VRLA BOOSTED BATTERIES – 10 YEARS LATER: AN MTS ALLSTREAM SUCCESS STORY

Robert Szasz Senior Manager, Infrastructure Engineering MTS Allstream, Toronto , Canada

ABSTRACT

This paper will provide ten years of in-service field data results of 40 strings of VRLA boosted batteries installed in the MTS Allstream Network in 2001. During a company merger 11 years ago, the above noted stock of battery strings was acquired by MTS Allstream. These batteries were purchased by the company from two different VRLA vendors. The batteries were discovered during the warehouse clean-up after four years of shelf life. Allstream Engineering worked with the two battery suppliers to boost the batteries and bring them back to life for re-use. The methods used by the two vendors to recover the batteries, the Allstream Engineering design considerations, and the financial savings have been discussed in the IEEE paper *Bringing Back to Life an AT&T Canada Venture*¹ presented and published by Robert Szasz, P.Eng. at INTELEC, October 2002, Montreal, Canada ©2002 IEEE. These batteries were installed at 20 Allstream Network sites and have served very well since installation in 2001. Field data results and reliability of these battery strings will be reviewed. Battery backup during the August 2003 hydro blackout will be discussed, and battery string status after ten years in service (14 years after manufacture date) will be reported. These batteries will be compared with field test data of similar, non-boosted batteries.

MANUFACTURER'S COMMENTS

Allstream Engineering approached the two VRLA vendors to inspect the batteries in the warehouse and provide their recommendation for an Allstream decision to either scrap or re-use the batteries. C&D stated that no data exists as to the impact on performance life when manufacturer storage recommendations have not been followed. GNB stated that their batteries could recover reasonably well after two years of storage, but no data was available for batteries stored three to four years. Hence, both manufacturers would not provide any warranty. The following are the details of the manufacturers' comments:

$C\&D^3$

- The operation of each battery (or, rather, the lack of operation) has been outside of C&D parameters, which specify that the cells must be on charge at the recommended voltage by the date shown on the packing (within six months from shipment).
- No data exists as to the impact on performance or life when C&D recommendations have not been followed.
- Hence, any success in recovering capacity should be considered as something of a bonus.
- There is no way that, in a similar situation, flooded lead-acid batteries could have been recovered.
- C&D cannot provide warranty for such batteries but was willing to assist in testing and boosting.

GNB⁴

- We have seen these batteries recover reasonably well after two years of storage. "Reasonably well" means the battery achieved 90% or better of spec rating after one or two cycles.
- You may well find excellent capacity in your battery. It will likely provide years of quality service. Since the delicate chemistry has been compromised, your battery will not perform to optimum levels, although it may seem to.
- It may perform like an older battery, with reduced life expectations.
- Proper routine maintenance monitoring will help you identify when these batteries are reaching end of life.
- If you achieve 90% or better of spec performance after one or two cycles, you should deploy them with reduced expectations.
- GNB cannot extend its normal warranty to these batteries. The chemistry changes affect long-term life in very complex ways that cannot be defined by simple math.

Following the manufacturers' comments above, it was agreed by Allstream and each vendor to boost one string of each battery and provide test results for Allstream approval. Each of the pilot boosted batteries passed the discharge tests and, as a result, approval was given to both vendors to proceed with boosting of the balance of battery strings. Each battery string had been discharge tested and all passed the tests. Each of the two suppliers developed their own boosting program. The C&D battery boosting program was a combination of constant voltage and constant current. The GNB battery boosting program was a combination of constant voltages only. Both methodologies were reviewed by the author in detail in the IEEE paper¹. Batteries then were shipped and installed at 20 Allstream Network sites in 2001. Allstream saved a significant amount of capital, approximately \$300,000, for the 2001 budget by avoiding the purchase of new battery strings for these 20 network sites. The saved capital funds were made available to fund power upgrades at a number of additional sites.

FIELD DATA SERVICE RESULTS

Ten years of field data service results reported in this paper are compared to first year results previously reported in the IEEE paper¹. The first battery strings were installed in April 2001, with the last ones in September - October 2001. The boosted batteries were in service for five years at all 20 sites, for eight years at 13 sites, and for ten years at 11 sites. (Seven sites closed and the batteries were decommissioned and disposed of after six years in service).

Allstream criteria for evaluation of the state of health of the batteries was the conductance measurements using Midtronics Celltron meters. Conductance readings were compared initially with the Midtronics conductance (Mho) reference and factory test figures. All subsequent readings were referenced to base line readings after the battery installation. There were no discharge tests performed during the ten years in service of these batteries. The first readings, taken in April 2002 at five sites for HD-300 strings in service either for six or nine months, indicated a low conductance average in the range of 72% to 81% (see Table 1A)¹. In consultation with C&D and under their guidance, distilled water of 3 oz/cell was added to all cells. The conductance readings taken shortly after water was added improved significantly to an average of 92% to 95% (see Table 1B)¹. The strings were charged on equalize for 48 hours. Readings taken again one week later showed further conductance improvements, to an average of 102%. In addition to adding distilled water, C&D retrofitted all the cells with their MAXIMIZERTM cap system (an internal catalyst technology) with the purpose of reducing corrosion of the positive grids and eliminating the dry-out. The catalyst recombines the hydrogen and some of the oxygen given off at the plates, thereby greatly reducing the water loss from VRLA cells².

The next set of conductance readings at the same sites were taken six months later. Conductance readings and corrective measures at the balance of the sites were completed by June 2002. The batteries were monitored by taking the quarterly conductance and voltage readings and recording the data in the company database. Additional water was added when conductance readings dropped below the reference base line in 2003, 2005, 2008 and 2009. Conductance readings after nine years, shown in Table 1C, are all over 100% (except one cell 99%) with an average 105% of reference.

Tabl	Table 1A. C&D, HD-300, Allstream Field Test Data 2002 - Welland T/C BEFORE Topping up Cells with H ₂ O										
	Ref Value Entered: 1800 Siemens (Mhos), Ref Temp: 20°C, String Average: 1271 S, String % of Ref: 72%										
Cell	Volts	Conductance	%		Cell	Volts	Conductance	%			
#		Siemens (Mhos)	Ref		#		Siemens(Mhos)	Ref			
01	2.25	0971	54		13	2.26	1272	72			
02	2.25	1058	60		14	2.25	1406	80			
03	2.25	1137	65		15	2.25	1093	62			
04	2.26	1100	63		16	2.23	1463	83			
05	2.26	1367	77		17	2.21	1868	106			
06	2.25	1134	65		18	2.23	2027	115			
07	2.25	1086	62		19	2.25	1152	66			
08	2.25	1086	62		20	2.26	1201	68			
09	2.25	0988	55		21	2.26	1195	68			
10	2.26	1159	66		22	2.25	1233	70			
11	2.26	1123	69		23	2.23	1775	101			
12	2.26	1310	74		24	2.25	1209	69			

Tab	Table 1B. C&D, HD-300, Allstream Field Test Data 2002 - Welland T/C AFTER Topping up Cells with $ m H_2O$										
	Ref Value Entered: 1800 Siemens (Mhos), Ref Temp: 20°C, String Average: 1610 S, String % of Ref: 92%										
Cell	Volts	Conductance	%		Cell	Volts	Conductance	%			
#		Siemens (Mhos)	Ref		#		Siemens (Mhos)	Ref			
01	2.25	1382	78		13	2.26	1621	93			
02	2.25	1414	80		14	2.25	1687	96			
03	2.25	1448	82		15	2.25	1559	89			
04	2.23	1509	85		16	2.21	1812	103			
05	2.25	1660	95		17	2.21	1970	112			
06	2.25	1591	91		18	2.23	1884	107			
07	2.25	1491	84		19	2.25	1576	90			
08	2.25	1516	86		20	2.26	1521	86			
09	2.25	1418	80		21	2.26	1638	94			
10	2.25	1528	86		22	2.25	1647	94			
11	2.25	1564	89		23	2.21	1963	112			
12	2.25	1604	92		24	2.25	1643	94			

7	Table 1C. C&D, HD-300, Allstream Field Test Data 2010 - Welland T/C AFTER Nine Years in Service										
Entered: 1800 Siemens (Mhos), Ref Temp: 20°C, String Average: 1898, String % of Ref: 105											
Cell	Volts	Conductance	%		Cell	Volts	Conductance	%			
#		Siemens (Mhos)	Ref		#		Siemens (Mhos)	Ref			
01	2.270	1860	103		13	2.270	1964	109			
02	2.276	1871	104		14	2.265	1784	99			
03	2.289	1919	107		15	2.266	1867	104			
04	2.276	1964	109		16	2.276	2031	113			
05	2.271	1968	109		17	2.293	1860	103			
06	2.270	1844	102		18	2.287	1976	110			
07	2.265	1953	108		19	2.270	1860	103			
08	2.265	1825	101		20	2.281	1866	103			
09	2.276	1871	104		21	2.276	1952	108			
10	2.279	1842	102]	22	2.266	1847	103			
11	2.270	1854	103	1	23	2.265	2011	111			
12	2.282	1890	105	1	24	2.270	1891	105			

Voltage and conductance readings of the HD-1100 string, manufactured in 1998 and in service for one year, are shown in Table $1D^1$ below. These batteries were performing very well, with the string % Reference of 105% without the need to add any water. However, after eight years in service, this battery string was failing testing with low conductance readings (less than 60%). As a result, it was replaced in September 2009.

	Table 1D. C&D, HD-1100, Allstream Field Test Data 2002 - Guelph T/C											
	Ref Value Entered: 4600 Siemens (Mhos), Liberty 2000, Type HD-1100, C&D Order No. 0312401-01											
Ref Temp: 21°C, String Average: 4767 S, String % of Ref: 105%												
JAR	R R-Volts Jar-G % Ref Initial JAR R-Volts Jar-G % Ref Initia											
		Siemens		Cond				Siemens		Cond		
01	2.25	5156s	115	5111		12	2.25	5200	116	5227		
02	2.28	5031s	112	4979		13	2.25	4796	106	5157		
03	2.25	4833s	107	4937		14	2.26	5011	111	5045		
04	2.25	4466	99	4640		15	2.25	4833	107	4958		
05	2.25	4669	103	4753		16	2.25	4892	108	4995		
06	2.25	4971	111	4793		17	2.26	4669	103	4895		
07	2.25	4705	104	4874		18	2.25	4971	111	4814		
08	2.25	5135	114	4714		19	2.25	4833	107	4793		
09	2.26	4871	111	5111		20	2.26	4971	111	5066		
10	2.25	5178	115	5275		21	2.25	5290	118	5204		
11	2.28	4990	111	5111		22	2.25	5290	118	5111		
12	2.25	5200	116	5227		23	2.25	5267	117	5134		
13	2.25	4796	106	5157		24	2.25	4872	107	4814		

Cell voltages and conductance readings of GNB batteries installed at Glencoe in July 2001 were taken in March 2002 after eight months in service. The batteries were performing well, with conductance readings with a string % Reference of 97% (Table 2A)¹. Batteries continue to perform very well after nine years, with similar conductance readings of 98% of the reference (Table 2B).

	Table 2A. GNB Allstream Field Test Data 2002 – Glencoe T/C (GNB 90 A-07)										
Conductance Reference 1300 S, String Average: 1263 S, String % of Ref: 97%											
Cell #	Voltage	Conductance	%		Cell #	Voltage	Conductance	%			
		(Mhos)	Ref				(Mhos)	Ref			
01	2.250	1249	96		13	2.250	1266	97			
02	2.250	1268	98		14	2.250	1268	97			
03	2.250	1243	96		15	2.260	1282	99			
04	2.250	1299	100		16	2.250	1291	99			
05	2.260	1338	103		17	2.260	1217	94			
06	2.230	1299	100		18	2.250	1228	94			
07	2.250	1274	98		19	2.250	1217	94			
08	2.250	1299	100		20	2.270	1332	102			
09	2.250	1279	98		21	2.250	1183	91			
10	2.260	1263	97]	22	2.230	1094	84			
11	2.250	1254	96]	23	2.250	1241	95			
12	2.230	1326	102]	24	2.260	1309	100			

Tab	ole 2B. GNB	Allstream Field	Test Data 2010–	Glen	coe T/C (GNB 90 A-07) A	FTER Nine Years	s in Service
		Conductance R	eference 1300, St	ring A	verage: 1	272S, String % d	of Ref: 98 %	
Cell #	Voltage	Conductance	%		Cell #	Voltage	Conductance	%
	_	(Mhos)	Ref			_	(Mhos)	Ref
01	2.240	1280	98		13	2.230	1306	100
02	2.270	1280	98		14	2.240	1293	99
03	2.210	1223	94		15	2.230	1259	97
04	2.260	1323	102		16	2.230	1223	94
05	2.240	1249	96		17	2.240	1203	93
06	2.230	1307	101		18	2.230	1241	95
07	2.260	1284	99		19	2.240	1316	101
08	2.240	1303	100		20	2.260	1252	96
09	2.230	1271	98		21	2.240	1280	98
10	2.240	1303	100]	22	2.230	1237	95
11	2.240	1319	101]	23	2.240	1168	90
12	2.240	1379	106]	24	2.290	1223	94

AUGUST 2003: MAJOR HYDRO OUTAGE IN SOUTHWESTERN ONTARIO / NORTHEASTERN US

The boosted batteries were subjected to a real major outage event two years after their deployment in the field. On August 14, 2003 at approximately 16:13 EST, a catastrophic power failure impacted most of Ontario as well as the northeastern United States. The impact affected businesses as well as residences, with blackouts ranging from 2 to 30+ hours. The batteries performed extremely well to their rating and even better with sites running on these boosted batteries from 10 to 26 hours. Had Allstream not deployed two strings of batteries per site, some sites would have failed before hydroelectric power was restored. The hydro outage in some areas was up to 72 hours. Cell voltages and conductance readings of C&D batteries installed at Welland were taken 12 days after the outage on August 26, 2003. Conductance readings were within a string average of 104 % of the reference (Table 3).

	Table 3. C	&D, HD-300, All	stream Field Test	: Data	a 2003 - V	Velland T/C AF	TER 2003 Hydro	Outage
	Enter	ed: 1800 Siemens	(Mhos), Ref Tem	p: 20°	°C, String	Average: 1870,	String % of Ref: 10)4
Cell #	Voltage	Conductance	%		Cell #	Voltage	Conductance	%
		(Mhos)	Ref				(Mhos)	Ref
01	2.230	1812	101		13	2.250	1875	104
02	2.250	1831	102		14	2.250	1853	103
03	2.250	1902	106		15	2.250	1868	104
04	2.250	1852	103		16	2.230	1762	98
05	2.230	2038	113		17	2.210	1964	109
06	2.230	1795	100		18	2.230	1866	104
07	2.230	1849	103		19	2.250	1837	102
08	2.230	1843	102		20	2.250	1869	104
09	2.230	1819	101		21	2.250	1915	106
10	2.250	1853	103		22	2.250	1930	107
11	2.250	1843	102		23	2.230	1972	110
12	2.250	1912	106		24	2.250	1831	102

NON-BOOSTED BATTERIES SERVICE DATA

The following Tables 4A and 4B provide field test data of similar type and vintage of GNB batteries that were installed less than six months after manufacturing date. The batteries were installed in 1999 and were rehydrated in 2009. Table 4A readings were taken in September 2009, and Table 4B readings were taken after rehydration in December 2009. Battery conductance average in 2009, ten years after the manufacturing date, was in the 60% range, similar to some of the boosted batteries. The battery conductance continued to deteriorate to less than 50% to 60% in 2010 and batteries were replaced October 2010 after 11 years in service.

Г	Table 4A. GNB 90A-13, Allstream Field Test Data – Woodward FOTS Readings taken September 2009											
	Entered: 2500 Siemens (Mhos), Ref Temp: 27°C, String Average:1590, String % of Ref: 63											
Cell #	Voltage	Conductance	%		Cell #	Voltage	Conductance	%				
		(Mhos)	Ref				(Mhos)	Ref				
01	2.259	1798	72		13	2.251	1574	63				
02	2.254	1294	52		14	2.248	1792	72				
03	2.248	1747	70		15	2.242	1676	67				
04	2.248	1242	50		16	2.248	1258	50				
05	2.248	1450	58		17	2.248	1792	72				
06	2.259	1739	70		18	2.248	1711	68				
07	2.254	1581	63		19	2.248	1141	45				
08	2.254	1944	78		20	2.242	1642	65				
09	2.254	1707	68		21	2.237	1489	59				
10	2.248	1626	65		22	2.248	1343	54				
11	2.248	1631	65		23	2.248	1765	70				
12	2.247	1483	59		24	2.259	1754	70				

	Table 4B. GNB 90A-13, Allstream Field Test Data – Woodward FOTS Readings taken 11/12/2009											
	Entered: 2500 Siemens (Mhos), Ref Temp: 24°C, String Average:1750, String % of Ref: 70											
Cell #	Voltage	Conductance	%		Cell #	Voltage	Conductance	%				
		(Mhos)	Ref				(Mhos)	Ref				
01	2.250	1950	78		13	2.250	1808	72				
02	2.240	1471	59		14	2.240	1898	76				
03	2.240	1898	76		15	2.240	1814	72				
04	2.250	1380	55		16	2.240	1443	58				
05	2.240	1709	68		17	2.240	2047	82				
06	2.250	1873	75		18	2.240	1784	71				
07	2.250	1735	70		19	2.240	1350	54				
08	2.250	1975	79		20	2.240	1895	76				
09	2.250	1861	74		21	2.240	1808	72				
10	2.250	1843	74		22	2.250	1487	59				
11	2.240	1837	73		23	2.250	1937	77				
12	2.240	1598	64		24	2.250	1908	76				

CONCLUSIONS

This paper has described the Allstream success story of 40 strings of VRLA boosted batteries that, in spite of being left without refreshing charges for extended periods of time, once boosted in 2001, have served well in the field for five to ten years of reliable service. Allstream Engineering was able to work with the two suppliers to condition batteries for deployment into service. Allstream Engineering design concepts to deploy two strings of batteries per site served well during various outages and proved well during a major hydro outage in the summer of 2003, when all boosted batteries performed at their specification rating.

At the time of this writing, the boosted batteries have been in service for at least five years at all 20 sites, and 11 sites are still in service after ten years. The batteries were regularly monitored to ensure that they were serving sufficiently. In addition to that, "bringing back to life" 40 strings of VRLA batteries, deploying them in the Allstream Network, and monitoring them for ten years has allowed further research into VRLA technology. The present findings should be a valuable contribution to data gathering for the industry and valuable data for the two manufacturers.

The ten year results of deploying these batteries into the Allstream Network have indicated that these batteries have performed as well as or even better when compared with similar batteries in the Allstream Network that have been installed and charged within the recommended six months period from date of manufacture.

ACKNOWLEDGEMENTS

The author wishes to thank Allstream Network Engineering for permission to release the information presented in this paper.

REFERENCES

- 1. Robert Szasz, Loucas Miltiadou AT&T Canada. *Bringing Back to Life an AT&T Canada Venture*. ©2002 IEEE, INTELEC.
- 2. Bruce H.Dick, C&D. Float Control of Negative Plates in VRLA Batteries with MAXIMIZERTM. ©1998 Battcon.
- 3. D'Arcy O'Neill, C&D. Comments to AT&T Canada. February 2001.
- 4. Bob Twidle, GNB. Comments to AT&T Canada. February 2001.