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Abstract

Uninterruptable Power Supply (UPS) systems are essential in modern-day industry to ensure that equipment
continues to function even in the event of power failure. These UPS systems must themselves be resistant to
failure to guarantee that they will be working when necessary. Because monitoring and maintaining these UPS
systems is beyond the scope of many industries, it is contracted out to firms that manage systems at hundreds of
installations nationwide. These companies require automated monitoring tools to use sensor data (collected by
instruments installed on the UPS systems) to determine when batteries are in need of replacement. In this paper,
we discuss a tool for detecting unusual behavior in battery resistance readings (indicative of impending or recent
battery replacement), and we present a case study demonstrating the effectiveness of this tool on real-world
battery data.

I. Introduction

Many large-scale industrial systems rely on continuous power availability to function: at any given point in time,
different components or materials may be in a fragile state which would be damaged by a sudden loss of power.
These systems must have time to return to a safe state prior to shutoff, but unexpected loss of power does not
grant them this time. To avoid such problems, those who operate these machines must rely on battery backup
systems, which will provide enough power to sustain the machinery even if the primary power source is lost.
These backup systems must work reliably as soon as they are needed, even though they may sit for months or
years between uses.

Typically, a battery backup system will consist of one or more “strings,” each of which is composed of many “jars”
(which are the actual voltaic components). With the data used in our case study, for example, each system
consists of one or two strings, which are each composed of forty jars. The jars within a string are connected in
series, which means the voltage drop across a string is the sum voltage drop across the string’s jars. Thus a
failure of a single jar will degrade an entire string, and unless there are multiple redundant strings powering the
same equipment, this would remove the backup for the protected system.

Because these battery backup systems are essential to maintain system reliability (there cannot be another
backup for the backup), and have high voltages, they must be installed and monitored by professionals working
for a firm that specifically handles deployment and maintenance of battery backup systems. These firms may be
responsible for thousands of deployments throughout the country, which means it is not feasible for them to
have personnel manually inspect all systems regularly to ensure that they are functioning properly. Instead, they
employ remote sensors, which detect various properties of the battery systems (such as voltage, resistance, and
temperature) and report these to a central office for monitoring. Because the data from these sensors will be
used for determining the health of the battery systems, it is important to verify the quality of this data.
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Many types of errors can be found in the sensor data from battery backup systems, not all of which indicates an
actual problem with the system being monitored. For example, in many cases a sensor will only poll the physical
hardware for a new value once every two weeks, or even once a month, but will retain the most-recently-read
value on internal memory. If this sensor is queried for its status between readings, it will report that most recent
value, even though the value may come from days or weeks in the past. Sensors can also be damaged or
disconnected without actual harm to the underlying battery system, which may result in impossibly low or high
reading values or values which are missing entirely. All of these types of errors will impact the quality of the data
used to monitor the battery systems and will make it more difficult for humans or monitoring algorithms to
process this data and detect real changes in the monitored systems.

In this paper, we present a case study of real-world battery monitoring data which exhibits the discussed errors,
as well as the results of using a tool to remove these errors. Drawing on extensive data that has been collected
over many years Ratcliff [1], we will show how the error types can make it difficult to interpret the raw data, and
how once these have been automatically removed with the tool, the cleansed data will retain all of the
important information about the monitored battery system, while being free of the noise and errors which could
hinder interpretation. Finally, we will discuss how this tool may be integrated into a battery monitoring workflow
to ensure that all data (even error data) is retained, so that errors resulting from direct damage to the sensors
may be addressed appropriately.

The organization of this paper is as follows: Section Il presents related work on the topic of data cleansing for
remote monitoring systems. Section Ill discusses the error types in more detail, along with approaches used by
our tool to deal with and cleanse these errors. Section IV contains our case study discussing both the raw data
and how the tool was able to cleanse it. Finally, Section V holds our conclusions and discussion of how the
demonstrated tool fits into the larger problem of building a remote battery monitoring system.

Il. Related Work

Relatively little work has considered the importance of data cleansing for improving the quality of sensor data,
especially in the context of monitoring battery systems. Jeffery et al. has developed a broad framework for
addressing missing and unreliable sensor data from RFID tags, called the Extensible receptor Stream Processing
(ESP) framework [2], [3]. This framework recognizes that in general, data points which are close in space and/or
time will generally share similar values, and therefore readings which do not share values in this fashion are likely
to be erroneous. A five-step preprocessing approach is employed to address these potentially erroneous data
points by removing outliers, interpolating missing values both temporally and spatially (in separate steps),
handling duplicated readings, and combining readings from different sensor types. By employing this framework,
only the useful data will be retained, while erroneous and missing values will be fixed, thus producing a more
useful dataset.

In addition to ensuring data quality by removing or replacing faulty data, it can be useful to retain information
about the quality of each individual data point and ensure this information is propagated to downstream
systems. Klein [4] developed just such a system, which uses a metamodel to assess data quality in terms of both
accuracy and completeness, which then either processes the data to improve its quality or simply marks the data
as potentially low-quality so that it may be dealt with accordingly in the future. Klein’s system also takes into
account the data storage and processing considerations which must be dealt with when handling large quantities
of potentially-faulty data. Overall, this framework permits data to be interpreted and handled even in the event
of data quality concerns so that all processing takes potential errors into account.
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lll. Battery Instruments and Error Types

Instruments installed on battery systems come in many types and can suffer from many faults. As discussed
earlier, a battery backup unit is composed of strings which themselves contain jars. Sensing can take place either
at the string or jar level: for example, typically voltage and resistance are measured per jar, while the
temperature is measured across an entire string.

Temporal Resolution and Repeated Values

Different sensors have varied temporal resolution. Depending on the installation parameters, the voltage and
resistance levels are either generated once every two weeks or once per month. These varying time scales pose
a challenge for interpreting battery sensor data, a challenge made even harder by the problem of duplication.
Whether or not the sensor is scheduled to perform a new measurement and run a new resistance test, the
sensor will return a remote value daily, which is usually the last recorded reading. Since there is no overt signal
whether the presented value is new or repeated, from a remote monitoring and data perspective it can be
difficult to judge the importance of each value.

One naive approach to alleviate this problem is to retain only the values provided once every two or four weeks
and discard the rest. However, this misses an important subtlety of remote battery measurements: the testing
interval is measured from when the jar was first installed or last replaced, and a jar can be replaced in the middle
of a instrument stream of inbound data. In other words, the key dates which represent new sensor readings can
change over the course of a jar’s lifetime, meaning that using a fixed interval will give poor results.

To solve this problem, the tool implemented and used in this case study first operates by eliminating repeated
values: that is, for each day, if the sensor value of that day is identical to the previous day’s value, it will be
removed. This ensures that genuinely new values are retained regardless of how long it was since a new value
was previously recorded. Two problems remain with this technique, however. First of all, if a new value actually
is identical to the old value, it will be eliminated as a repeated value even though it is new information. Secondly,
if adjacent values are nearly but not completely identical (for example, in our case study we found tests where
resistance values fluctuated between 4255 and 4256 mQ), all of these values will be retained, even though they
may represent repeated values. Although the present study does not address either of these potential problems,
they will be considered in future work.

High and Low Values

In addition to producing duplicated values, certain types of sensor errors can result in abnormally high or low
values. For example, if an engineer accidentally jostles a sensor while performing upgrades, its leads may be
disconnected partially or short onto another part of the machinery. Generally speaking, experienced engineers
examining the data will know which range of values are reasonable and which are indicative of these errors, but
sometimes these “known good” ranges are unknown, especially for newer equipment which has yet to develop a
broad baseline of normal behavior. Thus, two separate approaches are needed to address this problem of high
and low sensor values.

The first of these approaches is conceptually simple: engineers who are familiar with the battery system define a
low threshold and a high threshold, so that values which fall outside these are marked as low or high,
respectively. When these thresholds are insufficient or unknown, however, a second approach may be employed.
Here, statistical methods are used, considering all of the points collectively (disregarding their temporal
sequence) and finding which constitute outliers in a mathematical sense. The threshold for outliers is found
based on the data without any prior knowledge. Using this automatic method, outliers with high or values can be
removed even if preexisting thresholds are unknown.
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Missing Values

Finally, some sensor faults can result in values missing altogether: a sensor can be entirely disconnected, can
break, or can lose its signal to the remote data center which collects the data from different installations. All of
these will result in a time instance which is missing an appropriate value entirely. The options for dealing with
these values are to interpolate them based on known values or remove them altogether; this latter approach
(removal) is used in the present work.

IV. Case Study

In this case study, we developed a tool to apply the data cleansing techniques discussed in Section Ill, and apply
them to a case study of real-world data. The dataset itself is presented in Section IV-A, while the results of the
tool are shown in Section IV-C.

Dataset

The data used in this case study is collected from a dataset which has been acquired during many years of large-
scale deployment of battery systems. It consists of values reported from each jar over the course of
approximately four years (specific durations vary by jar), with each instance containing the string tag and string
number (unique IDs used to represent which installation and which string at a particular installation is being
monitored), jar number (specific jar within a given string), resistance value, and reading date. Resistance value
was used as the sole sensor due to the scope of this case study, and the reading date is used as the x-value to
represent how the instances are separated in time (all other features are merely used to identify individual
points). In total, there are 16 strings (unique combinations of string tag and string number) and 40 jars in each
string.

Tool Development

The first processing step used by the tool is to collect this data and reorganize it, such that each string and jar can
be manipulated separately and examined in sequence. Although this step is simple conceptually, the tool is able
to accomplish this step efficiently even when operating on large (> 1 GB) data files that are generated due to the
life of a typical battery jar in this type of service. As discussed in above, there are three primary preprocessing
filters applied with the tool: removing duplicated values, removing values which surpass user-defined thresholds,
and removing values which are mathematical outliers. Different datasets may not need all of these filters
applied: for example, in a given circumstance, user-defined thresholds may not be known, or duplicates may be
desired. To accommodate these different use cases, all preprocessing steps can be enabled or disabled
separately, based on what forms of cleansing the user wishes to apply. In the experiments discussed in the
following section, all three cleansing steps were applied.

Results

When looking at different string and jar combinations, we find several some exhibit some errors while others
exhibit others. Some combinations exhibit a combination of errors. In Figures 1 through 6, we see a number of
different variations, with each figure containing the data both before and after cleansing. The primary goal is to
separate instrument data that is anomalous from real battery data which represents a physical or chemical
change in a jar over its entire lifetime.

Figure 1 presents a fairly typical case, where the resistance data breaks into three clear time sequences: one
where it starts a bit over 5000 mQ and slowly rises, one where it starts at nearly 5000 mQ exactly and stays
relatively stationary, and finally one where it starts well below 5000 mQ and also does not show significant
movement. Post-cleansing, we see that the duplicated values found so often in the second and third regime are
mostly removed, retaining only the slight variances which were found in the first regime as well. This
demonstrates that the cleansing can help remove the differences between datasets which share many similar
underlying properties.
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Figure 1 - Results for String Tag 1136286, String Number 1, Jar 6

The combination presented in Figure 2 shows much the same, although with only one distinct regime of data
that rises and falls.
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Figure 2 - Results for String Tag 1154622, String Number 1, Jar 39

Figure 3 shows a relatively constant data source with similar patterns.
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Figure 3 - Results for String Tag 1290668, String Number 1, Jar 6

Figures 4 through 6 demonstrate another problem: outliers. Figure 4 shows an example with extreme high
outliers (and one low outlier at the end), while Figure 5 shows one with extreme low outliers (both at the
beginning and in the middle of its time sequence) and Figure 6 has notable problems in both directions. Note
that while repeated values are primarily a problem for automated analysis of sensor data (because the frequent
repeated values could erroneously lead an algorithm to believe that a signal is more stable than it really is),
outliers (and in particular high values) can obscure human interpretation of sensor data, because graphs such as
these which scale to the largest observed value are often useless when the highest observed value dwarfs the
important values. Outliers are very important data elements to be analyzed as they may represent impending
catastrophic failure of a jar or string.
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Figure 5 - Results for String Tag 1293307, String Number 1, Jar 6
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Figure 6 - Results for String Tag 1293309, String Number 6, Jar 9

Note that in some cases, such as Figure 4, the removal of outliers can also eliminate some useful values (in
particular, many of the values towards the end of the first time regime, which appeared to be steadily
progressing upwards without creating a true outlier). This is an inherent risk of removing instances, however, and
in this case practitioners could add back the missing data as appropriate, or use this to help choose better
threshold for future analysis.

Overall, we see that post-cleansing, the important traits of the data are preserved (the general pattern of how
values change over time, both smoothly and in discontinuous jumps), but erroneous values which could have led
to misleading results (such as duplicated values and extremely high or low values) have been removed. This will
make the processed data easier to handle both by humans and with automated systems.

V. Conclusion and Discussion

In this paper, we have discussed different error types which can affect instrument data collected from remote
monitoring and analysis systems, shown options for addressing these errors, and presented a case study which
uses a newly-implemented tool to cleanse data collected from a real-world system. This will allow practitioners
to have more trust in their data and believe that the sensor values they are looking at represent real traits of the
battery system being monitored and not false values caused by malfunctioning instruments, wires or connectors.
In addition, this more meaningful data can be integrated into a larger system for battery system performance
monitoring.

In the future, we will examine additional types of battery instrument error and consider alternate ways to detect
and resolve these errors. We will also use this data to create a model that can predict when a battery or a string
is about to fail. The provided data requires significant preprocessing to prepare it for the modeling process.
There are many unnecessary portions that are cleansed in the manner that was discussed in this paper. From this
cleansed data, we intend to automate a pattern recognition process that generates a model that shall accurately
label the unlabeled present data streaming in real time. From the labeled information generated from the
models, semantic information shall be readily available, which can immediately indicate interesting events that
may warrant attention.
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