; if the unit has an active alarm that has been acknowledged; or if the unit is On, Off or in standby status.
- Event Log The Liebert[®] iCOM[™] shall automatically store the last 400 unit-only events (messages, warnings, and alarms).
- Service Contact Information The Liebert[®] iCOM[™] shall have the ability to store the local service or sales contact information.

- Upgradeable Vertiv[™] Liebert[®] iCOM[™] firmware upgrades shall be performed through a USB connection.
- Timers/Sleep Mode The menu shall allow various customer settings for turning the unit on/off.
- Menu Layout The menus shall be divided into two main menu screens: User and Service. The User screen shall contain the menus to access parameters required for basic unit control and setup. The Service screen shall be designed for service personal and provides access to advanced control setup features and diagnostic information.
- Sensor Calibration The menus shall allow unit sensors to be calibrated with external sensors.
- Maintenance/Wellness Settings The menus shall allow reporting of potential component problems before they occur.
- Options Setup The menus shall provide operation settings for the installed components.
- Auxiliary Boards The menus shall allow setup of optional expansion boards.
- Various Sensors The menus shall allow setup and display of optional custom sensors. The control shall include four customer-accessible analog inputs for field-provided sensors. The analog inputs shall accept a 4 to 20mA signal. The user shall be able to change the input to 0 to 5VDC or 0 to 10VDC. The gains for each analog input shall be programmable from the front display. The analog inputs shall be able to be monitored from the front display.
- Diagnostics/Service Mode The Liebert[®] iCOM[™] shall be provided with self-diagnostics to aid in troubleshooting. The microcontroller board shall be diagnosed and reported as pass/not pass. Control inputs shall be indicated as On or Off at the front display. Control outputs shall be able to be turned On or Off from the front display without using jumpers or a service terminal. Each control output shall be indicated by an LED on a circuit board.
- Base-Comms for BMS Connectivity The Liebert[®] iCOM[™] controller shall provide one Ethernet Port and RS-485 port dedicated for BMS connectivity. Provides ground fault isolated RS-485 Modbus, BACnet IP, and Modbus IP network connectivity to building management systems for unit monitoring and management. Also provides ground fault isolated 10/100 baseT Ethernet connectivity for unit monitoring and management. The supported management interfaces include SNMP for network management systems, HTTP for web page viewing, SMTP for email, and SMS for mobile messaging. The iCOM controller can support dual IP on a single network and one 485 protocol simultaneously.
- DSE System Optimization Allows for efficiency improvements for the DSE system during EconoPhase mode. By optimizing liquid refrigerant temperature and pressure setpoints, the result is a reduction in power consumption of the condenser fan during mid and high ambient conditions. DSE System Optimization provides an opportunity for additional energy savings by increasing the utilization of the PRE-pumps and decreasing the utilization of the condenser fans, but always maintaining appropriate heat capacity rejection during mid to high ambient outdoor conditions. Energy savings occurs when utilizing the PRE-pump package; a pump consumes roughly 1/10th of the power consumed by the compressor.

3.2 Alarms

All unit alarms shall be annunciated through both audio and visual cues, clearly displayed on the screen, automatically recorded in the event log, and communicated to the customer's building management system/building automation system. The Vertiv[™] Liebert[®] iCOM[™] shall activate an audible and visual alarm in the event of any of the following conditions:

- High Temperature
- Low Temperature
- High Humidity
- Low Humidity
- Fan Fault
- Change Filters
- Loss of Air Flow
- Loss of Power
- Compressor Overload
- High Head Pressure
- Low Suction Pressure
- Custom Alarms

Custom alarm inputs shall be provided to indicate facility-specific events. Custom alarms can be identified with programmable labels. Frequently used alarm inputs shall include:

- Leak Under Floor
- Smoke Detected
- Standby Unit On

Each alarm (unit and custom) shall be separately enabled or disabled, selected to activate the common alarm and programmed for a delay of 0 to 255 seconds.

A complete listing of alarms is available in the Liebert® iCOM™ Installer/User Guide, SL-31075.

3.3 Liebert® iCOM™ Control Methods and Options

The Liebert[®] iCOM[™] shall be factory-set to allow precise monitoring and control of the condition of the air entering and leaving the unit. This control shall include predictive methods to control air flow and cooling capacity-based control sensors installed. Proportional and Tunable PID shall also be user-selectable options.

3.3.1 Controlling Sensor Options

The Liebert[®] iCOM[™] shall be flexible in the sense that it shall allow controlling the capacity and fan from multiple different sensor selections. The sensor selections shall be:

Cooling Capacity

- Supply
- Remote
- Return

Fan Speed

- Supply
- Remote
- Return
- Manual (for diagnostics or to receive a signal from the BMS through remote monitoring devices or analog input)
- Static Pressure

3.3.2 Temperature Compensation

The Vertiv[™] Liebert[®] iCOM[™] shall have the ability to adjust the capacity output based on supply and return temperature conditions to meet SLA guidelines while operating to the highest efficiency.

3.4 Multi-Unit Coordination

Liebert[®] iCOM[™] teamwork shall save energy by preventing multiple units in an area from operating in opposing modes. Teamwork allows the control to optimize a group of connected equipped with Liebert[®] iCOM[™] using the U2U (Unit-to-Unit) network. There shall be three modes of teamwork operation:

- Teamwork Mode 1 (Parallel) Is best in small rooms with balanced heat loads. The controlling temperature and humidity sensor readings of all units in operation (fan On) are collected to be used for an average or worst-case sensor reading (user selectable). The master unit shall send the operating requirements to all operating units in the group. The control band (temperature, fan, and humidity) is derived and shared among the units in the group. Each unit will receive instructions on how to operate from the master unit based on how far the system deviates from the setpoints. Evaporator fans and cooling capacity are ramped in parallel.
- Teamwork Mode 2 (Independent) The Liebert[®] iCOM[™] calculates the worse-case demand for heating, cooling humidification and dehumidification. Based on the greatest demand within the group, each unit operates independently, meaning that the unit may respond to the thermal load and humidity conditions based on the units controlling sensors. All sensor readings are shared.
- Teamwork Mode 3 (Optimized Aisle) May be applied in large and small rooms with varying heat loads. Optimized Aisle is the most efficient teamwork mode that allows the unit to match cooling capacity with heat load. In the Optimized Aisle mode, the fans operate in parallel. Fans can be controlled exclusively by remote temperature or using static pressure with a secondary remote temperature sensor(s) as an override to ensure that the inlet rack temperature is being met. Cooling (Compressors, Liebert[®] Economizer or Liebert[®] EconoPhase) is controlled off unit supply air conditions. The Liebert[®] iCOM[™] calculates the average or worst-case sensor reading (user-selectable) for heating, cooling humidification and dehumidification. Based on the demand within the group, units will be allowed to operate within that mode until room conditions are satisfied. This is the best form of control for a room with an unbalanced load.

3.5 Standby/Lead Lag

The Liebert[®] iCOM[™] shall allow planned rotation to keep equal run time on units and provide automated emergency rotation of operating and standby units.

3.6 Standby Unit Cascading

The Vertiv[™] Liebert[®] iCOM[™] cascade option shall allow the units to turn On and Off based on heat load when utilizing Teamwork Mode 3–Optimized Aisle mode with remote temperature sensors. In Teamwork Mode 3, Cascade mode will stage units On based on the temperature and humidity readings and their deviation from setpoint. Cascade mode coordinates the fan speed dynamically to save energy and to meet cooling demands. For instance, with a Liebert[®] iCOM[™] group of six units and only 50% of the heat load, the Liebert[®] iCOM[™] shall operate only four units at 80% fan speed and leave the other two units in standby. As the heat load increases, the Liebert[®] iCOM[™] shall automatically respond to the new load and bring on another unit, increasing the units in operation to five. As the heat load shifts up or down, the control shall meet the needs by cascading units On or putting them back into standby.

3.7 Virtual Master

As part of the robust architecture of the Liebert[®] iCOM[™] control, it shall allow for a virtual master that coordinates operation. The Virtual Master function shall provide smooth control operation if the group's communication is compromised. When the lead unit, which is in charge of component staging in teamwork, unit staging and standby rotation, becomes disconnected from the network, the Liebert[®] iCOM[™] automatically assigns a virtual master. The virtual master shall assume the same responsibilities as the master until communication is restored.

3.8 Virtual Backdraft Damper

The Liebert[®] iCOM[™] shall allow the use of a virtual backdraft damper, eliminating the need for a mechanical damper. This shall allow the fans of a standby unit to spin in reverse at a low speed (15% or less) to act as a damper.

3.9 Compressor Short Cycle Control

Compressor short cycle control shall be available to prevent compressor short-cycling and needless compressor wear.

3.10 Vertiv™ Liebert® MCV and Vertiv™ Liebert® EconoPhase Communication

Units shall be matched with Liebert[®] MCV Premium Condensers and/or optional Liebert[®] EconoPhase unit and shall communicate with them via field supplied CANbus wires. This communication shall allow Liebert[®] iCOM[™] to control Liebert[®] MCV condenser/EconoPhase modes and operation and to monitor their health and alarm status.

3.11 Wired Supply Sensor

Each Liebert[®] iCOM[™] shall have one factory-supplied and connected supply air sensor that may be used as a controlling sensor or reference. When multiple sensors are applied for control purposes, the user shall be able to control based on a maximum or average temperature reading.

3.12 System Auto Restart

The auto restart feature shall automatically restart the system after a power failure. Time delay shall be programmable. An optional capacitive buffer may be provided for continuous control operation through a power outage.

3.12.1 Sequential Load Activation

On initial startup or restart after power failure, each operational load shall be sequenced with a minimum of one second delay to minimize total inrush current.

3.12.2 Low Pressure Monitoring

Units shall ship standard with low pressure transducers for monitoring individual compressor suction pressure. If the pressure falls due to loss of charge or other mechanical cause, the corresponding circuit shall shut down to prevent equipment damage. The user shall be notified of the low pressure condition through the local display and remote monitoring.

3.13 Winter Start Time Delay

An adjustable software timer shall be provided to assist with compressor starting during cold weather. When the compressor starts, the low pressure input shall be ignored for the period set in the useradjustable timer. Once the delay after the compressor start has elapsed, the low pressure input should remain in the normal state. If the low pressure input does not remain in the normal state after the delay has elapsed, the circuit shall lock out on low pressure. The low pressure alarm shall be announced on the local display and communicated to remote monitoring systems.

3.13.1 Advanced Freeze Protection

Units shall ship standard with advanced freeze protection enabled. The advanced freeze protection shall monitor the pressure of each circuit using a transducer. The control shall interact with the fan and compressor to prevent the unit coil from freezing if circuit suction pressure drops. Applying fan speed to direct expansion systems requires limitations to avoid freezing condensate on the coil when the unit operates below 100% fan speed. Vertiv[™] Liebert[®] iCOM[™]'s advanced freeze protection provides the ability to predict freeze conditions and correct this condition automatically by the adjusting fan speed and compressor capacity. If a freeze condition is detected, the user shall be notified through the local display and remote monitoring systems.

3.13.2 Advanced High Pressure Protection

When the compressor is initially activated, the system shall be monitored for a high pressure. When high pressure is detected, the control shall reduce the system discharge pressure by altering the compressor loading and the condenser fan speed, preventing circuit shut down. If the unit is unsuccessful in correcting the problem through this interaction, an alarm shall occur and the affected compressor shall be immediately locked off. The control shall automatically re-enable the compressor when pressure returns to a safe level.

3.14 Refrigerant Pressure Transducer Failure

The control shall monitor the high side and low side refrigerant pressure transducers. If the control senses that the transducer has failed, has been disconnected, shorted or the reading has gone out of range, the user shall be notified through the local display and remote monitoring. The corresponding circuit that the failure has occurred on shall be disabled to prevent unit damage.

3.15 Oil Return Protection

The control shall monitor compressor operation and staging to ensure that liquid and hot gas velocity are maintained for proper oil return to the compressor.

3.16 Digital Scroll High Temperature Protection

The control shall monitor digital scroll temperature during unit operation. A compressor temperature limit shall be imposed to help prevent damage to the compressor. If the temperature reaches the maximum temperature limit, the compressor shall be locked out for 30 minutes and an alarm shall be annunciated on the local display and through monitoring. After the initial lockout, the control shall continue to monitor compressor temperature during the off cycle and re-enable the circuit once a safe operating temperature is reached and the 30 minutes has elapsed. The control shall store the number of high temperature trips. The number of trips shall be accessible through the local display.

3.17 Digital Scroll Sensor Failure

The control shall monitor the status of the digital scroll sensor(s). If the control senses the thermistor becomes disconnected, shorted or the reading goes out of range, the user will be notified through an event on the local display and remote monitoring.

3.18 Compressor Sequencing

A user-selectable compressor sequencing parameter shall be provided and access through the local control. This sequencing parameter presents the user with three choices:

- Always use Compressor 1 as lead compressor.
- Always use Compressor 2 as lead compressor.
- Auto: The unit shall automatically stage compressors to keep each unit's run time within 8 hours of the other unit's run time. NOTE: The Auto setting attempts to maintain equal run times between compressors. However, the control will not turn Off a compressor to equalize run time when it is needed to control the space.
 - **First priority** If the safety timings are acceptable for only one compressor, that compressor shall be the next to be started/stopped.
 - Second priority If both compressors are Off, the one with fewer working hours shall be the next to start.
 - Third priority If both compressors are in operation, the one that has been operating longer since the last start shall be the next to be stopped.

3.19 Compressor High and Low Temperature Limit Protection

The control shall monitor the return air to ensure that the compressor(s) are operated within the manufacturer's defined window of operation. If the return air temperature deviates from the manufacturer's window of operation, the Vertiv[™] Liebert[®] iCOM[™] shall automatically adjust to prevent damage to the cooling unit or reduction in its reliability.

3.20 Compressor Run Time Monitoring

- The control shall log these compressor statistics:
- Number of compressor starts
- Run hours
- Average run time
- Starts per day
- Starts per day worst
- Number of high pressure alarms
- Operating phase in which the high pressure alarm occurred
- Number of low pressure alarms
- Operating phase in which the low pressure alarm occurred
- Number of compressor overloads
- Number of high temperature alarms (scroll compressors)

The user shall have the ability to monitor compressor operating temperature and pressure from the local display to be used as a diagnostic tool.

Guide Specifications

3.21 Manual Compressor Disablement

The user shall have the ability to disable compressor operation using a set of either normally open or normally closed dry contacts tied directly to the control or through remote monitoring. An additional enable/disable feature shall be provided to allow the user to permanently disable an individual compressor circuit for maintenance using the local display.

3.22 Manual Compressor Operation

The user shall be able to operate each compressor manually from the local display. The user shall be able to energize refrigeration components including liquid-line solenoid valves, compressor contactors, electronic expansion valves and adjust capacity for troubleshooting or repair. The control shall monitor the compressor during manual operation and shall shut the compressor down if needed to prevent electrical or mechanical damage.

4.0 MISCELLANEOUS OPTIONS

4.1 High Temperature Sensor—Optional

The high temperature sensor shall be factory-installed in the unit and shall be factory-set to 125°F (52°C). It shall immediately shut down the environmental control system when activated. The sensor shall be mounted with the sensing element in the return air.

4.2 Smoke Sensor—Optional

The smoke sensor shall immediately shut down the Thermal Management system and activate the alarm system when activated. The smoke sensor shall be mounted in the electrical panel with the sensing element in the return air compartment. The smoke sensor is not intended to function as or replace any room smoke detection system that may be required by local or national codes. The smoke sensor shall include a supervision contact closure.

4.3 Condensate Pump, Dual Float—Optional

The pump shall have a capacity of _____ GPM (_____ I/m) at _____ ft head (_____ kPa). It shall be complete with integral dual-float switches, pump-and-motor assembly, and reservoir. The secondary float shall send a signal to the local alarm and shut down the unit upon high water condition.

4.4 Dual Input Power—Optional

The unit shall be provided with two manual disconnect switches mounted in the high voltage section of the electrical panel. In addition, the unit shall include a reversing starter with an automatic transfer switch (ATS) control. In the event of a loss of primary power, the unit will automatically switch over to a secondary power source. Upon the return of primary power, the unit will automatically return to the primary power source.

On the DA250 and DA265, this configuration includes:

- Dual disconnect with reversing starter
- High voltage subfeed from indoor unit to condenser and Vertiv[™] Liebert[®] EconoPhase— Vertiv[™] Liebert[®] MCV Heat Rejection Skid (includes condenser and Liebert[®] EconoPhase) is powered from the indoor unit. The indoor unit and heat rejection skid should be on the same power source.
- Capacitive buffer and quick start feature—When enabled, the quick-start feature will become available in the event the capacitive buffer is no longer able to maintain power to the Vertiv[™] Liebert[®] iCOM[™] controller and Liebert[®] iCOM[™] powers down. Upon power restoration to the Liebert[®] iCOM[™] controller, the quick-start feature shall activate and provide fan/cooling output. The quick-start feature shall support the full range of cooling operating modes for the Vertiv[™] Liebert[®] DSE system: DX Mode, Mixed Mode, and Pump Mode (Liebert[®] EconoPhase). Upon a system power restoration, the Liebert[®] DSE unit will continue operation and start in the last known cooling operating mode that was active prior to the loss of power. Unit restart time for full cooling shall be 40 seconds or less after power to the unit has been restored, with fans starting within 15 seconds. The unit shall be equipped with capacitive buffer to provide the Liebert[®] iCOM[™] with a minimum of 3 minutes of ride-through power. The capacitive buffer shall provide power for continuous connectivity to the Building Management System(s) via Liebert[®] iCOM[™] control.

13

4.5 Low Voltage Terminal Package—Optional

Factory-installed and factory-wired terminals shall be provided.

- **Remote Shutdown Terminals** Two additional pairs of terminals provide the customer with additional locations to remotely shut-down the unit by field-installed devices or controls.
- Extra Common Alarm Contacts Two additional pairs of terminals provide the customer with normally open contacts for remote indication of unit alarms.
- Main Fan Auxiliary Switch One set of normally-open contacts wired to the fan enable relay will close when fan operation is required. This set of dry contacts could also be used to initiate the air economizer operation. Air economizer and associated devices by others.
- Vertiv[™] Liebert[®] Liqui-tect Shutdown One pair of dry contacts for the Liqui-tect sensor signal will provide unit shut down. (The Liqui-tect sensor is not included.)

4.6 Remote Humidifier Contact—Optional

A pair of N/O contacts provided for connection to a remote humidifier that allow the unit's humidity controller to control a humidifier outside the unit. Power to operate the remote humidifier does not come from the unit.

4.7 Compressor Power Factor Correction—Optional

Capacitors are installed in the compressor circuit to increase the power factor (PF), improving the efficiency of the compressor. The capacitors help to minimize the reactive power (kVAR) required for the compressor to operate, will reduce the compressor current draw and improve voltage, resulting in more efficient compressor performance and longer compressor life. The Vertiv Power Factor Correction option is designed to achieve a power factor around 0.88 - 0.93 during full load. Do not add additional power factor correction that leads to over compensation as it may damage the compressors and other equipment.

4.8 Wired Remote Sensor(s)—Optional

Each Vertiv[™] Liebert[®] iCOM[™] can have up to ten 2T sensors (20 sensor readings total) for control or reference. As part of the U2U network, those sensors shall be shared and used to control the cooling units and provide greater flexibility, visibility, and control to respond to changes in the conditioned space. When the sensors are used for control, the user may set the control to be based off a maximum or average of a selected highest temperature reading.

4.9 Vertiv[™] Liebert[®] vNSA Network Switch—Optional

The Liebert[®] vNSA network switch is designed for networking multiple iCOM unit-level controllers together. There shall be two different styles of the vNSA14 panel available:

- vNSA14 enclosure with network switches only
- vNSA14- Liebert® iCOM™-H enclosure with network switches and 9-inch iCOM color touchscreen display

Each offering shall be housed inside a steel enclosure secured with a key lock and contain two network switches, providing a total of 14 Ethernet ports available for iCOM controller unit-to-unit networking. The Liebert[®] vNSA requires field supplied, hard wiring, 16AWG, 100-240VAC universal (12V, 1.5A) single-phase input power supply for 120V or 230V operation with factory supplied power connector.

4.10 Liebert® Liqui-tect Sensors (Maximum of Two Per Unit)—Optional

____ (quantity) solid state water sensors shall be provided for installation under the raised floor.

4.11 Floor Stand—Optional for Raised Floor Applications

The floor stand shall be constructed of a welded steel frame. The floor stand shall have adjustable legs with vibration isolation pads. The floor stand shall be ____ in. (_____mm) high.

4.12 Seismic Rated Floor Standard—Optional for Raised Floor Applications

The floor stand shall be rated to meet IBC certification when properly installed with Vertiv[™] Liebert[®] DSE evaporator unit with IBC certified seismic rated bracing per DPN005109. The floor stand shall be constructed of a welded steel frame. The floor stand shall be ______ in. (_____mm) high.

5.0 HEAT REJECTION

5.1 Vertiv[™] Liebert[®] MCV Condenser Summary

These specifications describe requirements for an air-cooled condenser for a Vertiv[™] Liebert[®] Thermal Management system. The condenser shall be designed to reject waste heat to outdoor air and to control refrigerant head pressure as indoor equipment loading and outdoor ambient conditions change.

The manufacturer shall design and furnish all equipment in the quantities and configurations shown on the project drawings. Standard 60 Hz units are CSA-certified to the harmonized U. S. and Canadian product safety standard CSA C22.2 No 236/UL 1995 for "Heating and Cooling Equipment" and are marked with the CSA c-us logo.

The condenser model number shall be: _____

5.1.1 Liebert® Heat Rejection Skid

The heat rejection skid integrates the MCV condenser, Vertiv[™] Liebert[®] EconoPhase pump, and Vertiv[™] Liebert[®] DSE receivers (when used with DA250 units only) onto a common base. Skid assemblies include all internal plumbing and wiring completed. These assemblies allow for a single crane lift of heat rejection equipment and fast job site completion. All field piping and wiring connections are made on one common end.

5.1.2 Single or Dual Skid Assemblies

These are available to provide heat rejection needs of one or two Liebert[®] DSE units, respectively. Dual skids have two Liebert[®] MCV condensers, two Liebert[®] EconoPhase units, four Liebert[®] DSE receivers (when used with DA250 units only), two sets each of piping connections, two high voltage connection boxes, and two low voltage communication connection boxes.

5.2 Liebert® MCV Condenser Design Requirements

The air-cooled condenser shall be a factory-assembled unit, complete with an integral electrical panel, EconoPhase pump package, and designed for outdoor installation. The condenser shall be a draw-through design.

The unit is to be supplied for operation using a _____volt/3phase/_____Hz power supply.

5.2.1 Voltage Configurations

There are four voltage configurations

1. 460V, 3 phase, 60 Hz

2. 380V, 3 phase, 60 Hz

3. Customer connection is 575V with 575/460V stepdown transformer to 460V condenser and PRE components. Condenser and PRE will have 460V serial tag values.

4. 415V with a 380-415V condenser and 415V PRE.

5.3 Liebert[®] MCV Condenser Standard Features—All Condensers

The condenser shall consist of microchannel condenser coil(s), propeller fan(s) direct driven by individual fan motor(s), and electrical controls. The air-cooled condenser shall provide positive refrigerant head pressure control to the indoor cooling unit by adjusting heat rejection capacity. Microchannel coils shall provide superior heat transfer, reduce air-side pressure drop, increase energy efficiency, and significantly reduce the system refrigerant volume required. EC fans and fan operating techniques shall provide reduced maximum sound levels.

5.4 Vertiv[™] Liebert[®] MCV Condenser Coil

5.4.1 Aluminum Microchannel Coil

Microchannel coils shall be constructed of aluminum microchannel tubes, fins, and manifolds. Tubes shall be flat and contain multiple, parallel flow microchannels and span between aluminum headers. Full-depth louvered aluminum fins shall fill spaces between the tubes. Tubes, fins, and aluminum headers shall be oven brazed to form a complete refrigerant-to-air heat exchanger coil. Copper stub pipes shall be electric resistance welded to aluminum coils and joints protected with polyolefin to seal joints from corrosive environmental elements. Coil assemblies shall be factory leak-tested at a minimum of 300 psig (2068kPag). Hot gas and liquid lines shall be copper and shall be brazed using nitrogen gas flow to the stub pipes with spun closed ends for customer piping connections.

5.4.2 Aluminum Microchannel Coil with E-Coat (Optional)

Aluminum microchannel coil with E-coat shall be epoxy-coated for extended coil life in corrosive environments, such as coastal areas. Factory-applied E-coat using immersion and baking process shall provide a flexible epoxy-coating to all coil surfaces. Coil color shall be black and shall be protected from solar UV ray degradation with a factory-applied UV topcoat. E-coat shall increase coil corrosion protection and shall reduce heat rejection capacity degradation to less than 10% after a severe 2000 hour 5% neutral salt spray test (ref. ASTM B117). The coating process shall ensure complete coil encapsulation.

5.5 Condenser Fan

The fan motor/blade assembly shall have an external rotor motor, fan blades and fan/finger guard. Fan blades shall be constructed of cast aluminum or glass-reinforced polymeric material. Fan guards shall be heavy gauge, close meshed steel wire, coated with a black corrosion resistant finish. Fan terminal blocks shall be located in an IP54 enclosure located on the top of the fan motor. Fan assemblies shall be factory-balanced, tested before shipment and mounted securely to the condenser structure.

5.5.1 EC Fan Motor

The EC Fan motors shall be electronically commutated for variable speed operation and shall have ball bearings. The EC fans shall provide internal overload protection through built-in electronics. Each EC fan motor shall have a built-in controller and communication module, linked via RS485 communication wire to each fan and the Premium Control Board, allowing each fan to receive and respond to precise fan speed inputs from the Premium Control Board.

5.6 Condenser Electrical Controls

Electrical controls and service connection terminals shall be provided and factory wired inside the attached control panel section. A locking disconnect switch shall be factory-mounted and wired to the electrical panel and controlled via an externally mounted locking and lockable door handle. Only high voltage supply wiring and low voltage indoor unit communication/interlock wiring are required at condenser installation.

5.7 Premium Efficiency Fan Control

The Vertiv[™] Liebert[®] MC EC Fan/Premium Control System shall include an electronic control board, EC fan motor(s) with internal overload protection, refrigerant and ambient temperature thermistors, and refrigerant pressure transducers. The Premium Control Board shall communicate directly with the indoor unit's Vertiv[™] Liebert[®] iCOM[™] control via field supplied CANbus communication wires and via field-supplied low voltage interlock wires. The control board shall use sensor and communication inputs to maintain refrigerant pressure by controlling each EC fan on the same refrigerant circuit to the same speed. The control system provides refrigerant head pressure and system starting for outdoor ambient temperature as low as -30°F (-35 °C), provided the total temperature design range (from minimum to maximum) is 125°F (70°C) or less.

The mode of the Vertiv[™] Liebert[®] MC shall be controlled by the Vertiv[™] Liebert[®] DSE iCOM[™] control and shall be in either DX, Vertiv[™] Liebert[®] EconoPhase or Idle Mode by each refrigerant circuit. Dual circuit condensers shall operate fans to meet airflow needs and mode of each circuit independent of the other. Fan(s) on common refrigerant circuit shall operate in synchronous speed when that circuit is active.

5.8 Skid Locking Disconnect

A locking type disconnect switch shall be factory-mounted and wired to the electrical panel. The switch shall be accessible from the outside of the unit with the door closed and shall prevent access to the high voltage electrical components until switched to the Off position. The locking disconnect shall be lockable in support of lockout/tag-out safety programs.

5.8.1 Short Circuit Current Rating

The electrical panel shall provide at least 65,000A SCCR.

5.8.2 575V Option

The secondary electrical enclosure shall contain a factory wired transformer and fusing to support 575V input power. All internal wiring shall be provided to connect main and secondary electrical enclosures. High voltage supply and low voltage indoor unit communication/interlock connections shall be made in the main electrical enclosure.

5.9 Cabinet

The condenser cabinet shall be divided into fan and coil sections by full width baffles per corresponding DX circuits. Internal structural support members, including coil support frame, shall be painted or galvanized steel for strength and corrosion resistance. Panel doors are provided on the outside of each coil/fan section to provide for coil cleaning. An electrical panel shall be contained inside a factory mounted, NEMA 3R weatherproof electrical enclosure. Galvanized steel base is available and required to support the condenser mounting, rigging, and airflow.

5.10 Liebert® DSE Receiver (Not included with DA265)

Liebert[™] DSE Receiver shall be a painted, uninsulated receiver with integral fusible plug, formed copper pipe for ease of connecting the condenser liquid line to the receiver and the mounting bracket. These receivers are factory installed and piped to the Vertiv[™] Liebert[®] MCV Skid assembly

5.11 Liebert[®] EconoPhase

The Liebert[®] EconoPhase has two variable speed refrigerant pumps controlled by individual VFDs, factory wired electrical panel, factory piped and tested refrigerant piping all housed within a bright aluminum NEMA 3R enclosure. The Liebert[®] EconoPhase is mounted, wired, and piped into the Liebert MCV Condenser Skid to provide significant jobsite installation savings. The Liebert[®] EconoPhase refrigerant pumps are individually activated and speed controlled during cooler outdoor ambient, coordinated with Liebert[®] DSE compressors idled and refrigerant bypassed around them. Cool temperatures, such as mild weather and at night, partial economization and power savings is provided with one pump activated and one compressor idled. Colder temperatures, such as winter weather, allow both Liebert[®] DSE compressors to be idled and EconoPhase pumps to be controlled independently to provide full economization

5.12 Condenser Housing

The condenser housing is constructed of galvanized steel and divided into individual fan sections by full width baffles. Internal structural support members, including coil support frame, are galvanized steel for strength and corrosion resistance. Panel doors are provided on the outside of each coil/fan section to provide for coil cleaning. Galvanized steel base is available and required to support the condenser mounting, rigging and airflow.

Condenser shall be shipped pre-installed on a base structure that includes the Liebert[®] EconoPhase pumped refrigerant economizer, refrigerant receivers, and all associated piping.

6.0 EXECUTION

6.1 Installation of Thermal Management Units

The customer or the customer's representative shall be responsible for the following:

6.1.1 General

Install Thermal Management units in accordance with the manufacturer's installation instructions. Install units plumb and level, firmly anchored in locations indicated and maintain the manufacturer's recommended clearances.

6.1.2 Electrical Wiring

Install and connect electrical devices furnished by the manufacturer but not specified to be factory mounted. Furnish a copy of the manufacturer's electrical connection diagram submittal to the electrical contractor.

6.2 Piping Connections

Install and connect the devices furnished by the manufacturer but not specified to be factory mounted. Furnish a copy of the manufacturer's piping connection diagram submittal to the piping contractor.

6.2.1 Drain Water Piping

Connect the water drain to the air-conditioning unit. Provide pitch and trap as manufacturer's instructions and local codes require.

6.3 Field Quality Control

Start cooling units in accordance with the manufacturer's startup instructions. Test controls and demonstrate compliance with requirements. These specifications describe requirements for a computer room environmental control system. The system shall be designed to maintain temperature and humidity conditions in the rooms containing electronic equipment.

The manufacturer shall design and furnish all equipment to be fully compatible with heat dissipation requirements.

6.4 Warranty Start-up and Control Programming

Install the indoor unit in accordance with manufacturer's installation instructions provided with seismic option. Firmly anchor maintaining manufacturer's recommended clearances. Mounting requirement details such as anchor brand, type, embedment depth, edge spacing, anchor-to-anchor spacing, concrete strength, special inspection and attachment to non-building structures must be outlined and approved by the Engineer of Record for the projection or building. Electrical, pipe and duct connections must permit movement in three dimensions and isolate the unit from field connections. Electrical conduit shall be flexible, having at least one bend between the rigid connection at the unit cabinet and the connection to rigid conduit or foundation. The piping flexible connection or loop must be suitable for the operation pressure and temperature of the system. Furnish a copy of manufacturer's piping connection diagram submittal to the piping contractor.

Engage manufacturer's field service technician to provide warranty start-up supervision and assist in programming of unit(s) controls and ancillary panels supplied by them.

Connect with Vertiv on Social Media

https://www.facebook.com/vertiv/

https://www.instagram.com/vertiv/

https://www.linkedin.com/company/vertiv/

https://www.twitter.com/Vertiv/

Vertiv.com | Vertiv Headquarters, 505 N. Cleveland Ave., Westerville, OH, 43082, USA

© 2024 Vertiv Group Corp. All rights reserved. Vertiv[™] and the Vertiv logo are trademarks or registered trademarks of Vertiv Group Corp. All other names and logos referred to are trade names, trademarks or registered trademarks of their respective owners. While every precaution has been taken to ensure accuracy and completeness here, Vertiv Group Corp. assumes no responsibility, and disclaims all liability, for damages resulting from use of this information or for any errors or omissions.